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INFLUENCES OF CARBODY VERTICAL FLEXIBILITY ON RIDE
COMFORT OF RAILWAY VEHICLES

The article investigates the influence of the carbody vertical flexibility on the
ride comfort of the railway vehicles. The ride comfort is evaluated via the comfort
index calculated in three reference points of the carbody. The results of the numerical
simulations bring attention to the importance of the carbody symmetrical vertical
bending upon the dynamic response of the vehicle, mainly at high velocities. Another
conclusion is that the ride comfort can be significantly affected as a function of the
symmetrical bending frequency of the carbody. Similarly, there are improvement pos-
sibilities for the ride comfort when the best selection of the stiffness in the longitudinal
traction system between the carbody and bogie and the vertical suspension damping
is made.

1. Introduction

During running, the railway vehicle is subjected to a constant regime of vertical
vibrations, with negative effects on the ride quality, ride comfort and safety. The
vertical vibrations mainly derive from the vehicle running on a track with vertical
irregularities. Such vibrations comprise the simple vibration modes of the vehicle
suspended masses – the rigid modes (bound, pitch and rebound), to which the
complex vibration modes are added (structural vibrations), global or local, due
to the carbody flexibility, namely the bending and torsion, the modes of diagonal
torsion and the local deformations of the floor, walls or ceiling [1].

For high speed vehicles, a large number of theoretical and experimental studies
have confirmed that the level of vibrations can be strongly affected by the resonance
phenomenon of the vibration flexible modes in the carbody[2–6]. Even though the
carbody structural vibrations are rather complex [7, 8], the greatest influence on
comfort during vibrations comes from the first carbody natural bending mode
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(symmetrical bending) whose frequency usually ranges from 6 to 12 Hz [3], an
interval where the human body shows a higher sensitivity to vertical vibrations.

The carbody structural vibrations generally occur in the vehicle of a light
structure, such as the ones meant for passenger transport, where this solution was
adopted to maximize usage of the limited axle loads. But the light weight design,
while satisfying the requirements of strength and crashworthiness, is achieved usu-
ally at a cost of significant decrease in structural stiffness, and consequently the
decrease of bending frequencies [2]. A lower structural stiffness in the carbody
triggers a worse ride comfort, mainly at the carbody centre; in some cases, reposi-
tioning of the critical points in terms of comfort will take place, from the carbody
ends to its centre [9].

This article investigates the influence of the carbody vertical flexibility on the
ride comfort during the carbody running on a track with vertical irregularities.
The investigation process involves a model of the vehicle often mentioned in
the literature [2, 5] including a “flexible carbody” model that considers the rigid
vibration modes – bounce and pitch and its first flexible vibration mode – the
symmetrical vertical bending and six rigid bodies that represent the axles and
the suspended masses of the bogies. While the previous studies consider only the
vertical stiffness of the secondary suspension, this paper describes the model of
the secondary suspension including important elements – the pitch stiffness and
the stiffness of the longitudinal traction system between the carbody and the bogie,
whereby the bogies pitch vibration is transmitted to the carbody and excites the
symmetrical bending modes.

The ride comfort evaluation is based on the comfort index [10, 11], calculated in
three carbody reference points – at its centre and above the two bogies, depending
on the carbody vertical bending frequency. The influence of the stiffness in the
longitudinal traction system between the carbody and bogie and the damping
ratio of the two suspension levels on the ride comfort will be looked at and the
possibilities to improve the ride comfort at high velocities will be identified.

2. The vehicle mechanical model

To study the influence of the carbody flexibility on the ride comfort, a four-axle
and two-level suspension vehicle is considered, travelling at a constant velocity V
on a perfectly rigid track, with vertical irregularities. The track irregularities are
described with the reference to each axle by functions η j, ( j+1), with j = 2i − 1, for
i = 1, 2, while mentioning that each bogie is equipped with the axles j and j + 1.

The vehicle model (Fig. 1) includes a body with distributed parameters for the
carbody and many rigid bodies for the two bogies (the suspended masses) and the
four axles. These bodies are connected among them via Kelvin-Voigt type systems,
which helps modelling the suspension levels.

The carbody is represented by a free-free equivalent beam, with constant sec-
tion and mass uniformly distributed, of Euler-Bernoulli type. The beam parameters
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Fig. 1. The vehicle mechanical model

are defined in terms of the carbody’, such as: L – beam length; ρc = mc/L – beam
mass per length unit, where mc is the carbody mass; µ – structural damping coef-
ficient; EI – bending modulus, where E is the longitudinal modulus of elasticity,
and I is the area moment of inertia of the beam transversal section.

There will be taken into account the carbody rigid vibration modes – bounce
zc and pitch θc, and the first carbody natural bending mode in a vertical plan –
symmetrical bending. The carbody inertia reported to the rigid vibration modes is
represented by mass mc and the mass moment of inertia Jc.

The carbody movement w(x, t) comes from the superposition of the rigid
vibration modes with the first bending mode

w(x, t) = zc (t) +
(
x −

L
2

)
θc (t) + Xc (x)Tc (t), (1)

where Tc (t) is the coordinate of the first natural bending mode in a vertical plan
and Xc (x) stands for its eigenfunction

Xc (x) = sin βx + sinh βx −
sin βL − sinh βL
cos βL − cosh βL

(cos βx + cosh βx) (2)
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with
β =

4
√
ω2
c ρc/(EI) (3)

and
cos βL cosh βL − 1 = 0, (4)

where ωc is the natural angular frequency of the symmetrical bending in the
carbody.

The bogies have two degrees of freedom: bounce zbi and pitch θbi, with
i = 1, 2. Each bogie has the mass mb and mass moment of inertia Jb. The bogie
wheelbase is 2ab, and the distance between the bogies’ axles is 2ac.

To represent the suspension components of the railway vehicles, both relatively
simple linear and more sophisticated models, nonlinear and load-sensitive models
and frequency-dependent models can be chosen; multi-physics models may also be
included, for instance, in the case of air springs suspension and active components.
However, the modeling of suspension requires good judgement to be successful.
In most cases, the complex models for the suspension are difficult to handle and
require too much computing time when implemented in the numerical simulation
codes of vehicle dynamics. Qualitative and even quantitative information may be
obtained by using even less complex models. The level of details in modelling
the suspension depends on the purpose of the analysis [12]. Herein, the objective
of the work is centred on the influence of the carbody vertical flexibility on the
ride comfort; hence, the simpler model of Kelvin-Voigt has been adopted, usually
found in such studies [2, 13, 14]. The Kelvin-Voigt model can be even applied to
represent the air spring suspension in the vertical direction, a suspension which fits
the typical modern passenger vehicles [12].

The modelling of the secondary suspension of a bogie is done via two Kelvin-
Voigt, one for vertical translation and another for rotation, with the vertical stiffness
2kzc and the pitch angular stiffness 2kθc, as well as the damping constants are 2czc
and 2cθc. The Kelvin-Voigt system positioned in the vertical direction at distance
hc from the carbody’s neutral axis and at distance hb from the bogie centre of
gravity models the longitudinal traction system between the carbody and the bogie.
This has the elastic constant 2kxc and the damping constant 2cxc.

The primary suspension corresponding to an axle is modelled by a Kelvin-
Voigt system operating on translation in the vertical direction, with the elastic
constant 2kzb, and the damping constant 2czb.

3. Movement equations

The carbody vertical motions are described by the equations of the rigid
vibration modes of the carbody and of the bogies – bounce and pitch, as well as
by the equation of the first natural bending mode of the carbody – symmetrical
bending.
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The equation of motion for the carbody has the form of

EI
∂4w(x, t)
∂x4 + µI

∂5w(x, t)
∂x4∂t

+ ρc
∂2w(x, t)
∂t2 =

2∑
i=1

Fzciδ(x − li) −
2∑
i=1

(Mci − hcFxci)
dδ(x − li)

dx
,

(5)

where δ(.) is the Dirac’s delta function, the distances li set the position of the
carbody supporting points on the secondary suspension andFxci,Fzci and Mci stand
for the forces, respectively the moments derived from the secondary suspension of
the bogie i

Fzci = −2czc

(
∂w(li, t)

∂t
− żbi

)
− 2kzc [w(li, t) − zbi] ; (6)

Fxci = 2cxc

(
hc
∂2w(li, t)
∂x∂t

+ hb θ̇bi

)
+ 2kxc

(
hc
∂w(li, t)
∂x

+ hbθbi

)
; (7)

Mci = −2cθc

(
∂2w(li, t)
∂x∂t

− θ̇bi

)
− 2kθc

[
∂w(li, t)
∂x

− θbi

]
. (8)

Upon the application of the modal analysis method and considering the orthog-
onality property of the eigenfunctions of the carbody bending modes, the equation
of motion (5) is changed into three second-order differential equations with ordi-
nary derivatives that describe the bounce, pitch and symmetrical bending carbody
motions:

mc z̈c =
2∑
i=1

Fzci; (9)

Jc θ̈c =
2∑
i=1

Fzci

(
li −

L
2

)
+

2∑
i=1

(Mci − hcFxci); (10)

mmcT̈c + cmcṪc + kmcTc =

2∑
i=1

FzciXc (li) +
2∑
i=1

(Mci − hcFxci)
dXc (li)

dx
, (11)

where the carbody stiffness, damping and modal mass are given in the below
relations

kmc = EI

L∫
0

(
d2Xc

dx2

)
dx; cmc = µI

L∫
0

(
d2Xc

dx2

)
dx;

mmc = ρc

L∫
0

X2
cdx.

(12)
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If equations (7)–(9) are replaced in the carbodymovement equations and based
on the symmetry properties of the eigenfunction Xc (x), the following notations are
introduced

Xc (l1) = Xc (l2) = ε; (13)

dXc (l1)
dx

= −
dXc (l2)

dx
= λ, (14)

and hence written:

mc z̈c +2czc[2żc +2εṪc − ( żb1 + żb2)]+2kzc[2zc +2εTc − (zb1 + zb2)] = 0; (15)

Jc θ̈c + 2czcac[2ac θ̇c − ( żb1 − żb2)] + 2kzcac[2acθc − (zb1 − zb2)]+

+2cxchc[2hc θ̇c + hb (θ̇b1 + θ̇b2)] + 2kxchc[2hc (θb1 + θb2)]+

+2cθc[2θ̇c − (θ̇b1 + θ̇b2)] + 2kθc[2θc − (θb1 + θb2)] = 0;

(16)

mmcT̈c + cmcṪc + kmcTc+

+2czcε[2żc + 2εṪc − ( żb1 + żb2)] + 2kzcε[2zc + 2εTc − (zb1 + zb2)]+

+2cxchcλ[2hcλṪc + hb (θ̇b1 − θ̇b2)] + 2kxchcλ[2hcλTc + hb2(θb1 − θb2)]+

+2cθcλ[2λṪc − (θ̇b1 − θ̇b2)] + 2kθcλ[2λTc − (θb1 − θb2)] = 0.
(17)

The equations describing the bounce and pitch motions of the bogies are:

mb z̈bi =
2i∑

j=2i−1
Fzb j, ( j+1) − Fzci, with i = 1, 2; (18)

Jb θ̈bi = ab

2i∑
j=2i−1

(−1) j+1Fzb j − Mci − hbFxci, with i = 1, 2, (19)

where Fzb j, j+1 represent the forces due to the primary suspension corresponding
to the axles j and ( j + 1), respectively

Fzb j, ( j+1) = −2czb ( żbi ± ab θ̇bi − η̇ j, ( j+1)) − 2kzb (zbi ± abθbi − η j, ( j+1)). (20)

After processing, the equations (18) and (19) are as such:

mb z̈bi + 2czb[2żbi − (η̇ j + η̇ ( j+1))] + 2kzb[2zbi − (η j + η ( j+1))]

+2czc ( żbi − żc ∓ ac θ̇c − εṪc) + 2kzc (zbi − zc ∓ acθc − εTc) = 0;
(21)
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Jb θ̈bi+ 2czbab[2ab θ̇bi− (η̇ j− η̇ ( j+1))]+2kzbab[2abθbi− (η j− η ( j+1))]+

+2cxchb[hb θ̇bi + hc (θ̇c ± λṪc)] + 2kxchb[hbθbi + hc (θc ± λTc)]+

+2cθc (θ̇bi − θ̇c ∓ λṪc) + 2kθc (θbi − θc ∓ λTc) = 0.

(22)

The system including the equations (15)-(17) and (21)-(22) will be matrix-like
written:

Mp̈ + Cṗ +Kp = Pη̇ + Rη, (23)

where M, C and K are the inertia, damping and stiffness matrices, respectively,
and P and R are the track displacement and velocity input matrices.

4. The steady-state harmonic regime of vibration. The frequency
response functions

This section features the steady-state harmonic behaviour, with the purpose to
calculate the frequency response functions of the vehicle. In the next section, these
functions will help with the calculation of the frequency response function of the
vehicle corresponding to random behaviour of vibrations in the form of the spectral
power density of the acceleration.

It is considered that the track vertical irregularities are in a harmonic shape
with the wavelength Λ and amplitude η0. With the reference to each axle, the
vertical irregularities of the track can be written as

η1,2(x) = η0 cos
2π
Λ

(x + ac ± ab); η3,4(x) = η0 cos
2π
Λ

(x − ac ± ab), (24)

where x = Vt is the coordinate of the carbody centre. The functions η j, j+1, with
j = 2i − 1 for i = 1, 2, can be expressed as time harmonic functions

η1,2(t) = η0 cosω
(
t +

ac ± ab

V

)
; η3,4(t) = η0 cosω

(
t −

ac ∓ ab

V

)
, (25)

in which ω = 2πV/Λmeans the angular frequency induced by the track excitation.
As for the vehicle response, this is assumed to be harmonic, with the same

frequency as the track excitation induced frequency. The coordinates describing
the motions of the vehicle are written under the general form as

pk (t) = Pk cos(ωt + ϕk ), with k = 1 ÷ 7, (26)

where Pk is the amplitude, and ϕk represents the phase of the coordinate k compared
to the track vertical irregularities with respect to the vehicle centre.
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In addition, the complex values associated with the real ones, for i2 = −1:

η j, j+1(t) = η j, j+1eiωt, for j = 2i − 1 and i = 1, 2; (27)

pk (t) = Pkeiωt, (28)

in the system of equations (23). A linear system of algebraic heterogeneous equa-
tions is obtained

(−ω2M + A)P = η0B, (29)

where:
P = P(ω) = [P1 P2 . . . P7]T;

M = diag(mc Jc mmc mb Jb mb Jb);

A =



2αzc 0 2εαzc −αzc 0 −αzc 0
0 A1 0 −acαzc A3 −acαzc A3

2εαzc A2 0 −εαzc λC3 −εαzc −λA3

−αzc −acαzc εαzc 2αzb + αzc 0 0 0
0 A3 λA3 0 A4 0 0
−αzc acαzc εαzc 0 0 2αzb + αzc 0

0 A3 −λA3 0 0 0 A4



,

where the notations below have been introduced

αzc = 2(iωczc + kzc); αxc = 2(iωcxc + kxc);

αθc = 2(iωθc + kθc); αmc = iωcmc + kmc; αzb = 2(iωczb + kzb);

A1 = 2a2
cαzc + 2h2

cαxc + 2αθc; A2 = αmc + 2ε2αzc + 2h2
cλ

2αxc + 2λ2αθc;

A3 = hchbαxc − αθc; A4 = 2a2
bαzb + h2

bαxc = αθc;

B = 2αzb



0
0
0

exp(iωαc/V ) cos(ωab/V )
iab exp(iωac/V ) sin(ωab/V )
exp(−iωac/V ) cos(ωab/V )

iab exp(−iωac/V ) sin(ωab/V )



.

When the system of equations (29) is solved, the frequency response functions
of the vehicle can be determined. The response function of the carbody movement
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in a certain point x situated on the carbody longitudinal axis that goes through its
mass centre is as follows

Hc (x, ω) = Hzc (ω) +
(

L
2
− x

)
Hθc (ω) + Xc (x)HTc (ω), (30)

where Hzc (ω), Hθc (ω), HTc (ω) are the response functions corresponding to the
rigid vibration modes, bounce and pitch (zc and θc), and to the first natural vertical
bending mode of the carbody (Tc)

Hzc (ω) =
P1(ω)
η0

; Hθc (ω) =
P2(ω)
η0

; HTc (ω) =
P3(ω)
η0

. (31)

The response function of the carbody acceleration can be calculated as de-
pending on the vertical displacement

Hac (x, ω) = ω2Hc (x, ω). (32)

The relation (32) can be customized for various points along the carbody. The
acceleration response function at the carbody centre is thus

Hacm(ω) = ω2Hc

(
L
2
, ω

)
= ω2

[
Hzc (ω) +

(
L
2

)
HTc (ω)

]
, (33)

and above the two bogies

Hacbi (ω) = ω2Hc (li, ω) = ω2
[
Hzc (ω) ± acHθc (ω) + Xc (li)HTc (ω)

]
.

for i = 1, 2.
(34)

5. The regime of the stochastic vibrations

The track vertical irregularities are considered to represent a stationary stochas-
tic process that can be described by means of the power spectral density. The
theoretical curve of the power spectral density is representative for the average
statistical properties of the European railway, as in the relation [15]

S(Ω) =
AΩ2

c

(Ω2 +Ω2
r )(Ω2 +Ω2

c)
, (35)

where Ω is the wavelength, Ωc = 0.8246 rad/m, Ωr = 0.0206 rad/m, and A
is a coefficient depending on the track quality. For a high level quality track,
A = 4.032 · 10−7 radm, whereas for a low level quality, the coefficient A is
1.080 · 10−6 radm.
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As a function of the angular frequency ω = VΩ, the power spectral density of
the track irregularities can be written as in the general relation

G(ω) =
S(ω/V )

V
. (36)

What results is the power spectral density of the track irregularities in the form
of

G(ω) =
AΩ2

cV 3

[ω2 + (VΩc)2][ω2 + (VΩr )2]
. (37)

Starting from the response function of the carbody acceleration in equation
(32) and from the spectrum of the track irregularities in equation (37), power
spectral density of the carbody vertical acceleration can be determined, as per the
relation below

Gac (x, ω) = G(ω) |Hac (x, ω) |2. (38)

When customizing the relation (38), the power spectral density of the acceler-
ation in the reference point at the carbody centre and above the bogies will be as
follows:

Gacm(ω) = G(ω) ���Hacm(ω)���
2

; (39)

Gacb1,2 (ω) = G(ω) ���Hacb1,2 (ω)���
2
. (40)

Further on, the root mean square acceleration in a random carbody point can be
calculated based on the vehicle dynamic response expressed as the power spectral
density of the carbody acceleration

a(x) =

√
1
π

∫ ∞

0
Gac (x, ω)dω, (41)

or in its reference points:
– at the carbody centre

am =

√
1
π

∫ ∞

0
Gcam(ω)dω; (42)

– above the two bogies

ab1,2 =

√
1
π

∫ ∞

0
Gacb1,2 (ω)dω. (43)

It should be mentioned that the root mean square acceleration is useful for
calculating the comfort index, as seen in the next section.
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6. Comfort index-based evaluation of the ride comfort

To quantify the comfort to vibrations, a parameter is needed, i.e. the comfort
index, and a scale to connect the values of this parameter and the comfort feeling
(Table 1). Thus, a conventional scale of the comfort index has been set up [10, 11].

Table 1.
The significance of the comfort index

Comfort index NM Significance
NM < 1 very good comfort

1 6 NM < 2 good comfort
2 6 NM < 4 acceptable comfort
4 6 NM < 5 poor comfort

NM > 5 very poor comfort

To evaluate the comfort in the vertical direction, the partial comfort index is
used, which is calculated with the relation [10]

NMV = 6aWab

95 , (44)

where a is the root mean square of the vertical acceleration, 95 refers to the quantile
of order 95%, andWab = WaWb represents the weighting filter of the accelerations
in the vertical direction [11]. The filter Wa is a band-pass type filter, with the
following transfer function

Ha (s) =
s2(2π f2)2

[
s2 +

2π f1
Q1

s + (2π f1)2
] [

s2 +
2π f2
Q1

s + (2π f2)2
] , (45)

with f1 = 0.4 Hz, f2 = 100 Hz and Q1 = 0.71.
The weighting filterWb, which takes into account the higher human sensitivity

to the vertical vibrations within the frequencies ranging from 3 to 13 Hz, has the
transfer function in the form of

Ha (s) =
(s + 2π f3)

[
s2 +

2π f5
Q3

s + (2π f5)2
]

2πK f 2
4 f 2

6
[
s2 +

2π f4
Q2

s + (2π f 2
4

] [
s2 +

2π f6
Q4

s + (2π f6)2
]

f3 f 2
5

, (46)

where f3 = 16 Hz, f4 = 16 Hz, f5 = 2.5 Hz, f6 = 4 Hz, Q2 = 0.63, Q4 = 0.8,
K = 0.4 and s = iω.

When adopting the hypothesis that the vertical accelerations have a Gaussian
distribution with the null mean value and considering the relation (41) to calculate
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the root mean square acceleration, the following relation for the comfort index is
derived

NMV (x) = 6Φ−1(0.95)

√
1
π

∫ ∞

0
Gac (x, ω) |Hab (ω) |2 dω, (47)

whereΦ−1(0.95) represents the quantile of the standard Gaussian distribution with
the probability of 95% and Hab (ω) = Ha (ω)Hb (ω).

To calculate the comfort index in the carbody reference points, namely at the
centre and above the bogies, the particular relations (39)–(40) of the acceleration
power spectral density are considered.

7. Numerical application

The numerical simulations pertinent to the influence of the carbody bend-
ing upon the ride comfort are presented below, derived from the model and the
evaluation method of comfort shown in the previous sections.

The parameters of the vehicle used in the numerical simulations are introduced
in the Table 2. The natural frequencies of the vibration rigid modes in the carbody
and bogies and the carbody bending frequency, corresponding to the parameters in
Table 2, are featured in Table 3. They have typical values for a high speed passenger
vehicle [16].

Table 2.
The parameters of the vehicle numerical model

mc = 34.0 · 103 kg 2kzc = 1.20 MN/m
mb = 3.20 · 103 kg 2kxc = 4.00 MN/m
Jc = 1.96 · 106 kg·m2 2kθc = 256 kN/m
Jb = 2.05 · 103 kg·m2 2czc = 34.3 kN·s/m
EI = 3.16 · 109 N·m2 2cxc = 50.0 kN·s/m
mmc = 35.2 · 103 kg 2cθc = 2.00 kN·m
L = 26.4 m kmc = 89.0 MN/m
2ac = 19.0 m; 2ab = 2.56 m cmc = 53.1 kN·m/s
hc = 1.30 m 4kzb = 4.40 MN/m
hb = 0.20 m 4czb = 52.2 kN·s/m

When considering the vehicle parameters in Table 2, the power spectral density
of the vertical acceleration will be calculated in the carbody reference points – at
the centre and above the two bogies for velocities of up to 300 km/h (see Fig. 2).

What can be noticed at the carbody centre is that the power spectral density of
the acceleration is dominated by the carbody bounce at 1.17 Hz. In the reference
points above the two bogies, the carbody bounce and pitch are dominant (1.46 Hz).
Similarly, the peaks corresponding to the carbody bending at 8 Hz can be viewed
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Table 3.
The natural frequencies of the vehicle vibration modes

Vibration mode Frequency
Carbody bounce 1.17 Hz
Carbody pitch 1.46 Hz
Carbody bending 8.00 Hz
Bogie bounce 6.61 Hz
Bogie pitch 9.63 Hz

in all the reference points, but this vibration mode has a higher percentage at the
carbody centre, mainly for high velocities. Besides the peaks for the resonance
frequencies of the carbody vibration modes, there is a series of minimum values
corresponding to the geometric filtering effect.

The geometric filtering effect is an essential feature of the behaviour of vertical
vibrations in the railway vehicles, extensively analysed in many papers [2, 5, 6, 17–
21]. This effect is mainly due to the manner in which the track excitations are
conveyed to the suspended masses via the axles, irrespective of the suspension
characteristics. Essentially, the geometric filtering effect is the result of the dis-
placement between the vertical movements in the axles coming from running on
a track with irregularities; this displacement derives from the axle position in the
assembly of the running gear and the vehicle velocity. This fact gives the geomet-
ric filtering a selective nature, depending on the vehicle wheelbases and velocity
and on a differentiated efficiency, along the vehicle carbody and the movement
behavior, respectively [21].

When running over the track irregularities and due to the geometric filtering
effect, the vehicle response would include a succession of maximum and minimum
points, depending on the distance between the axles and on velocity. The maximum
points correspond to the situation where the geometric filtering does not operate,
while the minimum points show themselves as anti-resonance frequencies that
are consistent with the geometric filtering frequencies. Should the anti-resonance
frequencies coincide with the natural frequency of one of the vehicle’s natural
vibration modes, then its influence is much diminished. This is how the change
of the importance of the natural vibration modes in the vehicle can be explained
in dependence on the velocity while stating the fact that the vibrations’ behaviour
does not continuously intensify when velocity increases [6].

Fig. 3 shows the power spectral density of the carbody vertical acceleration,
weighted by the transfer function of the acceleration weighting filter (Wab =

WaWb). Due to the bandpass filter Wb, the carbody dynamic response at the
centre is dominated by the carbody bending frequency, mainly for high velocities.
Similarly, the weight of this vibrationmode also becomes important in the reference
points above the two bogies. For velocities beyond 200 km/h, the spectrum of the
acceleration power spectral density features the increase in the weight in the bogie
bounce movement (at 6.61 Hz).
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Fig. 2. Acceleration power spectral density: (a)
at the carbody centre; (b) above the front bogie;

(c) above the rear bogie

 

Fig. 3. Acceleration power spectral density of
the weighted: (a) at the carbody centre; (b)

above the front bogie; (c) above the rear bogie

Fig. 4 shows the comfort index calculated in the carbody reference points in
the 150 . . . 300 km/h interval, where the carbody bending influences the dynamic
response of the vehicle. Different values of the natural frequency of the carbody
symmetrical bending between 6 and 14 Hz are taken into account. The diagrams
confirm that the ride comfort is worse when velocity increases, essentially for
carbody bending frequencies that are lower than 10 Hz. The ride comfort is better
when the bending frequency rises. For instance, at 200 km/h and the bending
frequency of 6 Hz, the comfort index is 2.1 at the carbody centre; 1.82 above the
front bogie and 1.78 above the rear bogie. For a bending frequency of 12 Hz, the
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comfort index can lower to 0.6 at the carbody centre; 1.39 above the front bogie
and 1.44 above the rear bogie.

The ride comfort can be improved by an appropriate selection of the stiffness in
the longitudinal traction system between the carbody and the bogie. This is shown
in Fig. 5 that features the comfort index at velocity of 250 km/h, calculated in the
carbody reference points for natural frequencies of its symmetrical bending ranging
from 6 to 14 Hz and various values of the longitudinal stiffness kxc between 0.1

 

Fig. 4. The influence of the velocity upon the
ride comfort: (a) at the carbody centre; (b) above

the front bogie; (c) above the rear bogie

 

Fig. 5. The influence of the stiffness in the
longitudinal traction system between the

carbody and bogie upon the ride comfort: (a) at
the carbody centre; (b) above the front bogie; (c)

above the rear bogie
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MN/m and 10 MN/m. For any of the carbody bending frequencies, the comfort
index rises along with the longitudinal stiffness in the longitudinal traction system
between the carbody and the bogie. For instance, Table 4 includes the values of the
comfort index for the carbody bending frequency of 8 Hz.

Table 4.
The comfort index dependent on the stiffness of the longitudinal traction system between the

carbody and the bogie
kxc [MN/m] 1 2 3 4 5 6 7 8 9 10

at the carbody
1.75 1.82 1.92 2.04 2.17 2.32 2.48 2.64 2.80 2.97

centre
above the front

NMV 1.71 1.77 1.83 1.89 1.97 2.04 2.13 2.21 2.30 2.38
bogie

above the rear
1.94 1.97 2.00 2.04 2.08 2.14 2.19 2.26 2.32 2.40

bogie

To examine the influence of the suspension damping upon the ride comfort,
the damping ratios of the suspension levels are introduced as such

ζzb,c =
4czb,c

2
√

4kzb,cmb,c

, (48)

that have the values of ζzc = 0.12 and ζzb = 0.22 for the parameters of the vehicle
in Table 2.

The diagrams in Fig. 6 emphasize the influence of the damping ratio of the
secondary suspension on the comfort index calculated in the carbody reference
points at velocity of 250 km/h, for various values of the natural frequency of
the carbody symmetrical bending. For any natural frequencies of the carbody
symmetrical bending, an improvement in the ride comfort can be noticed an increase
in the damping of the secondary suspension up to a certain value. An additional
increase of the damping in the secondary suspension over this value will trigger the
comfort deterioration. A value of the secondary suspension damping to minimize
the comfort index can be identified. This value depends on the position of the
carbody reference point (at the centre and above the bogies) and on the natural
frequency carbody symmetrical bending, as seen in Table 5.

Table 5.
The damping ratio of the secondary suspension that minimizes the comfort index

Bending
frequency

at the carbody centre above the front bogie above the rear bogie
ζzc NMV min ζzc NMV min ζzc NMV min

6 Hz 0.11 1.53 0.17 1.72 0.20 2.08
8 Hz 0.06 1.78 0.15 1.80 0.22 1.87
10 Hz 0.13 0.98 0.19 1.51 0.26 1.69
12 Hz 0.13 0.97 0.19 1.53 0.26 1.70
14 Hz 0.15 0.84 0.19 1.52 0.25 1.69
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Fig. 6. The influence of the damping ratio of the
secondary suspension upon the ride comfort: (a)
at the carbody centre; (b) above the front bogie;

(c) above the rear bogie

 

Fig. 7. The influence of the damping ratio of the
primary suspension upon the ride comfort: (a) at
the carbody centre; (b) above the front bogie; (c)

above the rear bogie

The influence of the damping ratio of the primary suspension upon the ride
comfort at velocity of 250 km/h is examined on the basis of the diagram in Fig. 7.
In any of the carbody reference points, the value of the comfort index can be
noticed to be lower while the damping ratio of the primary suspension is higher.
This fact is included in Table 6, which features the comfort index calculated
in the carbody reference points for the carbody symmetrical bending frequency
of 8 Hz.
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Table 6.
The comfort index depending on the damping ratio of the primary suspension

ζzb 0.1 0.2 0.3 0.4 0.5
at the carbody centre 2.22 1.95 1.80 1.71 1.67

NMV above the front bogie 1.98 1.84 1.75 1.70 1.66
above the rear bogie 2.13 2.01 1.93 1.87 1.83

8. Conclusions

This paper deals with the influences of the carbody vertical flexibility of
a passenger vehicle on the ride comfort evaluated by the comfort index cal-
culated in three reference points of the carbody – at the centre and above the
bogies. To this purpose, a model of the vehicle including a “flexible carbody”
model has been used, as well as the elements contributing to the excitation of the
symmetrical vertical bending mode of the carbody. It is about the fact that the
model of the secondary suspension has included the vertical and pitch stiffness
and the stiffness of the longitudinal traction system between the carbody and the
bogie.

The results of the numerical simulations confirm the significance of the vertical
symmetrical bending of the carbody on the dynamic response of the vehicle, mainly
at high velocities and the fact that the ride comfort is greatly affected should the
frequency of this vibration mode is lower than 10 Hz. An improvement of the ride
comfort can be obtained via an appropriate selection of the longitudinal stiffness
of the longitudinal traction system between the carbody and the bogie. Similarly,
the value of the comfort index is influenced by the suspension damping ratio.
Irrespective of the carbody bending frequency, it has been shown that there is a
value of the secondary suspension damping that minimizes the comfort index in
any of the carbody reference points. On the other hand, the ride comfort improves
at a higher value of the primary suspension damping.
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