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Abstract. An analytical solution to the problem of time-fractional heat conduction in a sphere consisting of an inner solid sphere and concentric
spherical layers is presented. In the heat conduction equation, the Caputo time-derivative of fractional order and the Robin boundary condition
at the outer surface of the sphere are assumed. The spherical layers are characterized by different material properties and perfect thermal contact
is assumed between the layers. The analytical solution to the problem of heat conduction in the sphere for time-dependent surrounding tempera-
ture and for time-space-dependent volumetric heat source is derived. Numerical examples are presented to show the effect of the harmonically
varying intensity of the heat source and the harmonically varying surrounding temperature on the temperature in the sphere for different orders

of the Caputo time-derivative.
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1. Introduction

Heat conduction problems in layered slabs, layered cylinders,
and layered spheres modelled according to Fourier’s law by
a parabolic differential equation have been considered by many
authors, for example in [1-3], where analytical solutions to
the problems in the form of eigenfunction expansions were
presented. Heat conduction in layered bodies in spherical co-
ordinates was recently investigated in [4—10]. An analytical
solution to the problem of heat conduction in a multilayered
sphere with time-dependent boundary conditions was derived
by Lu and Viljanen in [4]. The solution was obtained using
the Laplace transform wherein an approximate inverse La-
place transform was determined by using a residue theorem.
An exact solution of the radial heat conduction problem in
a hollow multilayered sphere was presented by Siedlecka in
[5]. The considerations concern heat conduction modeled by
the parabolic differential equation. The solution was obtained
using the Green’s function method. An analytical series solu-
tion for a two-dimensional, transient boundary-value problem
for multilayered heat conduction in spherical coordinates has
been presented by Jain et al. in [6]. In the formulation of the
problem, time-independent volumetric heat sources in the con-
centric layers were assumed. The obtained solution can be
used to determine the temperature distribution in full sphere,
hemisphere, spherical wedge, and spherical cone. A similar
approach was also applied in [7] to one-dimensional heat con-
duction problems for nuclear applications. The steady-state
temperature distribution in the functionally graded sphere,
subjected to temperature gradient and internal pressure, was
investigated by Bayat et al. in [8]. Temperature distribution
was used to determine the thermal stresses in the sphere. An
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analytical solution to the problem for thermal and mechanical
properties of the sphere was obtained in the form of power
functions of the radial direction. Thermal stresses in a sphere
of a functionally graded material were also considered by
Pawar et al. [9]. Transient temperature distribution was deter-
mined by assuming that the material properties of the sphere
were exponential functions of the radial direction.

The parabolic differential equation of heat conduction,
derived under the framework of the classical theory of heat
conduction is based on the local Fourier law. Non-local gener-
alizations of the Fourier law lead to non-classical theories, in
which the parabolic equation is replaced by a time-fractional
and/or space-fractional heat conduction differential equation
[10]. In these fractional differential equations, different kinds of
derivatives of fractional order are used (the Riemann-Liouville
derivative, the Caputo derivative and the Griinwald-Letnikov
derivative). Moreover, the boundary conditions may also in-
clude the fractional derivatives. The fundamentals of fractional
calculus and of the theory of fractional differential equations are
given in [11-15]. Some applications of fractional order calculus
to modelling of real-world phenomena are presented in [16—18].

Heat conduction problems formulated under the frame-
work of the non-classical theories in the spherical coordinates
with fractional Caputo or Riemann-Liouville derivatives were
studied in [19, 20]. An approximate analytical solution of
time-fractional heat conduction in a composite medium con-
sisting of an infinite matrix and a spherical inclusion is pre-
sented by Povstenko in [19]. The perfect thermal contact was
realized by the conditions of equality of temperatures and heat
fluxes at the boundary surfaces, wherein the heat fluxes are
expressed by a Riemann-Liouville fractional derivative. An
analytical solution to the problem of time-fractional heat con-
duction in a multilayered slab was presented by Siedlecka and
Kukla in [20]. Ning and Jiang [21] use the Laplace transform
and the method of variable separation to determine an analytical
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solution of the time-fractional equation for three-dimensional
heat conduction in spherical coordinates.

From a mathematical point of view, the heat conduction
equation and the diffusion equation are identical, which means
that the same methods can be used to determine their solutions.
In [22], Povstenko presents a solution of the diffusion-wave
time-fractional equation with a source term. The solution is ex-
pressed by fundamental solutions, which are also derived. The
Neumann problem for time-fractional differential equation in
a sphere was considered by Povstenko in [23]. The presented re-
sults of numerical computations show the solutions as functions
of distance from the center of the sphere for various orders of
the time-fractional derivative. The fractional diffusion problems
considered in [24, 25] were solved using the Green’s function
method. Lucena et al. [24] considered two diffusion problems
— the first with inhomogeneous time-dependent boundary con-
ditions and the second for diffusion with external force. Radial
changes in the diffusion coefficient and the external force were
assumed. In [25], a fractional diffusion equation with a spatial
time-dependent coefficient and with external force was investi-
gated. A numerical solution to the problem was obtained using
a finite difference method. In [26], Abbas applied fractional
order theory to study thermoelastic diffusion in an infinite me-
dium with a spherical cavity using the Laplace transformation
and the eigenvalue approach.

In this paper, time-fractional heat conduction in a multilay-
ered solid sphere is studied. A space-time dependent volumetric
inner heat source in the sphere, time-dependent ambient tem-
perature, and perfect thermal contact at boundaries of the layers
are assumed. An exact solution to the radial heat conduction
equation with the Caputo time-derivative in the form of an ei-
genfunction expansion is presented.

2. Formulation of the problem

Consider the radial heat conduction in a solid sphere consisting
of an inner solid sphere and n — 1 concentric layers. The
cross-section of the sphere is shown in Fig. 1. The time-frac-
tional differential equation in spherical coordinates governing
the temperature 7;(r, ¢) in the i-th layer is given in [19]

1%
r 6r2

1 1 0°T,
)+ —q;(rt)=—"—1,
(7" l)+ﬂ,iql(r ) ai ala

(1

O0<a<2, re [rl-_l,rl-], i=1..,n,
where 4, is the constant thermal conductivity, g, is the constant
thermal diffusivity, g;(r, ¢) is the volumetric energy generation,
7; is the outer radius of the i-th layer (ry = 0, 1;, = b), and a de-
notes the fractional order of a Caputo derivative with respect

to time ¢. The Caputo fractional derivative is defined in [27]

def (1) 1

] o d"£(5)
i Tmay) 77

dr"

dr, (2

o t—
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Fig. 1. Cross-section of a solid multilayered sphere

wherem — 1 <a <m, meN={l,2,...}. The geometric and
physical interpretation of the fractional derivatives are given
in [28].

The condition at the center, the mathematical boundary con-
dition on the outer surface of the sphere, and the mathematical
conditions of perfect thermal contact at interfaces are [19]:

|7, (0,2)| < o0, 3)
T,(r.t) =T, (r.t), i=1..,n—1, 4)
AL )= 2, it (), = L1, (5)
or or
3, () =a, (T, (1) T, (1.1)). ©
or

where a., 1s the heat transfer coefficient and 7., is the ambient
temperature. We assume the initial temperature in each layer as:

Tl-(r,O)zfl-(r), re[ri_l,rl-], i=1,...,n.

If fractional order « is in the interval (1, 2], then the initial con-
dition for the derivative aT%a, is also required [22]. We assume
that the condition is

(7a)

or;

b
B (7b)

Zgi(r)’ re[r;_l,ri], i=1,..,n.
t=0

In order to transform the non-homogeneous boundary con-

dition (6) into a homogeneous one, we assume the temperature
Ti(r, t) in the form of a sum:
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Z(r,t)z@i(r,t)JrTw(t), i=12,..,n, ®)

where 6;(r, t) are the newly-searched functions. Next, to obtain
a differential equation with constant coefficients, we introduce
the functions:

Vi(r,t)zré’i(r,t), i=1,...,n. 9)

Combining the transformations (8, 9), we obtain the relationship
between the functions 7j(r, ¢) and ¥j(r, ¢) in the form of:

T (r,t)==V,(r,t)+T,(t), i=1..n. (10)

N =

In (10) we have: r € (0, ] for i =1 and r € [r, 4, ;] for
i=2,...,n.

Taking into account functions 7;(r, ¢), given by (10), into
(1) and conditions (3—7), the formulation of the problem for
functions ¥j(r, t) is received. The fractional differential equa-
tion with constant coefficients and the homogeneous boundary
conditions are:

2 o
oV, lqi*(r,t)zl%, re[igfl,ri], i=1,..,n, (11)
a, ot”

o % ,-

V,(0,1)=0, (12)
I/,(r;at):I/H.l(’;at)a l:L 5n_17 (13)
2 8%(”1’#‘)4_’1—1(%“ _i,-)V,(’”nt):

o , (14)
—/ImaV"”(r"’t), i=l..,n-1
or
WV, (r.t) (1 a
e B 7 , 15
or (”n lnj n(l’,,,f) (4
A d°T.(t)

where ¢; (r, 1) = r[q,-(r, 1) —= ] The initial conditions are:

a; dt*

— for o in the interval (0,2]:

Vl.(r,O)zfl.*(r), re[n_l,n], i=1,..,n, (16a)
— for o in the interval (1, 2]:

% =gi*(r), re rH,ri], i=1,...,n, (16b)

ot|_,

where:
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and T, (0)= ciiT;

. Equations (11-16) constitute the complete
t=0
formulation of the initial-boundary value problem.

3. Solution of the problem

We seek the solution to problem (11-16) in the form of a series

V() =S A OB (), 1=,

k=1

)

0

where the function @;; is the k-th solution of the following
eigenproblem:

2 2

d¢—'§}’)+ﬂ—@i(r)=0, re 1;71,1;], i=1,..,n, (18)
dr a,

%(0)=0, (19)

Q(}:)ZQH(’:)’ l=1, ,I’l—l, (20)

D(r, do, (r,

A c’l,i’)w,"(/i,-ﬂ—&)Q(r,):}tm ldlr( ), 1)

i=1..,n-1,
do,(r) (1 «a
=|———= 22
0 [r lﬂjn(n) (22)

The values of parameter £ will be chosen in a way that non-zero
solutions of problem (18-22) exist.

Functions @,(r), satisfying differential equation (18), is as-
sume in the form of:

Q(r)zA,.cosu,.(r—l;.,l)+B,~Sin/1,~(”_’?71)’ (23)
for i=1,...,n,

where 4;, B; are unknown constants and y; = ﬁ/ \a;. Substituting
the functions (23) into conditions (19-22), we obtain a system
of 2n linear equations with respect to the constants A4,, B,
i=1, ..., n. The equation system can be written in a matrix form:

Cd=0, (24)
where
d= [Al Bl AZ BZ An—l Bn—l An Bn]T
and C = [Cij]znxzn' The non-zero elements of matrix C are:

cn =1, Coipint = COSER;, €0 = SINER,,

. 1
Coinin ==L Cipig = —SINR, ———cos R,
ili
1 A
_ . _ i+1
Crivii = COS,ul.RI. - Sln:uiRi s CZi+I,2i+1 - 1 >
Ml i T

ﬂ’Hl/’lHl

fori=1,...,n—1
At

Crinipiva =
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1
Cyponoy =SINLL R+ [— - a—}cos 4R, and
’ Mty Aok,
( 1 a, ] .
Copon = —COSU, R +| —— sinu, R,
Haty Ay

where R, =r, — r,_,.
The non-zero solution of (24) exists for those values of f,
for which the determinant of the matrix C vanishes, i.e.:
detC = 0. (25)
Equation (25) is then solved numerically with respect to S.

For determined values f;, k = 1, 2, ..., the corresponding func-
tions

) (26)
0 otherwise

Qé,k(i’) _ {(plk (r), n,<r<y
are appointed. The functions @, ; are given by equation (23) for
Wi = Wi = ﬁk/\@ . The coefficients A4;, B; occurring in (23) for
each S, are determined by solving an equation system, which
is obtained by assuming f = f;, B, = | in (24).

It can be shown that the functions @, satisfy the orthogo-
nality condition as:

0 for k'#k
jch r)dr —{ , @)
,,arli N, for k'=k
1 & A4 2 )
where: N, = Z : [(Al. —Bl.)sm2,ui’kRi+

=N

+ 4ABsin’ g1 R +2( 47+ B! ), R, |

Substituting function ¥(r, ), given by (17), into (11) and
by using the orthogonality condition (27), the equation for the
function /4,(¢) is obtained:

d“ A, 1 &G .
A pea)=L5 ] o (e, (a9
i=1
This equation is complemented by the initial conditions, which
are obtained on the basis of (16, 17) and the orthogonality con-
dition (27). These initial conditions are:
— for o in the interval (0,2]:

z jf L(r)r, (29)
k i= 1
— for o in the interval (1,2]:
dA, 1 &AL
=— )z . D 30
d[ =0 Nk; lrllgl(r) lk(ryir ( )
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Introducing the function

n

I 7 ( r T)drdr
=lr,

the solution of (28-30) can be presented as:

E,. (-8 (t=7) )0 () +

wherein the term g; (r) under the second integral occurs only
for o € (1,2]. In (31), E, 4 is a two-parameter Mittag-Leffler
function, which is defined by [29]:

; I'(ak+p)

where 7" is the gamma function. Function E, is defined by
E,(2) = E,\(2).

Finally, function ¥j(r, 7) is given by (17), where the functions
@, ;(r) and 4,(¢) are given by (23) and (31), respectively. Taking
into account the relationship of (10) and (17), (23) and (31), the
temperature 7(r, t) can be expressed by:

(32)

n t

+IZIJ. t—7)"" ;r',r)-

r1101

zNLE (- ﬁ;(r—r)“)@,.,k(r)
A

T(r.t)=

@j’k(r') dr'dt+ (33)

where F(r, 1) = f;'(r) + tg/(r).

In a particular case, for a = @’ = 1, formula (33) presents
the solution of the classical heat conduction problem. Intro-
ducing the matrix:

where

' 1
GH (rrt)=(1—7)"

N L (34)
2 2B (r) E,o(-B(1=7)"),
we can write (33) in a matrix form:
t b
T(r,t)=l“.r'G“’“'(r,t;r',r)U(r',r)dr'dT+
(33)
L : ,0 t)d
_ IGa t \l
.- ! (r, 57, 0)F (1) dr,
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where the column-matrices T(r, ¢), U(+, ¢) and U(r

)=T.(1)

>, T) are:

,(r0)=T.(1)]".

T(r,t) = [Tl (r,t

v =[u(re) ... U, (0]
F(ro)=[F () ... E ()],
where:
' ' A.d°T, (1')
U,(re)=q,(r'r) = ——2—.

J

()= 21, ()~ 7. (0) o[, () - )

J

The matrix G** is a Green’s function matrix for the considered
problem.

4. Temperature distribution in a sphere with
harmonically varying heat generation

We assume that volumetric heat generation in the sphere is
described by a function defined by

+Q,sinvet, 0<r<r, i=1
qi (I",t) — {Ql QZ 1 (36)

0, o <r<y, i=2,.,n.

The initial temperature in the sphere and the ambient tem-
perature are assumed as constants: 7(r, 0) = fi(r) = Ty for
i=1,...,nand T,(t) = T, for t > 0. Using (33) and (36), the
function 7;(r, f) can be rewritten as:

() =T+ e S B, ()5, (A1) +
. =y 37
+_Z& (@I (1) 0,77, (1)),
V=1 Nk
where ¥, ) /1’20:"’/‘ and
=t
0= 1@ ()= o A (cossa -1, +
o ok
pynsing (=) <1+ By (mana = G9)
— T cos,ujk( 1)+Smﬂjk( rjfl))]’
t
B TN T
0
t
Jik(t):IT““EM(— 2r”’)smv(t— )dr.  (40)
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Functions J, 4(¢) and J; 4(t) for @ = 1 and & = 2 can be ex-
pressed in a simple form by usmg the propertles of the Mit-
tag-Leffler function [29]: E\(z) = ¢, E, ,(~2) = SNz, After
calculations, the integrals in (39, 40), we obtain:

1

Jll,k(t):ﬁ(l ), T (1) = %(1—005@{0, @1

Jh(t)= ey [ve’ﬂ’fzt —vecosvt+ f3; sinvt}, (42a)
k
) 1 . v .
J3 (1) = 7 smvt—ﬂ—smﬂkt , (42b)
k k

The integral occurring in (41) for 0 < a <2, can be ex-
pressed as [22]:

T (O)=t"E, .\ (-5 1°).

The convolution integral occurring in equation (40) will be
determined for a rationale number of order a, by applying the
properties of the Laplace transform, namely by using the con-
volution rule, we obtain the Laplace transform of the function
J2i(¢) in the form of:

L{J(ik( )}:

(43)

1 v (44)
s+ BLSE v
where L denotes the Laplace transform: L{f1 _[ f(t)e'dt
and s is the complex variable. The inverse Laplace transform
will be determined for rational numbers a, i.e. we assume that
o= p/q, where p, g are positive integer relative prime numbers.
Introducing the new variable, z = 57, the right-hand side of
equation (44) can be written in the form of:

1 1 1 }
= Az +
2P+ B2+ 24 /Z:(; /
e (45)
+ > szj
z +:Bk j=0

Unknowns 4, B; are determined by solving an equation system,
which is obtained by comparing the coefficients in the polyno-
mials received by multiplication of (45) by the denominators.

Function J?2(t) for o = p/q is determined using the equa-
tions (44, 45) and the following formula [28]:

a-p
S
Lit"'E _(-At" ) (46)
{ ( )} Sa + ﬂ«
Hence, the function J,, 4() is as follows:
2 & lé 2.2
s (1 ):"Z;Ajt Eyy (v 1)+
=
: (47)
p-l ﬂ_l
— B2 !
+ VZ(;B/‘ ! Ep/q»(p—j)/q ( Bt )
=
183
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Finally, the temperature distribution in the i-th layer of the
sphere with harmonically varying heat generation (36) is given
by equation (37), where function J; (¢) is given by (43), and
function J;, ,(¢) for a = p/q is given by (47).

5. Temperature distribution in the sphere with
harmonically varying ambient temperature

Temperature distribution in the sphere without heat gener-
ation is given by equation (33), in which it is assumed that

gi(r,t) =0forj =1, ..., n. Moreover, we assume that the initial
temperature is constant and the same in all layers: f;(r) = T for
j=1,...,n, and ambient temperature T,(¢) changes according

to the formula:
T, (t)=FR + P,sinvt. (48)

Hence, using (33), we find the temperature distribution in the
sphere as:

T —P & )
T (rt)=T, (1) ‘zﬁg’k(r)Ea(—ﬂkt )

SRR (49)
P&y, 3
__Z ch.,k(r)Jak(t),
r =114V
where
‘]a,k(t):
t a . 50
e P (e LALLMy
0 ’ dr®

We calculate the integral (50) by using the property of the
Laplace transform of the Caputo derivative:

daf(t) a - a—-k-1 (A)
Li——2 ' =5F(s)— 0

{ dr } 20, (s1)
n—-l<a<n

Hence, we receive:

vs?
d®sinvt i 0<esl
plaisinve| Jst 4y (52)
dta V3sat72
—, 1<a<2
s +v

On the basis of equations (50, 52) we obtain the Laplace trans-
form of function J; ,(¢), which, after some transformation, can
be written in the form of:

184

v , 1 v
Pk
s"’+ﬂk2s2+v2
for O0<a<l1

L{J (=1 s v, (53)

V —_—
sT+vi stV
1 Vv

+ 87
st sty

for 1<a<?2

2

Function J; ;(¢), as the inverse Laplace transform of the
function (53), can be presented as:

sinve— S J;, (1), O<a<l

VtE,, (—ﬂ,ft“) —sinvt +
+ B2 (1),

This completes the formula for temperature distribution in the
i-th layer of the sphere: the temperature is determined by (49),
where function J; ,(¢) is given by (54) and function J; ;(¢) for

a = p/q is given by (47).

Joi(0)= (54)

l<a<?2

6. Numerical example

The analytical solution of the fractional heat conduction
problem derived in the previous sections will be used to com-
pute the temperature distributions in a layered sphere. Two il-
lustrative numerical examples are presented. In both examples
the considered sphere consists of an inner, small solid sphere
of radius 7 and five concentric spherical layers of outer radii 7,
Non-dimensional radii 7/b, thermal diffusivity a;, and thermal
conductivity /; of the material of the solid inner sphere and the
five layers are given in Table 1. The physical units given in
Table 1 were discussed in [30]. The heat transfer coefficient
is assumed as a,, = 1200.0 W/(m?- K). The computations were
performed using the Mathematica package [31].

Table 1
Non-dimensional outer radii, thermal diffusivity and thermal
conductivity of the sphere layers applied in the numerical examples

i 1 2 3 4 5 6
r/b 025 | 04 | 055 | 07 | 085 | 1.0
am¥s?] 2.2:10°]3.310°(6.010°| 1.1:10°|2.0-10° | 3.6:10°°

0.016 16.0 24.0 36.0 54.0 81.0

AW/ (m-K)]

The first example concerns fractional heat conduction
in the sphere with harmonically varying heat generation in
the inner solid sphere, which is given by formula (36). The
frequency of changes of the volumetric heat source inten-
sity is v = 27/12000 s, and the coefficients in the formula
(36) are O, = O, = 4.2-10" W/m’. The initial temperature in
the sphere T}, and the ambient temperature 7, are assumed as
constants: T, = 50°C, T, = 40°C. The non-dimensional tem-

Bull. Pol. Ac.: Tech. 65(2) 2017
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perature T(7, 7) = T(r, 7)/T; at the outer surface of the sphere
(7 = r/b), as a function of variable 7 = %/ for different values
of the fractional order, is presented in Fig. 2. The computations
were performed for o = 0.75; 0.8; 0.85; 0.9; 0.95; 1.0. It can be
seen that amplitudes of the temperature oscillations at the outer
surface of the sphere decrease for smaller orders of the frac-
tional derivative in the heat conduction model. This observation
leads to a physical interpretation of the parameter o as a thermal
damping coefficient in the fractional heat conduction model.

a=075

- - a=08 — - a=085 a=09 a =095

a=10

0 1 2 3 4 5 6
T

Fig. 2. Non-dimensional temperature 7(1, 7) as a function of variable
7= %t for different values of fractional order a

In the second example, the changes of temperature in the
sphere follow as a result of oscillation of ambient temperature
T,(¢), which changes according to formula (48). It is assumed
that there is no heat source in the sphere and the initial tempera-
ture is T = 75°C. The numerical computations were performed
for o = 0.4; 0.6; 0.8; 1.0; 1.2; 1.25; 1.3; 2.0, and for an oscilla-
tion frequency of the ambient temperature v = 27/12000 s
The coefficients in the formula (48) are assumed as P, = 75°C
and P, = 50°C. The remaining data are the same as in the first
example. Non-dimensional temperature 7(7, 7) as a function of
radial coordinate 7 = r/b for different values of variable 7 and
different orders of the time-fractional derivative a are presented
in Fig. 3.

7. Concluding remarks

The solution of the time-fractional, radial heat conduction
problem in a multilayered solid sphere in an analytical form
has been derived. The temperature distribution in the sphere is
obtained by taking into consideration the time-space-dependent
volumetric heat source and the time-dependent ambient tem-
perature. A numerical computation was performed to show the
temperature time-history at the outer surface of the sphere for
different values of the time-derivative fractional orders in the
heat conduction equation when the intensity of the inner heat
source varies harmonically with time. It is observed that the
amplitude of the temperature oscillation at the sphere surface
is lower for the heat conduction characterized by a lower order
of the fractional derivative. Another numerical example shows
the temperature distribution as a function of distance from the
center sphere when the ambient temperature varies harmoni-
cally with time. The changes of the temperature in the sphere
at a fixed time are smaller for lower orders of the fractional
derivative. Although the numerical computation was performed
for five layers of the solid sphere, the obtained solution can be
used for numerical calculation of the temperature in the sphere
consisting of an arbitrary number of concentric sphere layers.
The approach can also be applied to approximate a solution of
the fractional heat conduction problem in the radially, function-
ally graded sphere.
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