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Dynamic Contraction Method approach to digital
longitudinal aircraft flight controller design

ROMAN CZYBA and LUKASZ STAJER

This paper presents the design of digital controller for longitudinal aircraft model based
on the Dynamic Contraction Method. The control task is formulated as a tracking problem of
velocity and flight path angle, where decoupled output transients are accomplished in spite of
incomplete information about varying parameters of the system and external disturbances. The
design of digital controller based on the pseudo-continuous approach is presented, where the
digital controller is the result of continuous-time controller discretization. A resulting output
feedback controller has a simple form of a combination of low-order linear dynamical systems
and a matrix whose entries depend nonlinearly on certain known process variables. Simulation
results for an aircraft model confirm theoretical expectations.

Key words: nonlinear systems, MIMO systems, aircraft control, digital controller, singular
perturbation

1. Introduction

Control of an aircraft under difficult maneuvers is a problem of both theoretical
and practical interest [1, 6]. The well known approach to decoupling problem
solution based on the Non-linear Inverse Dynamics (NID) method [4] may be
used if the parameters of the plant model and external disturbances are exactly
known. Usually, incomplete information about systems in real practical tasks takes
place. In this case adaptive control methods or control systems with sliding mode
[3] may be used for solving this control problem. A crucial feature of the sliding
mode techniques is that in the sliding phase the motion of the system is insensitive
to parameter variation and disturbances in the system. A way of the algorithmic
solution of this problem under condition of incomplete information about varying
parameters of the plant and unknown external disturbances is the application of
the Localization Method (LM) [7], which allows to provide the desired transients
for nonlinear time-varying systems. The generalization and development of LM
is the Dynamic Contraction Method (DCM) [8]. The peculiarity of the DCM
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method is the application of the higher order derivatives jointly with high gain in
the control law.

In general, the goal of the design of an longitudinal aircraft control system
is to provide decoupling, i.e. each output should be independently controlled
by a single input, and to provide desired output transients under assumption
of incomplete information about varying parameters of the aircraft model and
unknown external disturbances.

The paper is part of a continuing effort of analytical and experimental studies
on aircraft control which were considered in [2]. The main purpose of this paper
is to design a digital controller and examine aspects related to its discretization in
terms of implementation on embedded systems. A solution for digital controller is
presented that bases on a pseudo-continuous-time model of the control loop with
pure time delay for which a linear continuous-time controller is designed based
on DCM and then discretized by using the Tustin transformation. The structure
of the paper is as follows. First, a mathematical description of the aircraft model
is introduced. The next part includes a description of DCM method used for
the control system design. The control solution along with the stages of regu-
lators design are presented for aircraft model. Finally, the results of simulations
are shown.

2. Mathematical model of the aircraft

The aircraft dynamics are described by a collection of modules (Fig. 1),
each performing a specific function. The primary modules are: the equations of
motion, the aerodynamics, the propulsion system, the actuator command input,
and the atmospheric model. The mathematical model in detail is describe in [2],
and geometrical, mass, and aerodynamic data are in agreement with the technical
documentation [5]. The aircraft model is nonlinear due to the rigid body dynamic
equations and to the aerodynamics represented in the data lookup tables of the
force coefficients cx , cz and moment coefficient my.

Assuming that an airplane is a rigid body with three degrees of freedom. The
following state and control vectors are adopted:

X =
[
V, α, γ, θ,Q, x, h

]T
, (1)

u = [δT,uH]T , (2)

where: V – aircraft linear velocity, α - angle of attack, γ – flight-path angle, θ
– pitch angle, Q – pitch rate, x – inertial position component, h – altitude, δT –
throttle setting, uH – actuator commands of elevator.
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Figure 1: Block diagram of the aircraft dynamics

3. Solution of a non-linear control problem by DCM [8]

3.1. Control problem statement

Let us consider a nonlinear time-varying system in the following form:

x (1) (t) = h
(
x(t),u(t), t

)
, x(0) = x0 , (3)

y(t) = g
(
t, x(t)

)
, (4)

where: x(t) is a n-dimensional state vector, y(t) is a p-dimensional output vector,
u(t) is a p-dimensional control vector.

Here, the dependence of h
(
x(t),u(t), t

)
and g

(
t, x(t)

)
of time expresses the

influence of external disturbances and parameters variations.
Let us assume that the first m−1 time derivatives of the output y(t) do not

depend explicitly on the control u(t):

y
(m) (t) = f

(
t, x(t)

)
+B

(
t, x(t)

)
u(t), (5)

where: y(m) (t) =

[
y

(m1)

1 , y
(m2)

2 , . . ., y
(mp )
p

]T
, det

(
B

(
t, x(t)

))
, 0, | f i (t, x) | 6 f max

i
,

i = 1, 2, . . ., p. The transformation of (3), (4) into the linear analytic form of (5)
is required.
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Assume also that a reference model for transients of y(t) is given in the form
of the following vector differential equation:

y
(m1)
1M

(t) = F1M

(
y1M (t),r1(t)

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
y

(mi )
iM

(t) = FiM

(
yiM (t),ri(t)

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

y
(mp )

pM
(t) = FpM

(
ypM (t),rp(t)

)
,

(6)

where: yiM (t) =
[
yiM, y

(1)
iM
, . . ., y

(mi−1)
iM

]T
, r (t) is the reference value and y = r at

the equilibrium.
Denote the tracking error as follows:

∆(t) = r (t)− y(t). (7)

The task of a control system is stated so as to provide that

∆(t)
t→∞
= 0. (8)

Moreover, the transients y(t) should have the desired behavior defined in (6)
which does not depend either on the possibly varying parameters or on the
external disturbances of equations (3), (4).

Let us denote
∆

F
= F M

(
y(t), r (t)

) − y(m) (t). (9)

Then equation (6) defining the desired dynamics is fulfilled if and only if
holds:

∆
F (

x(t), y(t), r (t), u(t), t
)
= 0. (10)

So the control action u(t) which provides the control problem solution is the
root of equation (10). This expression is the insensitivity condition of the output
transient performance indices with respect to external disturbances and varying
parameters of the system in (3), (4).

3.2. Dynamic contraction method

The solution of the control problem (10) bases on the application of the
higher order output derivatives jointly with high gain in the controller (Fig. 2).
The control law in the form of a stable differential equation is constructed such
that its stable equilibrium is the solution of equation (10). Such equation is called
differential contraction equation and can be present in the following form:

µqν(q)
+

q−1∑

i=0

µidiν
(i)
= k∆

F
,

ν(0) = ν0 ,

(11)
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where: i = 1, . . ., p; νi(t) =
[
νi, ν

(1)
i
, . . ., ν

(qi−1)

i

]T
– new output of the controller; µi

– small positive parameter µi > 0; k – gain; di,0, . . . , di,qi−1 – diagonal matrices.

Figure 2: The control system structure

To decoupling of control channel during the fast motions let us use the fol-
lowing output controller equation

u(t) = K0K1ν(t), (12)

where: ν(t) is a new input, K1 = diag
(
k1, k2, . . ., kp

)
is a matrix of gains, K0 is a

nonsingular matching matrix (such that BK0 is positive definite).
Let us assume that there is a sufficient time-scale separation, represented

by a small parameter µi, between the fast and slow modes in the closed loop
system. Methods of singularly perturbed equations can then be used to analyze
the closed loop system and, as a result, slow and fast motion subsystems can be
analyzed separately. Following differential equation determines the fast dynamics
of controller:

D(µs) = µqsq
+

q−1∑

i=0

µidis
i . (13)

4. Analog controller design

In the present paper the control task is stated as a tracking problem for the
aerodynamic state variables:

lim
t→∞ [V0(t)−V (t)] = 0, (14)

lim
t→∞

[
γ0(t)−γ(t)

]
= 0, (15)

where V0(t), γ0(t) are the desired values of the considered variables.
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In addition, we require that transient processes have desired dynamic proper-
ties, are mutually independent and are independent of varying airplane parame-
ters.

Feedback data for the regulator are two variables: V , γ. Control signals are
δT , uH . For the sake of controller synthesis we neglect very fast elevator actuator
dynamics assuming that uH = δH (elevator deflection). The inverse dynamics of
(3), (4) are constructed by differentiating the individual elements of y a sufficient
number of times until a term containing u appears in (5). When using the DCM
method the order of the derivatives of the output y depending explicitly on the
control vector u must be determined. From equations of aircraft motion [2] and
relationship (5) it follows that

(
V (2)

γ (3)

)
=

(
fV

fγ

)
+B

(
δT

uH

)
, B =

[
b11 b12

b21 b22

]
, (16)

where the values of functions f (·) = f i (V, α, γ, θ,Q), i = V, γ and elements of
matrix B are bounded.

The relationship (16) neglects the derivatives of the aerodynamic forces (but
not the aerodynamic moments and thrust) with respect to the control surface
deflections δT , δH . Although the system is influenced through these force effects,
they are small for most aircraft configurations and are not primary paths of
aerodynamic control. The principal function of the control surface deflections
is to impart aerodynamic moments about the various body axes. The neglected
force effects can be considered as disturbances of the system, and will be included
in the numerical calculations of the object.

Let us assume that the desired dynamics are determined by a set of mutually
independent differential equations:

τ2
V V (2)

= −2τVαVV (1) −V +V0 , (17)

τ3
γγ

(3)
= −3τ2

γαγγ
(2) −3τγα

2
γγ

(1) −γ +γ0 . (18)

Parameters τi and αi (i = V, γ) have very well known physical meaning and their
particular values have to be specified by the designer.

The output controller equation from (12) is as follows:
(
δT

uH

)
= K0K1

(
νV

νγ

)
, (19)

where: K1 = diag(kV, kγ ), assume that K0 = B−1 because matrix BK0 must be
positive definite.

In normal flight conditions the following requirement is satisfied
det (B(t, x(t))) , 0, which is also a sufficient condition for the existence of an
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inverse system model to (3), (4). However, for a certain configuration of state
variables, the reversibility condition of matrix B may not be fulfilled. In case
of singularity of the matrix B, a numerical protection is required to ensure the
fulfillment of the above reversibility condition.

The control law from (11) has the following form

µ2
V ν

(2)
V
+2dV,1µV ν

(1)
V
+ dV,0νV = k

(
−τ2

VV (2) −2αV τVV (1) −V +V0

)
, (20)

µ3
γν

(3)
γ +3µ2

γdγ,2ν
(2)
γ +3µγdγ,1ν

(1)
γ + dγ,0νγ = k

(
−τ3

γγ
(3)

−3τ2
γαγγ

(2) −3τγα
2
γγ

(1) −γ +γ0

)
. (21)

The entire closed loop system is presented in Fig. 3.

Figure 3: Block diagram of the control system

5. Digital controller design

Because the implementation of modern controllers is usually based on the use
of a digital signal processor, this part is devoted to the problem of digital controller
design for continuous nonlinear time-varying systems. In particular, the design of
digital controller based on the pseudo-continuous approach is presented, where
the digital controller is the result of continuous-time controller discretization.

5.1. Pseudo-continuous-time model with pure delay

Provided that a digital controller fitted with a ZOH (Zero-Order Hold) device
is used, we assume a nonlinear pseudo-continuous-time model

x (1) (t) = h
(
x(t), u(t − τ), t

)
, x(0) = x0 , (22)

y(t) = g
(
t, x(t)

)
(23)

with a delay τ = Ts/2 taken into account (Ts is a sampling period).



104 ROMAN CZYBA, LUKASZ STAJER

So the control problem has been reformulated as the following insensitivity
condition

∆
F (

x(t), y(t),r (t),u(t − τ), t
)
= 0. (24)

The delay τ caused by discretization alters the stability of the fast motion subsys-
tem, and degrades the transient performance in the closed-loop system. Hence,
the control law parameters should be selected to maintain quality of the control
transients in the presence of quantized feedback.

Due to:
K0 ≈ {B}−1 (25)

and assumptions in (11), (12), the transfer function of the i-th open-loop fast
motion subsystem with time delay is given by

GO
i (s) =

ki exp (−τs)

Di (s)
, (26)

where
Di (s) = µ

qi
i

sqi
+ µ

qi−1
i

di,qi−1sqi−1
+ . . .+ µidi,1s+ di,0 . (27)

Denote byωi,c the crossover frequency on the Nyquist plot of the i-th channel,
such that ���GO

i

(
jωi,c, µi

) ��� = 1. (28)

From (26) and (28) follows the relationship

��Di

(
jµiωi,c

) �� = ki , (29)

which may be used to obtain the value of ωi,c.
Then the phase margin ∆ϕi of the fast motion subsystem equals:

∆ϕi = π−Arg Di

(
jµiωi,c

) − τωi,c . (30)

From the requirement
0 < ∆ϕd

i < ∆ϕi (31)

follows the expression

Ti,s = 2
{
π−∆ϕd

i −Arg Di

(
jµiωi,c

)} /
ωi,c . (32)

The above equation may be use to determine the value of the sampling pe-
riod Ts. Based on the requirement (31) it follows that:

Ts 6 min
i=1,...,p

Ti,s

(
∆ϕd

i

)
. (33)
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5.2. Digital realization of a continuous controller

The continuous control law (11) can be represented as the system of the
decomposed linear differential equations:

Di (s)νi(s) = −ki

[
Ai (s)yi (s)−Bi(s)ri(s)

]
, (34)

where: i = 1, . . ., p,

Ai (s) = smi
+ ai,mi−1smi−1

+ . . .+ ai,1s− ai,0, (35)

Bi (s) = bi,0 . (36)

The digital realization of the continuous-time controller (34) can be found
by the Z-transform. Alternatively various approximations can be applied. In
particular, the Tustin transformation, which maintains the stability conditions of
the continuous-time system, can be used to (34) to obtain its digital approximation
by a substitution

s =
2

Ts

z−1

z+1
. (37)

As a result of the transformation (37), from (34)-(36) we obtain a digital
controller:

Di (z)νi (z) = −ki

[
Ai (z)yi (z)−Bi(z)ri (z)

]
. (38)

This can also be presented as the following recursive equations:

νi,n =

qi∑

j=1

di jνi,n− j +

qi∑

j=1

ai j yi,n− j +

qi∑

j=1

bi jri,n− j , (39)

where: νi (t) = νi,n, nTs 6 t < (n+1)Ts.

5.3. Aircraft digital controller

By the Tustin transformation (37), from (20), (21) the control law in the form
of the difference equation is obtained:

• for velocity controller

νV,n = d̃V1νV,n−1+ d̃V2νV,n−2+ ãV0yV,n+ ãV1yV,n−1+ ãV2yV,n−2

+ b̃V0rV,n+ b̃V1rV,n−1+ b̃V2rV,n−2 , (40)

where:

d̃V0 = 4µ2
V +4µV dV,1Ts+ dV,0T2

s , d̃V1 =
{
8µ2

V −2dV,0T2
s

} /
d̃V0 ,
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d̃V2 = −
{
4µ2

V −4µV dV,1Ts + dV,0T2
s

} /
d̃V0 ,

ãV0 = −k
{
4τ2

V +4τVαVTs + aV,0T2
s

} /
d̃V0 ,

ãV1 = 2k
{
4τ2

V − aV,0T2
s

} /
d̃V0 , ãV2 = −k

{
4τ2

V −4τVαVTs+ aV,0T2
s

} /
d̃V0 ,

b̃V0 = k
{
bV,0T2

s

} /
d̃V0 , b̃V1 = 2kbV,0T2

s

/
d̃V0 , b̃V2 = k

{
bV,0T2

s

} /
d̃V0 .

• for flight-path angle controller

νγ,n = d̃γ1νγ,n−1+ d̃γ2νγ,n−2+ d̃γ3νγ,k−3+ ãγ0yγ,n + ãγ1yγ,n−1+ ãγ2yγ,n−2

+ ãγ3yγ,n−3+ b̃γ0rγ,n+ b̃γ1rγ,n−1+ b̃γ2rγ,n−2+ b̃γ3rγ,n−3 , (41)

where:

d̃γ0 = 8µ3
γ +12µ2

γdγ,2Ts +6µγdγ,1T2
s + dγ,0T3

s ,

d̃γ1 =
{
24µ3

γ +12µ2
γdγ,2Ts−6µγdγ,1T2

s −3dγ,0T3
s

} /
d̃γ0 ,

d̃γ2 = −
{
24µ3

γ −12µ2
γdγ,2Ts −6µγdγ,1T2

s +3dγ,0T3
s

} /
d̃γ0 ,

d̃γ3 =
{
8µ3

γ −12µ2
γdγ,2Ts+6µγdγ,1T2

s − dγ,0T3
s

} /
d̃γ0 ,

ãγ0 = −k
{
8τ3

γ +12τ2
γαγTs+6τγα

2
γT

2
s + aγ,0T3

s

} /
d̃γ0 ,

ãγ1 = k
{
24τ3

γ +12τ2
γαγTs −6τγα

2
γT

2
s −3aγ,0T3

s

} /
d̃γ0 ,

ãγ2 = −k
{
24τ3

γ −12τ2
γαγTs −6τγα

2
γT

2
s +3aγ,0T3

s

} /
d̃γ0 ,

ãγ3 = k
{
8τ3

γ −12τ2
γαγTs +6τγα

2
γT

2
s − aγ,0T3

s

} /
d̃γ0 ,

b̃γ0 = k
{
bγ,0T3

s

} /
d̃γ0 , b̃γ1 = k

{
3bγ,0T3

s

} /
d̃γ0 ,

b̃γ2 = k
{
3bγ,0T3

s

} /
d̃γ0 , b̃γ3 = −k

{
bγ,0T3

s

} /
d̃γ0 .

6. Results of simulation

The main goal of the simulation is to provide the control of ascent and descent
of flight through the velocity V and flight path angle γ control, which is treated as
an indirect altitude control. The presented maneuver consisted in transition with
predefined dynamics from one steady-state flight to another. The steady-state trim
conditions were determined by the values of state and control variables obtained
by solving the respective trimming problems.
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For the chosen parameters in [4], the appropriate fast-motion subsystem has
the following phase margin ∆ϕd

i
(30), (31):

∆ϕV > ∆ϕ
d
V = 1.175 [rad], ∆ϕγ > ∆ϕ

d
γ = 1.25 [rad],

if there are the following sampling periods (32):

TV,s = 0.2180 [s], Tγ,s = 0.1544 [s].

Finally, based on the requirement (33), it follows that:

Ts = 0.1 [s] 6 min
i=V,γ

Ti,s

(
∆ϕd

i

)
.

To evaluate the performance of the DCM digital controller, the simulation
was performed for two values of sampling period: Ts = 0.1 [s], Ts = 1 [s].

The simulations were realized for the geometrical and mass data in agreement
with the technical documentation of [5].

Figure 4: Dynamics of velocity V [ft/s]

Figure 5: Dynamics of flight path angle γ [deg]
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Figure 6: Dynamics of throttle thtl ≡ δT [–]

Figure 7: Dynamics of elevator el ≡ δH [deg]

7. Conclusion

In the paper the design of digital controller based on the pseudo-continuous
approach is presented, where the digital controller is the result of continuous-
time controller discretization. The applied method allows to create the expected
outputs for multi-input multi-output nonlinear time-varying object, like an exem-
plary aircraft, and provides independent desired dynamics in control channels.
The peculiarity of the propose approach is the application of the higher order
derivatives jointly with high gain in the control law. This approach and structure
of the control system is the implementation of the model reference control with
the reference model transfer function which is equal to the inverse of the controller
“dynamics”. The resulting controller is a combination of a low-order linear dy-
namical system and a matrix whose entries depend non-linearly on some process
variables. The only inconvenience of the DCM method is the output equation,
which causes problems of computational and implementation nature. However,
the effectiveness of the digital DCM controller demonstrated in this paper, shows
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the potential for its implementation on an embedded systems and its application
in the control of other objects.
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