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Parallel computations of the step response of a floor heater

with the use of a graphics processing unit.

Part 2: results and their evaluation
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Abstract. Using models and algorithms presented in the first part of the article, a spatio-temporal distribution of the step response of a floor

heater was determined. The results have been presented in the form of heating curves and temperature profiles of the heater in the selected

time moments. The computations results were verified through comparing them with the solution obtained with the use of a commercial

program - NISA. Additionally, the distribution of the average time constant of thermal processes occurring in the heater was determined. The

analysis of the use of a graphics processing unit in numerical computations based on the conjugate gradient method was done. It was proved

that the use of a graphics processing unit is profitable in the case of solving linear systems of equations with dense coefficient matrices. In

the case of a sparse matrix, the speed-up depends on the number of its non-zero elements.
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1. Computational program parameters,

material properties of the model,

computing platform

The construction of the analyzed model of the heater was de-

scribed in the first part of this paper (Fig. 2 in [1], where

L = 0.15 m). In order to conduct the discrete approxima-

tion of the model, an appropriate fragment of the floor slab

was covered with a finite difference mesh of an identical step

along x, y axes which equal ∆x = ∆y = 2.34375 · 10−3 m.

The mesh has 65×97 nodes. However, the number of nodes

taken into consideration (and thus the number of unknown

quantities of the obtained system of equations) is smaller and

equals to 4289. As 2016 nodes, which are placed in the cross-

section of the duct of the given temperature TH , should be

omitted. The step response was determined with the assumed

time step ∆t = 2 s and the N = 27000 number of steps. As

a result, the considered time interval equals to 54 000 s (15

hours from letting the hot air into the ducts).

Denotations of material properties were explained in the

first part of the article (chapter 2 in [1]). The following set of

data was assumed:

Tamb = 20◦C, TH = 40◦C, λ = 1 W/(m · K),

c = 840 J/(kg · K), ρ = 2000 kg/m3,

αF = 8 W/(m2
· K), αH = 15 W/(m2

· K).

Computations were done with the use of a personal computer

equipped with an Intel Core 2 Quad CPU Q9650 3.00 GHz

processor, RAM memory of 4 GB and a 64-bit Windows 7

Professional operating system. A Gigabyte Nvidia GeForce

GTX480 graphics card equipped with 480 streaming proces-

sors, and 1536 MB of GDDR5 memory were installed in the

computer. It also contained the CUDA parallel computing en-

vironment [2, 3] in version 3.2 including libraries of numerical

linear algebra operations – CUBLAS [4] and CUSPARSE [5].

2. Step responses and their computational

verification

The computations of the step response were done according

to the algorithm described in the first part of the article [1].

The obtained curves can be presented in a graph for selected

points of the analyzed model of a floor heater. Characteristic

points (A-J) were marked in Fig. 1, and the obtained graphs

of the step response are presented in Fig. 2.

Fig. 1. Analyzed fragment of the heater with the characteristic points

and adiabats
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Fig. 2. Step response of the model of a floor heater in characteristic

points

Points A, B and C are situated on the top surface of the

floor slab, so their temperature is the lowest in comparison

with the rest of the characteristic points (especially H, I and

J, which are located on the bottom insulation). According to

theoretical discussion, presented in the first part of the arti-

cle [1], temperature T (x, y = 1.5L, t) reaches its minimum

value (point A) in the half distance between ducts (x = −L),

and the maximum value for x = 0 (point C). A correspond-

ing field property can be observed on the y = 0 surface in

points H and J. Points D and E are situated in the upper part

of a heating duct, and points F and G – in its lower part. Tem-

perature in points D and E is lower than in points F and G

due to the fact that the heat is transferred into the environment

from the top surface of the floor slab. Points A and H are the

furthest from the heat source. This results in a slow increase

of curves of A and H in the beginning of the transient state

(so called: apparent delay effect).

Figure 3 presents the temperature field distribution in the

whole cross-section of the heater for two selected time mo-

ments (13 500 s and 54 000 s). Analyzing the figures we can

notice that together with the lapse of time, the areas of higher

temperature also spread. It is especially visible in the bottom

part of the floor. This results from the lack of heat transfer

through the bottom surface of the heater where the perfect

insulation was assumed. As a conclusion, it can be said that

the results presented in Figs. 2 and 3 have the appropriate

physical interpretation.

In order to verify the results, the analyzed problem was

solved again, with the use of a commercial program – NISA

[6]. The model of a floor heater built in NISA program was of

identical dimensions and material properties as in the case of

original computer programs using the finite difference method

(FDM). The NISA program uses the finite element method

(FEM) to solve thermal problems. The analyzed model was

discretized with the use of 4096 quadrilateral elements with

4289 nodes. The location of all nodes of the finite difference

mesh and the finite element mesh was exactly the same. In

both cases also the same time interval of the transient state

analysis was assumed, as well as identical length of time step.

On the basis of the obtained values, relative differences (1)

of the computation results, obtained by FEM and FDM, were

determined

δn
h =

hn
FEM − hn

FDM

hn
FEM

· 100%. (1)

The step response hn
FEM was obtained in NISA program in

time moment n, whereas hn
FDM is the step response in the

same characteristic point and in the same time moment n,

obtained with the use of the finite difference method.

Fig. 3. Temperature field in the cross-section of a floor heater after: a) 13 500 s, b) 54 000 s
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The obtained relative differences (in the whole analyzed

time interval) are very small – they do not exceed the value of

0.3%. Their greatest values (about 0.29%) can be observable

at the beginning of the transient state (Fig. 4). Those values

relate to E and G points situated, respectively, on the bottom

and top edges of a duct with hot air (on its symmetry axis) –

Fig. 1. Similar situation occurs in the case of points D and F,

situated on corners of a duct. The maximum value of the rel-

ative difference did not exceed 0.2% in this case. After about

160 s relative differences in all characteristic points are not

bigger than ±0.025%. Because of that, Fig. 4 shows differ-

ences only for limited time interval (from 0 to 240 s). Very

small values of relative differences prove that the algorithm

presented in [1] is correct. The small differences result from

identical location of the mesh nodes in both discrete models

and fine mesh density.

Fig. 4. Relative differences of computational results obtained by

the finite element method (NISA program) and the finite difference

method (original program)

3. Average time constants

On the basis of the step response of the heater, its average

time constant can be computed. It depends on the position of

a field point (x, y) and is defined [7, 8] as follows:

τ(x, y) =

∞
∫

0

h(x, y, t) − hS(x, y)

h(x, y, t = 0) − hS(x, y)
dt, (2)

where h(x, y, t) is a step response of a heater, hS(x, y) =
lim

t→∞

h(x, y, t) – stationary component of the step response,

and h(x, y, t = 0) – the initial value of the step response.

Knowing τ(x, y), we are able to approximate the dynamics

of the transient state in each point of the system using the

first-order lag.

Calculations of the improper integral (2) were replaced

with numerical integration by Simpson’s rule [9, 10]. The

method is based on approximation of integrand through inter-

polation by a polynomial of second degree. Such a polynomial

is built on three, equally-spaced, following points. For the sake

of the accuracy of numerical integration, it was assumed that

the time step ∆t should be shortened twice. This means that

the number of steps in the average time constant calculation

increased twice. In this case, the use of the Simpson’s rule

enables us to show formula (2) in a discrete form:

τk,l ≈
1

3
∆t∗

(

1 + 4
hN∗

−1

k,l − hN∗

k,l

h0
k,l − hN∗

k,l

+2

N∗

2 −1
∑

n=1

h2n
k,l − hN∗

k,l

h0
k,l − hN∗

k,l

+ 4

N∗

2 −1
∑

n=1

h2n−1

k,l − hN∗

k,l

h0
k,l − hN∗

k,l



 ,

(3)

where h2n
k,l and h2n−1

k,l are the step response values in node k,

l, defined for even 2n and uneven 2n−1 time moment, h0
k,l is

the step response value in k, l node, defined in the initial time

moment, hN∗

k,l – the response value in k, l node in the steady

state, ∆t∗ = 0.5·∆t – a shortened time step, N∗ = 2·N – the

enlarged number of time steps, N – the number of time steps

used in computations of the step response of a floor heater.

An exact determination of the average time constant re-

quires calculating an improper integral (2) in the whole in-

tegration interval. Doing numerical integration, the interval

should be appropriately limited. Determining the upper lim-

it, it was assumed that enlarging the integration interval by

50% should not cause any change of the average time con-

stant more than by 1%. Therefore, the values of the average

time constant for enlarging integration interval were calculat-

ed. The obtained results for two characteristic points E and

H are presented in Table 1. The choice of points mentioned

above results from the smallest (E) and the largest (H) value

of time constant in the system, respectively.

Table 1

Values of the average time constant in E and H characteristic points at

enlarging integration interval

The upper limit of integration interval Average time constant

[h] [s] point E [s] point H [s]

20 72 000 3436 13 215

22.5 81 000 3445 13 269

25 90 000 3450 13 296

27.5 99 000 3452 13 309

30 108 000 3453 13 315

Analyzing Table 1, we can notice that, the longer the in-

tegration interval, the bigger the values of the average time

constant approaching a certain limit. The condition relating

the limitation of the integration interval, which is mentioned

above, is fulfilled when the upper limit is changed from 20

to 30 hours. In this case the average time constant changes

in point E by 0.48%, and in point H – by 0.75%. Taking this

into consideration, an average time constant was determined

for the upper limit of integration interval equaling 30 hours,

which is 108 000 s.

The obtained values of average time constant in the cross-

section of a heater are presented in Fig. 5. Moreover, Table 2

collects the constants in characteristic points. The largest av-

erage time constant occurs in point H, which is situated fur-

thest from the heat source. It can be observed that the closer

to a heating duct, the smaller the average time constants. The

Bull. Pol. Ac.: Tech. 61(4) 2013 951
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smallest time constant occurs in point E, which is situated in

the middle of the top edge of a duct with hot air. Described di-

rections of change of averaged time constant correspond with

the heating curves presented in Fig. 2.

Fig. 5. Average time constant in cross-section of a floor heater

Table 2

Values of the average time constant in characteristic points of the heater

model

Point Time constant [s] Point Time constant [s]

A 11782 F 8663

B 7905 G 5919

C 4966 H 13315

D 6657 I 10125

E 3453 J 7645

The knowledge of the time constant is practically signifi-

cant. It is then possible to estimate the duration of the tran-

sient state in (x, y) position as 4τ (x, y). It is also easy to

approximate field dynamics in any point of the system, using

responses of the first-order lag

h(x, y, t) = hS(x, y)
{

1 − e
−t

τ(x,y)

}

+h(x, y, t = 0) e
−t

τ(x,y) .

(4)

The values hS(x, y) could be read from Fig. 3b, while values

τ(x, y) from Fig. 5. Graphs of functions (4) present approx-

imated heating curves.

4. Efficiency of computations conducted

on a graphics processing unit

The calculations of step response of a floor heater were con-

ducted with the use of a PC and a graphics processing unit,

whose parameters were given at the beginning of this arti-

cle. To examine how useful the graphics processing unit can

be in the analysis of problems based on solving a linear al-

gebraic system of equations with the use of the conjugate

gradient method [11], two programs, which implement algo-

rithms adapted to dense and sparse matrices, were created.

The programs were described in detail in the article [1].

Evaluation of the efficiency of calculations done on the

graphics processing unit consists in comparing the execution

time of a program implemented only on a standard proces-

sor (CPU) with the execution time of a program using also a

graphics processing unit (GPU). On the basis of the results,

the speed-up S is determined. It is assigned according to the

following equation [12]:

S =
tCPU

tCPU+GPU

, (5)

where tCPU is the time of calculations done without the

graphics processing unit, and tCPU+GPU – the time of cal-

culations with additional use of the graphics processing unit.

The speed-up defines, then, how many times quicker the pro-

gram can be executed with the use of a supporting graphics

processing unit.

In the first examined program, adapted to dense matrices,

only a matrix-vector multiplication was implemented on the

graphics processing unit. In this case cublasSgemv(. . . ) func-

tion from CUBLAS library was used. The obtained execution

times and calculated speed-ups are presented in Table 3.

Table 3

Execution times and speed-ups of programs for dense matrices (CPU –

author’s own program, CPU+GPU – CUBLAS library)

Mesh
Execution time

Speed-up
CPU [s] CPU+GPU [s]

65 × 97 3223.912 97.344 33.1

The use of a graphics processing unit enabled us to speed

up calculations by 33.1 times. However, it should be stressed

that in the program using only CPU a simple method of

matrix-vector multiplication (without any optimization) was

applied. Taking this in consideration, a modification was in-

troduced into the program. The matrix-vector multiplication

was carried out with the use of the cblas sgemv(. . . ) function

from the Intel Math Kernel Library (MKL) [13]. The library

contains implementations of all BLAS (Basic Linear Alge-

bra Subprograms) functions [14] optimized for Intel proces-

sors. The execution times obtained with the use of this library

(CPU/MKL) and with additional use of a graphics processing

unit (CPU+GPU) are presented in Table 4.

Table 4

Execution times and speed-ups of programs for dense matrices (CPU/MKL

– author’s own program, CPU+GPU – CUBLAS library)

Mesh
Execution time

Speed-up
CPU/MKL [s] CPU+GPU [s]

65 × 97 1289.437 97.344 13.2

The use of the optimized MKL library shortened the time

of the program execution on a CPU, which also caused the

decrease of speed-up to the value of 13.2.

In the other examined program, algorithms adapted to

sparse matrices were implemented. Non-zero elements of ma-

trices were stored in computer memory with the use of the

CSR (Compressed Sparse Row) method [15]. The operation
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of matrix-vector multiplication was implemented on a graph-

ics processing unit with use of the cusparseScsrmv(. . . ) func-

tion from CUSPARSE library. The obtained execution times

of the program and the calculated speed-ups are presented in

Table 5. Unfortunately, in this case the execution time was not

shortened (speed-up under 1). Enlarging density of the finite

difference mesh caused only slight improvement.

Table 5

Execution times and speed-ups of programs for sparse matrices (CPU –

author’s own program, CPU+GPU – CUSPARSE library)

Mesh
Execution time

Speed-up
CPU [s] CPU+GPU [s]

65 × 97 12.001 23.587 0.51

129 × 193 72.223 76.731 0.94

257 × 385 595.765 460.268 1.29

In the program working only on a CPU a modification

was introduced. The matrix-vector multiplication was carried

out with the use of mkl cspblas scsrgemv(. . . ) function from

MKL library. The obtained execution times for 3 densities of

the finite difference mesh are presented in Table 6.

Table 6

Execution times and speed-ups of programs for sparse matrices

(CPU/MKL – author’s own program, CPU+GPU – CUSPARSE library)

Mesh
Execution time

Speed-up
CPU/MKL [s] CPU+GPU [s]

65 × 97 7.654 23.587 0.32

129 × 193 50.679 76.731 0.66

257 × 385 404.233 460.268 0.88

In this case the use of MKL library did not result in a sig-

nificant shortening of execution time in relation with a simple

algorithm. However, it should be stressed that in all cases the

time of calculations was not shortened.

5. Conclusions

The article presents parallel computations of a step response

of a floor heater with the use of a graphics processing unit.

The obtained heating curves are correct, which is proved by

their physical interpretation and calculating verification. The

approximation (4) of the curves is possible due to the assigned

distribution of time constant τ(x, y). The conducted analysis

also showed that the use of a graphics processing unit in the

algorithm of the conjugate gradient method is useful when a

coefficient matrix of the solved system of equations is dense.

In the case of sparse matrices the speed-up was either not

obtained, or it was very small. This is due to a small number

(21057) of non-zero elements in the examined medium-sized

sparse matrix with dimensions of 4289 × 4289. The GPU

processor is not sufficiently loaded, then. Too small number

of threads prevents also the masking of latencies in accessing

the graphics card memory. It results in unfavourable relation

of relative times: the duration of computations (54%) and

communication between the graphics card memory and PC

memory (46%), where the time of program execution is the

reference. Tables 5 and 6 show that the speed-up increases

with the size of the system of equations (and thus the num-

ber of non-zero elements). The solution of the problem of

“medium-sized sparse matrices” could be the replacement the

data division with the time decomposition, which was previ-

ously used in clusters of PCs [16, 17]. In the case of very large

sparse matrices, problems concerning the speed-up are con-

siderably smaller [18]. Resigning from the standard libraries

of universal functions [5] and introducing programs direct-

ly adapted to the analysis of the given problem [19-23] can

additionally increase the efficiency of parallel computations

which use a GPU.

In the case of dense matrices, the number of threads is

greater. The GPU processor is much better loaded. Therefore,

for the dense matrices a good relation of relative computations

time (88%) and communication time (12%) was obtained. As

a result the speed-up is satisfactory (Tables 3 and 4).
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