Applied sciences

Chemical and Process Engineering: New Frontiers

Content

Chemical and Process Engineering | 2019 | vol. 40 | No 3

Download PDF Download RIS Download Bibtex

Abstract

A method of suppressing chaotic oscillations in a tubular reactor with mass recycle is discussed. The method involves intervention in the temperature of the input flow by the recirculation flow and the temperature set from the exterior. The most advantageous solution was proved to be heat coupling elimination and maintenance of the reactor input temperature on the set level. Moreover, the reactor modelwas identified on the basis of a chaotic solution, as it provides the biggest entropy of information.

Go to article

Authors and Affiliations

Marek Berezowski
Download PDF Download RIS Download Bibtex

Abstract

Chemical heat pumps (CHP) use reversible exothermal and endothermal chemical reactions to increase the temperature of working fluids. In comparison to the “classical” vapour compression chemical heat pumps, CHP enables us to achieve significantly higher temperatures of a heated medium which is crucial for the potential application, e.g. for production of superheated steam. Despite the advantages presented, currently, there are no installations using CHP for lowgrade waste heat recovery available on the market. The scaling up of industrial processes is still one of the greatest challenges of process engineering. The aim of the theoretical and experimental concept study presented here was to evaluate a method of reclaiming energy from low temperature waste streams and converting it into a saturated steam of temperature from 120 to 150 ◦C, which can be useful in industry. A chemical heat pump concept, based on the dilution and concentration of phosphoric acid, was used to test the method in the laboratory scale. The heat of dilution and energy needed for water evaporation from the acid solutionwere experimentally measured. The cycle of successive processes of dilution and concentration has been experimentally confirmed. A theoretical model of the chemical heat pump was tested and coefficient of performance measured.

Go to article

Authors and Affiliations

Marzena Czapnik
Michał Tylman
Maciej Jaskulski
Paweł Wawrzyniak
Download PDF Download RIS Download Bibtex

Abstract

In this study, batch fermentation of glucose to ethanol by Saccharomyces cerevisiae (ATCC 7754) was carried out using 2.5 dm3 BioFlo®115 bioreactor. The main objective of this study was to investigate the kinetics of ethanol fermentation by means of the non-structured model. The fermentation process was carried out for 72 h. Samples were collected every 4 h and then yeast growth concentration of ethanol and glucose were measured. The mathematical model was composed of three equations, which represented the changes of biomass, substrate and ethanol concentrations. The mathematical model of bioprocess was solved by means of Matlab/SimulinkTM environment. The obtained results from the proposed model showed good agreement with the experimental data, thus it was concluded that this model can be used for the mathematical modeling of ethanol production.

Go to article

Authors and Affiliations

Anna Konopacka
Maciej Konopacki
Marian Kordas
Rafał Rakoczy
Download PDF Download RIS Download Bibtex

Abstract

The effect of rotating magnetic field on the heat transfer process in a magnetically assisted bioreactor was studied experimentally. Experimental investigations are provided for the explanation of the influence of the rotating magnetic field on natural convection. The heat transfer coefficients and the Nusselt numbers were determined as a function of the product of Grashof and Prandtl dimensionless numbers. Moreover, the comparison of the thermal performance between the tested set-up and a vertical cylinder was carried out. The relative enhancement of heat transfer was characterized by the rate of the relative heat transfer intensification. The study showed that along with the intensity of the magnetic field the heat transfer increased.

Go to article

Authors and Affiliations

Maciej Konopacki
Marian Kordas
Rafał Rakoczy
Download PDF Download RIS Download Bibtex

Abstract

Linden honey ultrafiltration (15 kDa MWCO ceramic membrane) was performed as honey solution pre-treatment before spray drying. Feed and retentate solutions with the addition of maltodextrin as a carrier were spray dried. Drying yield and physical properties of powders were studied (after drying and after 12 weeks of storage). During ultrafiltration it was possible to remove some amount of sugars responsible for honey low glass transition temperature, while keeping protein compounds. Yet, it did not have a significant impact on the drying performance and improvement of powder physical properties immediately after drying and after storage. However, the possibility to remove sugars from honey solution by ultrafiltration can be an encouragement for further research.

Go to article

Authors and Affiliations

Katarzyna Samborska
Alicja Barańska
Daria Bodel
Aleksandra Jedlińska
Download PDF Download RIS Download Bibtex

Abstract

Carbon paste electrode (CPE) was modified with F-300 commercial activated carbon or Norit SX- 2 powdered activated carbon. CPEs were prepared for detection of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,6-dichlorophenoxyacetic acid (2,6-D) and 2,4,6-trichlorophenoxyacetic acid (2,4,6-T). The electrochemical behavior of these materials was investigated employing cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The modifier was found to enhance the electroactive surface area and the peak current in comparison to the bare (unmodified) carbon paste electrode. The intensity of the signal increased with the increase in adsorption ability of the modifiers. Compared to the unmodified electrode, all the new paste electrodes showed a much greater sensitivity for detection of chlorinated phenoxyacetic acids in water samples.

Go to article

Authors and Affiliations

Arkadiusz Białek
Katarzyna Skrzypczyńska
Krzysztof Kuśmierek
Artur Świątkowski
Download PDF Download RIS Download Bibtex

Abstract

Evaluation of moisture absorption in foodstuffs such as black chickpea is an important stage for skinning and cropping practices. Water uptake process of black chickpea was discussed through normal soaking in four temperature levels of 20, 35, 50 and 65 °C for 18 hours, and then the hydration kinetics was predicted by Peleg’s model and finite difference strategy. Model results showed that with increasing soaking temperature from 20 to 65 °C, Peleg’s rate and Peleg’s capacity constant reduced from 13.368×10-2 to 5.664×10-2 and 9.231×10-3 to 9.138×10-3, respectively. Based on key results, a rise in the medium temperature caused an increase in the diffusion coefficient from 5.24×10-10 m2/s to 4.36×10-9 m2/s, as well. Modelling of moisture absorption of black chickpea was also performed employing finite difference strategy. Comparing the experimental results with those obtained from the analytical solution of the theoretical models revealed a good agreement between predicted and experimental data. Peleg’s model and finite difference technique revealed their predictive function the best at the temperature of 65 °C.

Go to article

Authors and Affiliations

Nesa Dibagar
Stefan Jan Kowalski
Reza Amiri Chayjan

Instructions for authors

All manuscripts submitted for publication in Chemical and Process Engineering: New Frontiers must comprise a description of original research that has neither been published nor submitted for publication elsewhere.

The content, aim and scope of the proposals have to comply with the main topics of the journal, i.e. discuss at least one of the four main areas, namely:
• New Advanced (Nano) Materials
• Environment & Water Processing (including circular economy)
• Biochemical & Biomedical Engineering (including pharmaceuticals)
• Climate & Energy (including energy conversion & storage, electrification, decarbonization)

Chemical and Process Engineering: New Frontiers publishes: i) experimental and theoretical research papers, ii) short communications, iii) critical reviews, and iv) perspective articles. Each publication form is peer-reviewed by at least two independent referees.

New Submissions

Manuscripts are submitted for publication via Editorial System. When writing a manuscript, you may choose to submit it as a single Word file to be used in the refereeing process. The manuscript needs to be written in a clear way. The minimum requirements are:
• Please use clear fonts, at least 12 points large, with at least 1.5-line spacing.
• Figures should be placed in relevant places within the manuscript. All figures and tables should be numbered and provided with appropriate caption and legend, if necessary.


Language requirements

• Use Simple Past to talk about your experiment and your results as they were finished before you wrote the paper. Use Simple Past to describe what you did.
Example: Two samples were taken. Temperature increased to 200K at the end of the process.
• Use Simple Present to refer to figures and tables.
Example: Table 2 shows nitrogen concentration changes in the process.
• Use Simple Present to talk about your conclusions. You move here from describing your results to stating what is generally true.
Example: The process is caused by changes of nitrogen concentration.
• Capitalise words like ‘Table 2’, ‘Equation 11’.
• If a sentence is longer than three lines, break down your writing into logically divided parts (paragraphs). Start a new paragraph to discuss a new concept.
• Check noun/verb agreement (singular/plural).
• It is fine to choose either British or American English but you should avoid mixing the two.
• Avoid empty language (it is worth pointing out that, etc.).



Revised Submission

After the first revision, authors will be requested to put their paper in the correct format, using the below guidelines and template for articles.


Manuscript outline

1. Header details
a. Title,
b. Names (first name and further initials) and surnames of authors,
c. Institution(s) (affiliation),
d. Address(es) of authors,
e. ORCID number of all authors.
f. Information about the corresponding author: name and surname, email address.

2. Abstract – should contain a short summary of the proposed paper. In the maximum of 200 words the authors should present the main assumptions, results and conclusions drawn from the presented study.

3. Keywords – up to 5 characteristic keyword items should be provided.

4. Text
a. Introduction. In this part, the rationale for research and formulation of the scientific problem should be included and supported by a concise review of recent literature.
b. Main text. It should contain all important elements of the scientific investigations, such as presentation of experimental setup, mathematical models, results and their discussion. This part may be divided into the following sections: Methods, Results, Discussion.
c. Conclusions. The major conclusions can be put forward in a concise style in a separate chapter. A presentation of conclusions from the reported research work accompanied by a short commentary is also acceptable.
d. Figures: drawings, diagrams and photographs can be in colour and should be located in appropriate places in the manuscript. Their form should be of a vector or raster type with the minimum resolution of 900 dpi. In addition, all figures, including drawings, graphs and photos should be uploaded in a separate file via Editorial System in one of the following formats: bmp, tiff, jpg or eps. For editorial reasons, graphic elements created with MS Word or Excel will not be accepted. They should be saved as image files in the source program. Screen shots will not be accepted. The basic font size of letters used in figures should be at least 10 pts after adjusting graphs to the final size.
e. Tables should be made according to the format shown in the template.
f. All figures and tables should be numbered and provided with an appropriate caption and legend, if necessary. They have to be properly referenced to and commented in the text of the manuscript.

5. List of symbols should be accompanied by their units

6. Acknowledgements may be included before the list of literature references

7. Literature citations
The method of quoting literature source in the manuscript depends on the number of its authors:
single author – their surname and year of publication should be given, e.g. Marquardt (1996) or (Marquardt, 1996),
two authors – the two surnames separated by the conjunction “and” with the publication year should be given, e.g. Charpentier and McKenna (2004) or (Charpentier and McKenna, 2004),
three and more authors – the surname of the first author followed by the abbreviation “et al.” and year of publication should be given, e.g. Bird et al. (1960) or (Bird et al., 1960).

In the case of citing more sources in one bracket, they should be listed in alphabetical order using semicolon for separation, e.g. (Bird et al., 1960; Charpentier and McKenna, 2004; Marquardt, 1996). Should more citations of the same author(s) and year appear in the manuscript then letters “a, b, c, ...” should be successively applied after the publication year.

Bibliographic data of the quoted literature should be arranged at the end of the manuscript in alphabetical order of surnames of the first author. It is obligatory to indicate the DOI number of those literature items, whose numbers have already been assigned. Journal titles should be specified by typing their right abbreviations or, when in doubts, according to the Science and Engineering Journal Abbreviations.

Examples of citation for:

Articles
Charpentier J. C., McKenna T. F., 2004. Managing complex systems: some trends for the future of chemical and process engineering. Chem. Eng. Sci., 59, 1617-1640. DOI: 10.1016/j.ces.2004.01.044.
Information from books (we suggest adding the page numbers where the quoted information can be found)
Bird R. B., Stewart W.E., Lightfood E.N., 2002. Transport Phenomena. 2nd edition, Wiley, New York, 415-421.
Chapters in books
Hanjalić K., Jakirlić S., 2002. Second-moment turbulence closure modelling, In: Launder B.E., Sandham N.D. (Eds.), Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge, 47-101.
Conferences
ten Cate A., Bermingham S.K., Derksen J.J., Kramer H.M.J., 2000. Compartmental modeling of an 1100L DTB crystallizer based on Large Eddy flow simulation. 10th European Conference on Mixing. Delft, the Netherlands, 2-5 July 2000, 255-264.



Cover letter


Authors are kindly asked to provide a cover letter which signifies the novelty and most important findings of the manuscript as well as the significance to the field.


Author contributions

During submission, authors will be asked to provide the individual contributions to the paper using the relevant CRediT roles: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.


Suggested Reviewers

Authors are kindly requested to include a list of 4 potential reviewers for their manuscript, with complete contact information. Suggested reviewers may not reside in the same country as the corresponding author and remain subject to the Editors' discretion in appointing manuscripts for review.


Payments

Starting from 2014 a principle of publishing articles against payment is introduced, assuming non-profit making editorial office. According to the principle, authors or institutions will have to cover the expenses amounting to 1500 PLN netto (excl. VAT) per published article. The above amount will be used to supplement the limited financial means received from the Polish Academy of Sciences for the editorial and publishing expenses. The method of payment will be indicated in an invoice sent to the authors or institutions after acceptance of their manuscripts to be published.

Publication Ethics Policy

ETHICAL PRINCIPLES

Editors of the "Chemical and Process Engineering: New Frontiers" pay attention to maintain ethical standards in scientific publications and undertake any possible measure to counteract neglecting the standards. Papers submitted for publication are evaluated with respect to reliability, conforming to ethical standards and the advancement of science. Principles given below are based on COPE's Best Practice Guidelines for Journal Editors, which may be found at:
http://publicationethics.org/files/u2/Best_Practice.pdf

Authors’ duties

Authorship
Authorship should be limited to persons, who markedly contributed to the idea, project, realization and interpretation of results. All of them have to be listed as co-authors. Other persons, who affected some important parts of the study should be listed or mentioned as co-workers. Author should be certain that all co-authors were enlisted, saw and accepted final version of the paper and agreed upon its publication.

Disclosure and conflict of interests
Author should disclose all sources of financing of his/her study, the input of scientific institutions, associations and other subjects and all important conflicts of interests that might affect results and interpretation of the study.

Standards in reporting
Authors of papers based on original studies should present precise description of performed work and objective discussion on its importance. Source data should be accurately presented in the paper. The paper should contain detailed information and references that would enable others to use it. False or intentionally not true declarations are not ethical and are not accepted by the editors.

Access to and storage of data
Authors may be asked for providing raw data used in the paper for editorial assessment and should be prepared to store them within the reasonable time period after publication.

Multiple, unnecessary and competitive publications
As a rule author should not publish papers describing the same studies in more than one journal or primary publication. Submission of the same paper to more than one journal at the same time is not ethical and prohibited.

Confirmation of sources
Author should cite papers that affected the creation of submitted manuscript and every time he/she should confirm the use of other authors’ work.

Important errors in published papers
When author finds an important error or inaccuracy in his/her paper, he/she is obliged to inform Editorial Office about this as soon as possible.

Originality and plagiarism
Author may submit only original papers. He/she should be certain that the names of authors referred to in the paper and/or fragments of their texts are properly cited or mentioned.

Ghostwriting
Ghost writing/guest authorship are manifestation of scientific unreliability and all such cases will be revealed including notification of appropriate subjects. Signs of scientific unreliability, especially violation of ethical principles in science will be documented by the Editorial Office.


Duties of the Editorial Office


Editors’ duties
Editors know the rules of journal editing including the procedures applied in case of uncovering non-ethical practices.

Decisions on publication
Editor-in Chief is obliged to apply present legal status as to defamation, violation of author’s rights and plagiarism and bears the responsibility for decisions. He/she may consult thematic editors and/or referees in that matter.

Selection of referees
Editorial Office provides appropriate selection of referees and takes care about appropriate course of peer –reviewing (the review has to be substantive).

Confidentiality
Every member of editorial team is not allowed to disclose information about submitted paper to any person except its author, referees, other advisors and editors.

Discrimination
To counteract discrimination the Editorial Office obeys the legally binding rules.

Disclosure and conflict of interests
Not published papers or their fragments cannot be used in the studies of editorial team or ref-erees without written consent of the author.


Referees' duties

Editorial decisions

Referee supports Editor-in-Chief in taking editorial decisions and may also support author in improving the paper.

Back information
In case a selected referee is not able to review the paper or cannot do it in due time period, he/she should inform secretary of the Editorial Office about this fact.

Objectivity standards
Reviews should be objective. Personal criticism is inappropriate. Referees should clearly ex-press their opinions and support them with proper arguments.

Confidentiality
All reviewed papers should be dealt with as confidential. They should not be discussed or revealed to persons other than the secretary of the Editorial Office.

Anonymity
All reviews should be made anonymously and the Editorial Office does not disclose names of the authors to referees.

Disclosure and conflict of interests
Confidential information or ideas resulting from reviewing procedure should be kept secret and should not be used to gain personal benefits. Referees should not review papers, which might generate conflict of interests resulting from relationships with the author, firm or institution involved in the study.

Confirmation of sources
Referees should indicate publications which are not referred to in the paper. Any statement that the observation, source or argument was described previously should be supported by appropriate citation. Referee should also inform the secretary of the Editorial Office about significant similarity to or partial overlapping of the reviewed paper with any other published paper and about suspected plagiarism.



This page uses 'cookies'. Learn more