@ARTICLE{Mola_R._The_2018, author={Mola, R. and Bucki, T.}, volume={vol.18}, number={No 1}, journal={Archives of Foundry Engineering}, howpublished={online}, year={2018}, publisher={The Katowice Branch of the Polish Academy of Sciences}, abstract={Bimetallic AZ91/AlSi17 samples were produced by compound casting. The casting process involved pouring the AZ91 magnesium alloy heated to 650oC onto a solid AlSi17 aluminum alloy insert placed in a steel mould. Prior to casting, the mould with the insert inside was heated to about 370oC. The bonding zone formed between AZ91 and AlSi17 had a thickness of about 200 μm; it was characterized by a non-homogeneous microstructure. Two different areas were distinguished in this zone: the area adjacent to the AZ91 and the area close to the AlSi17. In the area closest to the AZ91 alloy, a eutectic composed of an Mg17Al12 intermetallic phase and a solid solution of Al in Mg was observed. In bonding zone at a certain distance from the AZ91 alloy an Mg2Si phase co-occurred with the eutectic. In the area adjacent to the AlSi17 alloy, the structure consisted of Al3Mg2, Mg17Al12 and Mg2Si. The fine Mg2Si phase particles were distributed over the entire Mg-Al intermetallic phase matrix. The microhardness of the bonding zone was much higher than those of the materials joined; the microhardness values were in the range 203-298 HV. The shear strength of the AZ91/AlSi17 joint varied from 32.5 to 36 MPa.}, type={Artykuły / Articles}, title={The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting}, URL={http://www.journals.pan.pl/Content/103375/PDF/AFE%201_2018_13.pdf}, keywords={mechanical properties, Innovative foundry technologies and materials, Compound casting process, Bonding zone, Microstructure}, }