@ARTICLE{Szewczyk_Arkadiusz_Voltage_2016, author={Szewczyk, Arkadiusz and Sikula, Josef and Sedlakova, Vlasta and Majzner, Jiri and Sedlak, Petr and Kuparowitz, Tomas}, volume={vol. 23}, number={No 3}, journal={Metrology and Measurement Systems}, pages={403-411}, howpublished={online}, year={2016}, publisher={Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation}, abstract={Electronic Double-Layer Capacitors (EDLC), called Supercapacitors (SC), are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V) dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.}, type={Artykuły / Articles}, title={Voltage Dependence of Supercapacitor Capacitance}, URL={http://www.journals.pan.pl/Content/106345/PDF/10.15.15mms-2016-0031%20paper%2008.pdf}, doi={10.1515/mms-2016-0031}, keywords={Electronic Double-Layer Capacitor (EDLC), charge diffusion, recovery voltage}, }