TY - JOUR N2 - Traditional fluid mechanics edifies the indifference between liquid and gas flows as long as certain similarity parameters – most prominently the Reynolds number – are matched. This may or may not be the case for flows in nano- or microdevices. The customary continuum, Navier-Stokes modelling is ordinarily applicable for both air and water flowing in macrodevices. Even for common fluids such as air or water, such modelling bound to fail at sufficiently small scales, but the onset for such failure is different for the two forms of matter. Moreover, when the no-slip, quasi-equilibrium Navier – Stokes system is no longer applicable, the alternative modelling schemes are different for gases and liquids. For dilute gases, statistical methods are applied and the Boltzmann equation is the cornerstone of such approaches. For liquid flows, the dense nature of the matter precludes the use of the kinetic theory of gases, and numerically intensive molecular dynamics simulations are the only alternative rooted in first principles. The present article discusses the above issues, emphasizing the differences between liquid and gas transport at the microscale and the physical phenomena unique to liquid flows in minute devices. L1 - http://www.journals.pan.pl/Content/111783/PDF-MASTER/(53-4)301.pdf L2 - http://www.journals.pan.pl/Content/111783 PY - 2005 IS - No 4 EP - 316 KW - liquid and gas transport KW - microscale A1 - Gad-El-Hak, M. VL - vol. 53 DA - 2005 T1 - Differences between liquid and gas transport at the microscale SP - 301 UR - http://www.journals.pan.pl/dlibra/publication/edition/111783 T2 - Bulletin of the Polish Academy of Sciences Technical Sciences ER -