Details

Title

Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

Journal title

Archives of Thermodynamics

Yearbook

2016

Issue

No 2

Authors

Keywords

longitudinal finned tube heat exchanger ; user functions and CEL Expressions ; ANSYS CFX ; Taguchi ; entropy generation

Divisions of PAS

Nauki Techniczne

Coverage

3-22

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2016

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2016-0010

Source

Archives of Thermodynamics; 2016; No 2; 3-22

References

Naraki (2013), Parametric study of overal l heat transfer coefficient of CuO / water nanofluids in a car radiator, Int J Therm Sci, 66. ; Peyghambarzadeh (2013), Experimental study of overal l heat transfer coefficient in the application of dilute nanofluids in the car radiator, Appl Therm Eng, 8, doi.org/10.1016/j.applthermaleng.2012.11.013 ; Patankar (1975), Prediction of turbulent flow in curved pipes Fluid, Mech, 583. ; Drozynski (2013), Entropy increase as a measure of energy degradation in heat transfer, Arch Thermodyn, 147. ; Eastman (1997), Enhanced thermal conductivity through the development of nanofluids, Mater Res Soc Symp Proc. ; Peyghambarzadeh (2011), Experimental study of heat transfer enhancement using water / ethylene glycol based nanofluids as a new coolant for car radiators Heat Mass Transfer, Int Comm, 1283. ; Bejan (1979), A study of entropy generation in fundamental convective heat transfer Heat, Trans, 718. ; Koo (2004), A new thermal conductivity model for nanofluids Nanoparticle, Res, 577. ; Pak (1998), Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles Experimental Heat Transfer, Therm Energ Gener Transp Stor Conver, 151. ; Hamilton (1962), Thermal Conductivity of Heterogeneous Two - Component Systems, Ind Eng Chem Fund, 3, 187, doi.org/10.1021/i160003a005 ; Wang (2007), Heat transfer characteristics of nanofluids a, review Int J Therm Sci, 1, doi.org/10.1016/j.ijthermalsci.2006.06.010 ; Batchelor (1977), The effect of Brownian motion on the bulk stress in a suspension of spherical particles Fluid, Mech, 97. ; Das (2003), Pool boiling characteristics of nano - fluids Heat Mass Transfer, Int Comm, 851. ; Turgut (2009), Thermal conductivity and viscosity measurements of water based TiO nanofluids, Int J Thermophys, 1213, doi.org/10.1007/s10765-009-0594-2 ; Xuan (2000), Conceptions of heat transfer correlation of nanofluids Heat Mass, Int J Trans, 3701, doi.org/10.1016/S0017-9310(99)00369-5 ; Yu (2003), The role of interfacial layers in the enhanced thermal conductivity of nanofluids ; a renovated Maxwell model Nanoparticle, Res, 167. ; Demir (2011), Numerical investigation on the single phase forced convection heat transfer characteristics of TiO nanofluids in a double - tube counter flow heat exchanger Heat Mass, Int Comm Trans, 218. ; Qasim Saleh (2015), Mahdi Investigation of heat transfer from U - longitudinal finned tube heat exchanger, Adv Energ Power, 19. ; Keshavarz (2011), Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics Heat Mass, Int Comm Trans, 1291. ; Wang (1999), Thermal conductivity of nanoparticle - fluid mixture Heat Transfer, Thermophys, 474, doi.org/10.2514/2.6486 ; Bejan (1982), Entropy Generation through Heat and Fluid Flow, Willy. ; Rajendran Senthilkumar Sethuramalingam Prabhu (2013), Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces Thermal, Appl Eng, 1361. ; Lee (1999), Measuring thermal conductivity of fluids containing oxide nanoparticles Heat, Trans, 280. ; Singh Pawan (2010), Entropy generation due to flow and heat transfer in nanofluids Heat Mass, Int J Trans, 21.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×