Details

Title

Computational electromagnetics for design optimisation: the state of the art and conjectures for the future

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2009

Volume

vol. 57

Issue

No 2

Authors

Divisions of PAS

Nauki Techniczne

Coverage

123-131

Date

2009

Identifier

DOI: 10.2478/v10175-010-0112-5 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2009; vol. 57; No 2; 123-131

References

COMPUMAG 2007 Proceedings, <i>IEEE Transactions on Magnetics</i> 44 (6), (2008). ; International Compumag Society <a target="_blank" href='http://www.compumag.co.uk/'>http://www.compumag.co.uk/</a> ; CEFC 2006 Proceedings, <i>IEEE Transactions on Magnetics</i>, 43 (4), (2007). ; Special Issue on Computational Electromagnetics, <i>IEE Proceedings, SMT</i> 149 (5) (2002), and 151 (6) (2004). ; <i>IET Sci. Meas. Technol.</i> 1 (1), (2007). ; ISEF 2005, <i>International Symposium on Electromagnetic Fields in Electrical Engineering</i>, selected papers, <i>COMPEL</i> 27 (3), (2008). ; EPNC 2008, <i>Symposium on Electromagnetic Phenomena in Nonlinear Circuits</i>, selected papers, <i>COMPEL</i> 28 (3), (2009). ; 18<sup>th</sup> International Conference on Electrical Machines, 1-6 (2008). ; Workshop on Optimization and Inverse Problems in Electromagnetics OIPE, <i>COMPEL</i> 26 (2), (2007). ; J. K. Sykulski, <i>International Compumag Society Newsletter</i>, ISSN 1026-0854. ; Professional Network Electromagnetics, IET, London, UK <a target="_blank" href='http://kn.theiet.org/communities/electromagnetics/about.cfm'>http://kn.theiet.org/communities/electromagnetics/about.cfm</a> ; Hammond P. (1994), Engineering Electromagnetism, Physical Processes and Computation. ; Sykulski J. (1995), Computational Magnetics, doi.org/10.1007/978-94-011-1278-9 ; Stoll R. (1974), The Analysis of Eddy Currents. ; Binns K. (1992), The Analytical and Numerical Solution of Electric and Magnetic Fields. ; Reece A. (2000), Finite Element Methods in Electrical Power Engineering. ; Hameyer K. (1999), Numerical Modelling and Design of Electrical Machines and Devices. ; Lowther D. (1985), Computer-Aided Design in Magnetics. ; OPERA, Vector Fields Ltd. <a target="_blank" href='http://www.vectorfields.co.uk/'>http://www.vectorfields.co.uk/</a> ; MagNet, Infolytica <a target="_blank" href='http://www.infolytica.com/'>http://www.infolytica.com/</a> ; Maxwell, Ansoft <a target="_blank" href='http://www.ansoft.com/'>http://www.ansoft.com/</a> ; ANSYS Multiphysics <a target="_blank" href='http://www.ansys.com/products/default.asp'>http://www.ansys.com/products/default.asp</a> ; FLUX, CEDRAT Software <a target="_blank" href='http://www.cedrat.com/'>http://www.cedrat.com/</a> ; MEGA <a target="_blank" href='http://www.bedl.co.uk/'>http://www.bedl.co.uk/</a> ; Integrated Engineering Software <a target="_blank" href='http://www.integratedsoft.com/'>http://www.integratedsoft.com/</a> ; SPEED <a target="_blank" href='http://www.speedlab.co.uk/software.html'>http://www.speedlab.co.uk/software.html</a> ; Trowbridge C. (2006), Some key developments in computational electromagnetics and their attribution, IEEE Transactions on Magnetics, 42, 4, 503, doi.org/10.1109/TMAG.2006.872491 ; Southwell R. (1946), Relaxation Methods in Theoretical Physics. ; Turner M. (1956), Stiffness and deflection analysis of complex structures, J. Aero Sci, 23, 805, doi.org/10.2514/8.3664 ; Winslow A. (1966), Numerical calculation of static magnetic fields in an irregular triangle mesh, J Comput Phys, 1, 149. ; Silvester P. (1969), High-order polynomial triangular finite elements for potential problems, Int. J. Engineering Science, 7, 849, doi.org/10.1016/0020-7225(69)90065-2 ; Chari M. (1970), Finite element analysis of magnetically saturated dc machines, IEEE Trans. PAS, 89, 7, 1642. ; Meijerink J. (1977), An iterative solution method for systems of which the coefficient matrix is a symmetric M matrix, Maths. Comp, 31, 148. ; Simkin J. (1978), On the use of the total scalar potential in the numerical solution of field problems in electromagnetics, IJNME, 14, 432. ; Cendes Z. (1983), Magnetic field computation using Delaunay triangulation and complementary finite element methods, IEEE Trans. on Magnetics, 19, 2551, doi.org/10.1109/TMAG.1983.1062841 ; Janucke L. (1992), Error estimation and adaptive mesh generation in the 2D and 3D finite element method, IEEE Trans. Magn, 32, 3. ; Freeman E. (1988), A novel mapping technique for open boundary finite element solutions to poissons equation, IEEE Trans. Magn, 24, 6, doi.org/10.1109/20.92293 ; Imhoff J. (1990), Finite element modelling of open boundary problems, IEEE Trans. Magn, 26, 2, doi.org/10.1109/20.106385 ; Bossavit A. (1982), A mixed FEM-BIEM method to solve 3-D eddy current problem, IEEE Trans. Magn, 431, doi.org/10.1109/TMAG.1982.1061847 ; Bossavit A. (1988), Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A, 135, 493. ; Biro O. (1996), On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems, IEEE Trans. Magn, 32, 3, doi.org/10.1109/20.497322 ; Yioultsis T. (1996), Multiparametric finite elements: a systematic approach to the construction of 3-D, higher order, tangential vector shape functions, IEEE Trans. Magn, 32, 3, doi.org/10.1109/20.497506 ; Baldomir D. (1986), Differential forms and electromagnetism in 3-dimensional Euclidian space R<sup>3</sup>, IEE Proc A, 133, 139. ; Ren Z. (2000), Application of differential forms in the finite element formulation of electromagnetic problems, ICS Newsletter, 7, 3, 6. ; Tonti E. (2001), Finite formulation of electromagnetic field, ICS Newsletter, 8, 1, 5. ; Hammond P. (1976), Calculation of inductance and capacitance by means of dual energy principles, Proc IEE, 123, 6, 554. ; Sykulski J. (1988), Computer package for calculating electric and magnetic fields exploiting dual energy bounds, IEE Proceedings A, 135, 3, 145. ; Mayergoyz I. (1986), Mathematical models of hysteresis, IEEE Trans. Magn, 22, doi.org/10.1109/TMAG.1986.1064347 ; Dupre L. (2003), Electromagnetic hysteresis modelling: from material science to finite element analysis of devices, ICS Newsletter, 10, 3, 4. ; Jack A. (2000), Permanent-magnet machines with powdered iron cores and prepressed windings, IEEE Trans. Ind. Appl, 36, 1077, doi.org/10.1109/28.855963 ; Sykulski J. (2000), A method of estimating the total AC loss in a high-temperature superconducting transformer winding, IEEE Trans. Magn, 36, 1183, doi.org/10.1109/20.877651 ; Golosnoy I. (2008), Evaluation of the front-fixing method capabilities for numerical modelling of field diffusion in high-temperature superconducting tapes, IET Science, Measurement and Technology, 2, 6, 418, doi.org/10.1049/iet-smt:20080085 ; Razek A. (1982), Conception of an Air-Gap Element for the Dynamic Analysis of the Electromagnetic Field in Electric machines, IEEE Trans. Magn, 18, 2. ; Rodger D. (1990), Coupled elements for problems involving motion, IEEE Trans. Magn, 26, 2, doi.org/10.1109/20.106375 ; Tsukerman I. (1992), Overlapping finite elements for problems with movement, IEEE Trans. Magn, 28, 5, 2247, doi.org/10.1109/20.179458 ; Demenko A. (1996), Movement simulation in finite element analysis of electric machine dynamics, IEEE Trans. Magn, 32, 3, doi.org/10.1109/20.497547 ; Christopoulos C. (1995), The Transmission-Line Modelling Method: TLM, doi.org/10.1109/9780470546659 ; Sewell P. (2004), Transmission line modelling using unstructured meshes, IEE Proc SMT, 151, 6, 445. ; Weiland T. (1996), Time domain electromagnetic field computation with finite difference methods, Int. J. Numerical Modelling, 9, 295, doi.org/10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 ; Brebbia C. (2006), Electrical Engineering and Electromagnetics VII. ; Takahashi Y. (2006), Large-scale analysis of eddycurrent problems by the hybrid finite element-boundary element method combined with the fast multipole method, IEEE Trans. Magn, 42, 4, 671, doi.org/10.1109/TMAG.2006.871630 ; Carpenter C. (1959), Surface-integral methods of calculating forces on magnetized iron parts, IEE Monograph, 342, 19. ; Henrotte F. (2004), Handbook for the computation of electromagnetic forces in a continuous medium, Int. Compumag Society Newsletter, 24, 2, 3. ; Coulomb J. (1985), Finite element implementation of virtual work principle for magnetic force and torque computation, IEEE Trans. Magn, 20. ; McFee S. (1988), A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics, IEEE Trans. Magn, 24, 439, doi.org/10.1109/20.43951 ; Henrotte F. (2004), Electromagnetic force density in a ferromagnetic material, IEEE Trans. Magn, 40, 553, doi.org/10.1109/TMAG.2004.825150 ; Kim D. (2005), Efficient force calculations based on continuum sensitivity analysis, IEEE Trans. Magn, 41, 5, 1404, doi.org/10.1109/TMAG.2005.844343 ; Kim D. (2007), Efficient global and local force calculations based on continuum sensitivity analysis, IEEE Trans. Magn, 43, 4, 1177, doi.org/10.1109/TMAG.2006.890949 ; Li M. (2008), A sensitivity approach to force calculation in electrostatic MEMS devices, IEEE Transactions on Magnetics, 44, 6, 1610, doi.org/10.1109/TMAG.2007.916380 ; Sykulski J. (1999), High temperature super-conducting demonstrator transformer: design considerations and first test results, IEEE Trans. on Magnetics, 35, 5, 3559, doi.org/10.1109/20.800589 ; Sykulski J. (1999), High temperature superconducting power transformers: conclusions from a design study, IEE Proceedings; Electrical. Power Applications, 146, 1, 41, doi.org/10.1049/ip-epa:19990192 ; Mosawi M. (2002), Design of a 100 kVA high temperature superconducting demonstration synchronous generator, Physica C, 372-6, P3, 1539, doi.org/10.1016/S0921-4534(02)01076-6 ; Goddard K. (1999), A new approach to modelling dominant AC loss in HTc superconducting superconducting solenoidal windings, IEEE Trans. on Magn, 35, 3, 1195, doi.org/10.1109/20.767163 ; Sykulski J. (2000), 2D modelling of field diffusion and AC losses in high temperature superconducting tapes, IEEE Trans. on Magn, 36, 4, 1178, doi.org/10.1109/20.877650 ; Lukasik B. (2008), Finite-element assisted method to reduce harmonic content in the air-gap flux density of a high-temperature superconducting coreless rotor generator, IET Science, Measurement and Technology, 2, 6, 485, doi.org/10.1049/iet-smt:20080091 ; Goddard K. (2008), Alternative designs of a superconducting synchronous generator: the Southampton approach, null. ; Demenko A. (2002), Network equivalents of nodal and edge elements in electromagnetics, IEEE Transactions on Magnetics, 38, 2, 1305, doi.org/10.1109/20.996333 ; Demenko A. (2006), Magneto-electric network models in electromagnetism, COMPEL: The International J. Computation and Mathematics in Electrical and Electronic Engineering, 25, 3, 581, doi.org/10.1108/03321640610666736 ; Demenko A. (2008), Network Representation of Conducting Regions in 3-D Finite-Element Description of Electrical Machines, IEEE Transactions on Magnetics, 44, 6, 714, doi.org/10.1109/TMAG.2007.916391 ; Demenko A. (2008), Calculation of inducted currents using edge elements and <i>T-T<sub>0</sub></i> formulation, IET Sci. Meas. Technol, 2, 6, 434, doi.org/10.1049/iet-smt:20080068 ; Sobester A. (2005), On the design of optimization strategies based on global response surface approximation Models, J. Global Optimization, 33, 31, doi.org/10.1007/s10898-004-6733-1 ; Farina M. (2001), Comparitive study of evolution strategies combined with approximation techniques for practical electromagnetic optimization problems, IEEE Trans. Magnetics, 37, 5, 3216, doi.org/10.1109/20.952580 ; Lebensztajn L. (2004), Kriging: a useful tool for electromagnetic devices optimization, IEEE Trans. Magnetics, 40, 2, 1196, doi.org/10.1109/TMAG.2004.824542 ; Kim D. (2004), Applying continuum design sensitivity analysis combined with standard EM software to shape optimisation in magnetostatic problems, IEEE Trans. on Magnetics, 40, 2, 1156, doi.org/10.1109/TMAG.2004.824604 ; Kim D. (2005), A novel scheme for material updating in source distribution optimization of magnetic devices using sensitivity analysis, IEEE Trans. on Magnetics, 41, 5, 1752, doi.org/10.1109/TMAG.2005.846036 ; Kim D. (2008), Smooth boundary topology optimisation applied to an electrostatic actuator, IET Science, Measurement and Technology, 2, 6, 427, doi.org/10.1049/iet-smt:20080073 ; Sykulski J. (2007), New trends in optimization in electromagnetics, Przegląd Elektrotechniczny, 83, 6, 13. ; Wolpert D. (1997), No free lunch theorems for optimization, IEEE Trans. Evol. Comp, 1, 1, 67, doi.org/10.1109/4235.585893 ; Baritompa W. (2005), Matching stochastic algorithms to objective function landscapes, J. Global Optimization, 31, 4, 579, doi.org/10.1007/s10898-004-9968-y ; Jones D. (2001), A taxonomy of global optimization methods based on response surfaces, J. Global Optimization, 21, 345, doi.org/10.1023/A:1012771025575 ; Keane A. (2006), Statistical improvement criteria for use in multiobjective design optimization, AIAA Journal, 44, 4, 879, doi.org/10.2514/1.16875 ; Santner T. (2003), The Design and Analysis of Computer Experiments, doi.org/10.1007/978-1-4757-3799-8 ; Jones D. (1998), Efficient global optimization of expensive black-box functions, J. Global Optimization, 13, 455, doi.org/10.1023/A:1008306431147 ; Sobester A. (2005), On the design of optimization strategies based on global response surface approximation models, J. Global Optimization, 33, 31. ; Hawe G. (2008), A scalarizing one-stage algorithm for efficient multi-objective optimization, IEEE Transactions on Magnetics, 44, 6, 1094, doi.org/10.1109/TMAG.2007.915977 ; Miettinen K. (1999), Nonlinear Multiobjective Optimization. ; Knowles J. (2006), ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Trans. Evol. Comp, 10, 1, 50, doi.org/10.1109/TEVC.2005.851274 ; Lebensztajn L. (2005), A multi-objective analysis of a special switched reluctance motor, COMPEL, 24, 3, 931, doi.org/10.1108/03321640510598247 ; Keane A. (2006), Statistical improvement criteria for use in multiobjective design optimization, AIAA Journal, 44, 4, 879. ; Emmerich M. (2006), Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels, IEEE Trans. Evol. Comp, 10, 4, 421, doi.org/10.1109/TEVC.2005.859463 ; Montgomery D. (2001), Design and Analysis of Experiments. ; Kalagnanam J. (1997), An efficient sampling technique for off-line quality control, Technometrics, 39, 3, 308, doi.org/10.2307/1271135 ; <i>13th Biennial IEEE Conference on Electromagnetic Field Computation</i> CEFC 2008, Athens, Greece, 11-15 May 2008 <a target="_blank" href='http://www.cefc2008.gr/cefc2008/index.php'>http://www.cefc2008.gr/cefc2008/index.php</a> ; <i>14th International Symposium on Electromagnetic Fields in Electrical and Electronic Engineering</i> (ISEF), Arras, France, 10-12 September 2009. <a target="_blank" href='http://www.lsee.fr/isef09/'>http://www.lsee.fr/isef09/</a> ; <i>International Conference on Electrical Machines</i>, Vilamoura, Portugal Greece, 6-9 Sept 2008 <a target="_blank" href='http://www.apdee.org/index.php?pageid=1237'>http://www.apdee.org/index.php?pageid=1237</a> ; <i>IGTE Symposium on Numerical Field Calculation in Electrical Engineering</i>, Graz University of Technology, Austria, 21-24 September, 2008 <a target="_blank" href='http://www.igte.tugraz.at/symp08/cms/'>http://www.igte.tugraz.at/symp08/cms/</a> ; COMPUMAG 2009, Florianopolis, Brazil, 22-26 November 2009 <a target="_blank" href='http://www.grucad.ufsc.br/c2009/'>http://www.grucad.ufsc.br/c2009/</a>
×