Details

Title

Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

Journal title

Chemical and Process Engineering

Yearbook

2017

Volume

vol. 38

Issue

No 1

Authors

Keywords

Li-ion battery ; Li4Ti5O12 ; size control ; residence time distribution ; computational fluid dynamics ; flame synthesis of electroceramics

Divisions of PAS

Nauki Techniczne

Coverage

51-66

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2017.03.30

Type

Artykuły / Articles

Identifier

DOI: 10.1515/cpe-2017-0005 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2017; vol. 38; No 1; 51-66

References

Wagemaker (2009), Li - ion diffusion in the equilibrium nanomorphology of spinel xTi, Phys Chem B, 4, 113, doi.org/10.1021/Jp8073706 ; Waser (2014), Air entrainment during flame aerosol synthesis of nanoparticles, Aerosol Sci Technol, 48, doi.org/10.1080/02786826.2014.969800 ; Pratsinis (1998), Flame aerosol synthesis of ceramic powders, Prog Energ Combust, 24, doi.org/10.1016/S0360-1285(97)00028-2 ; Naoi (2013), New generation nanohybrid supercapacitor ", Accounts Chem Res, 46, doi.org/10.1021/Ar200308h ; Kho (2011), Dopant - free , polymorphic design of TiO nanocrystals by flame aerosol synthesis, Chem Eng Sci, 66, doi.org/10.1016/J.Ces.2011.02.058 ; Gaberscek (2007), Is small particle size more important than carbon coating ? An example study on LiFePO cathodes, Electrochem Commun, 9, 4, doi.org/10.1016/J.Elecom.2007.09.020 ; Poullikkas (2013), A comparative overview of large - scale battery systems for electricity storage, Renew Sust Energ Rev, 27, doi.org/10.1016/J.Rser.2013.07.017 ; Athanassiou (2006), Large - scale production of carbon - coated copper nanoparticles for sensor applications, Nanotechnology, 17, doi.org/10.1088/0957-4484/17/6/022 ; Vlad (2014), Hybrid supercapacitor - battery materials for fast electrochemical charge storage, Sci Rep, 4, 1, doi.org/10.1038/Srep04315 ; Teleki (2006), Sensing of organic vapors by flame - made TiO nanoparticles, Chem, 119, doi.org/10.1016/j.snb.2006.01.027 ; Mueller (2004), Non - agglomerated dry silica nanoparticles, Powder Technol, 140, doi.org/10.1016/J.Powtec.2004.01.004\ ; Karhunen (2011), Transition metal - doped lithium titanium oxide nanoparticles made using flame spray pyrolysis, ISRN Nanotechnology, 2011, doi.org/10.5402/2011/180821 ; Hudak (2012), Size effects in the electrochemical alloying and cycling of electrodeposited aluminum with lithium, Electrochem Soc, 159, doi.org/10.1149/2.023206jes ; Deschanvres (1971), Synthesis and crystallographic study of new solid solution of spinelle xTi - xO less than or equal to x less than or equal to, Mater Res Bull, 1, 4, doi.org/10.1016/0025-5408(71)90103-6 ; Teoh (2010), Flame spray pyrolysis : An enabling technology for nanoparticles design and fabrication, Nanoscale, 2, 1324, doi.org/10.1039/C0nr00017e ; Ohzuku (1995), Zero - strain insertion material of Li ti for rechargeable lithium cells, Electrochem Soc, 1, 142, doi.org/10.1149/1.2048592 ; Jiang (2004), Comparison of the reactions between Ti or LiC and nonaqueous solvents or electrolytes using accelerating rate calorimetry, Electrochem Soc, 7, 151, doi.org/10.1149/1.1817698 ; Du Pasquier (2009), Nano Ti - LiMn batteries with high power capability and improved cycle - life, Power Sources, 4, 186, doi.org/10.1016/J.Jpowsour.2008.10.018 ; Wegner (2003), Scale - up of nanoparticle synthesis in diffusion flame reactors, Chem Eng Sci, 58, doi.org/10.1016/J.Ces.2003.07.010 ; Groehn (2012), Fluid - particle dynamics during combustion spray aerosol synthesis of ZrO, Chem Eng J, 191, doi.org/10.1016/J.Cej.2012.02.093 ; Johannessen (2000), Computational fluid - particle dynamics for the flame synthesis of alumina particles, Chem Eng ci, 55, doi.org/10.1016/S0009-2509(99)00183-9 ; Waser (2011), Continuous flame aerosol synthesis of carbon - coated nano - LiFePO for Li - ion batteries, Aerosol Sci, 4, 42, doi.org/10.1016/J.Jaerosci.2011.06.003 ; Ernst (2007), Electrochemically active flame - made nanosized spinels : LiMn Ti and LiFe, Mater Chem Phys, 4, 4, doi.org/10.1016/j.matchemphys.2006.06.014 ; Armand (2008), Building better batteries, Nature, 451, doi.org/10.1038/451652a ; Mueller (2003), Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem Eng Sci, 58, doi.org/10.1016/s0009-2509(03)00022-8 ; Sotiriou (2010), Non - toxic dry - coated nanosilver for plasmonic biosensors, Adv Funct Mater, 20, doi.org/10.1002/Adfm.201000985 ; Curtet (1958), Confined jets and recirculation phenomena with cold air, Combust Flame, 2, doi.org/10.1016/0010-2180(58)90032-4 ; Padhi (1997), Phospho - olivines as positive - electrode materials for rechargeable lithium batteries, Electrochem Soc, 144, doi.org/10.1149/1.1837571 ; Olfe (1961), Mean beam length calculations for radiation from non - transparent gases, Quant Spectrosc Ra, 1, doi.org/10.1016/0022-4073(61)90022-X ; Teleki (2008), In situ coating of flame - made TiO particles with nanothin SiO films, Langmuir, 24, doi.org/10.1021/La801630z ; Gamba (2012), Residence time distribution determination of a continuous stirred tank reactor using computational fluid dynamics and its application on the mathematical modeling of styrene polymerization, Int J Chem React Eng, 10, 1, doi.org/10.1515/1542-6580.3057 ; Magnussen (1977), On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp Int Combust, 16, 719, doi.org/10.1016/S0082-0784(77)80366-4 ; Madler (2002), Controlled synthesis of nanostructured particles by flame spray pyrolysis, Aerosol Sci, 33, doi.org/10.1016/S0021-8502(01)00159-8 ; Krumeich (null), Thermal annealing dynamics of carbon - coated LiFePO nanoparticles studied by in - situ analysis State, Solid Chem, 2016, doi.org/10.1016/j.jssc.2016.07.002 ; Hsiao (2008), Microstructure effect on the electrochemical property of Ti as an anode material for lithium - ion batteries, Electrochim Acta, 4, 53, doi.org/10.1016/J.Electacta.2008.05.002 ; Groehn (2014), Scale - up of nanoparticle synthesis by flame spray pyrolysis : The high - temperature particle residence time, Ind Eng Chem Res, 53, doi.org/10.1021/Ie501709s ; Birozzi (2015), von Passerini Scaling up Ti for high - power lithium - ion anodes using large flame spray pyrolysis, nano Electrochem Soc, 4, 162, doi.org/10.1149/2.0711512jes ; Rudin (2011), Uniform nanoparticles by flame - assisted spray pyrolysis FASP of low cost precursors, Nanopart Res, 13, doi.org/10.1007/s11051-010-0206-x ; Streltsov (1993), Multipole analysis of the electron - density in triphylite using ray - diffraction data, Acta Crystallogr B, 4, 49, doi.org/10.1107/S0108768192004701 ; Strobel (2007), Flame aerosol synthesis of smart nanostructured materials, Mater Chem, 17, 4743, doi.org/10.1039/b711652g ; Laruelle (2002), On the origin of the extra electrochemical capacity displayed by MO / Li cells at low potential, Electrochem Soc, 149, doi.org/10.1149/1.1467947 ; Bresser (2012), The importance of going nano for high power battery materials, Power Sources, 219, doi.org/10.1016/J.Jpowsour.2012.07.035 ; Morrison (1997), In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO particles, Chem Mater, 9, 2702, doi.org/10.1021/cm960508u ; Madler (2002), Flame - made ceria nanoparticles, Mater Res, 17, doi.org/10.1557/jmr.2002.0202 ; Kavan (2003), Li insertion into Ti - Charge capability vs particle size in thin - film electrodes, Electrochem Soc, 4, 150, doi.org/10.1149/1.1581262 ; Asbrink (1970), A refinement of crystal structure of copper ( oxide with a discussion of some exceptional s Acta Crystall, B Stru, 26, 8. ; Strobel (2009), Direct synthesis of maghemite , magnetite and wustite nanoparticles by flame spray pyrolysis, Adv Powder Technol, 20, doi.org/10.1016/j.apt.2008.08.002 ; Zheng (2012), A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li - ion battery cathodes, Electrochim Acta, 71, doi.org/10.1016/J.Electacta.2012.03.161 ; Waser (2013), Size controlled CuO nanoparticles for Li - ion batteries, Power Sources, 241, doi.org/10.1016/J.Jpowsour.2013.04.147

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×