Details

Title

Modeling and control of a simplified high-speed vehicle moving in reduced-pressure conditions

Journal title

Archive of Mechanical Engineering

Yearbook

2019

Volume

vol. 66

Issue

No 3

Affiliation

Strawa, Natalia : Institute of Aeronautics and Applied Mechanics, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland. ; Malczyk, Paweł : Institute of Aeronautics and Applied Mechanics, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland.

Authors

Keywords

electrodynamic suspension ; inductract ; loop shaping ; control design ; hyperloop

Divisions of PAS

Nauki Techniczne

Coverage

355-377

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] E. Musk. Hyperloop Alpha. Technical Report. Space Exploration Technologies Corporation, 2013.
[2] R.F. Post and D. Ryutov. The Inductrack: a new approach to magnetic levitation. Technical Report. Lawrence Livermore National Laboratory, USA, 1996. doi: 10.2172/237425.
[3] A.A. Shabana, K.E. Zaazaa, and H. Sugiyama. Railroad Vehicle Dynamics: A Computational Approach. CRC Press, 2007.
[4] Z. Liu, Z. Long, and X. Li. Maglev Trains. Key Underlying Technologies. Part of the Springer Tracts in Mechanical Engineering book series, Springer, 2015. doi: 10.1007/978-3-662-45673-6_1.
[5] Y. Cai, S.S. Chen, and D.M. Rote. Dynamics and controls in maglev systems. Technical Report, Argonne National Laboratory, USA, 1992. doi: 10.2172/10136539.
[6] P.K. Sinha. Electromagnetic Suspension Dynamics and Control. Peter Peregrinus Ltd., London, UK, 1987.
[7] M. Appleyard and P.E. Wellstead. Active suspensions: some background. IEE Proceedings – Control Theory and Applications, 142(2):123–128, 1995. doi: 10.1049/ip-cta:19951735.
[8] K.D. Rao. Modeling, simulation and control of semi active suspension system for automobiles under MATLAB Simulink using PID controller. IFAC Proceedings Volumes, 47(1):827–831, 2014. doi: 10.3182/20140313-3-IN-3024.00094.
[9] D. Hanafi. PID controller design for semi-active car suspension based on model from intelligent system identification. In: 2010 Second International Conference on Computer Engineering and Applications, volume 2, pages 60–63, Bali Island, Indonesia, 19-21 March 2010. doi: 10.1109/ICCEA.2010.168.
[10] M. Sentil Kumar. Development of active suspension system for automobiles using PID controller. Proceedings of the World Congress on Engineering 2008, volume II, pages 1472–1477, London, UK, 2-4 July, 2008.
[11] A.J. Truscott and P.E. Wellstead. Adaptive ride control in active suspension systems. Vehicle System Dynamics, 24(3):197–230, 1995. doi: 10.1080/00423119508969088.
[12] U.N.L.T. Alves, J.P.F. Garcia, M.C.M. Teixeira, S.C. Garcia, and F.B. Rodrigues. Sliding mode control for active suspension system with data acquisition delay. Mathematical Problems in Engineering, 2014:1-13, 2014. doi: 10.1155/2014/529293.
[13] Y. Cai, S.S. Chen, T.M. Mulcahy, and D.M. Rote. Dynamic stability of maglev systems. Technical Report, Argonne National Laboratory, USA, 1992. doi: 10.2172/10110331.
[14] R.M. Katz, V.D. Nene, R.J. Ravera, and C.A. Skalski. Performance of magnetic suspensions for high speed vehicles operating over flexible guideways. Journal of Dynamic Systems, Measurement, and Control, 96(2):204–212. doi: 10.1115/1.3426792.
[15] W. Kortüm, W. Schwartz, and I. Fayé. Dynamic modeling of high speed ground transportation vehicles for control design and performance evaluation. In: Schweitzer G., Mansour M. (eds), Dynamics of Controlled Mechanical Systems. Proceedings of IUTAM/IFAC Symposium, pages 335–350, Zurich, Switzerland, May 30–June 3, 1988. doi: 10.1007/978-3-642-83581-0_26.
[16] K.J. Aström and R.M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, USA, 2008.
[17] P. Maciąg, P. Malczyk, and J. Frączek. Optimal design of multibody systems using the adjoint method. In: Awrejcewicz J. (ed.), Dynamical Systems in Applications, pages 240–253. Springer, 2018. doi: 10.1007/978-3-319-96601-4_22.
[18] Y. Zhu, C. Sandu, D. Dopico, and A. Sandu. Benchmarking of adjoint sensitivity-based optimization techniques using a vehicle ride case study. Mechanics Based Design of Structures and Machines, 46(2):254–266, 2018. doi: 10.1080/15397734.2017.1338576.

Date

2019.09.27

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2019.129680 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2019; vol. 66; No 3; 355-377
×