Details

Title

Fabrication, Structural and AC Impedance Studies of Layer-Structured Bi4Ti3O12 Ceramics

Journal title

Archives of Metallurgy and Materials

Yearbook

2011

Issue

No 4 December

Authors

Divisions of PAS

Nauki Techniczne

Publisher

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences

Date

2011

Identifier

DOI: 10.2478/v10172-011-0127-4 ; e-ISSN 2300-1909

Source

Archives of Metallurgy and Materials; 2011; No 4 December

References

Aurivillius B. (1949), Mixed bismuth oxides with layer lattices. The structure type of CaNb<sub>2</sub>Bi<sub>2</sub>O<sub>9</sub>, Arkiv for Kemi, 1, 54, 463. ; Aurivillius B. (1949), Mixed bismuth oxides with layer lattices. Structure of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>, Arkiv for Kemi, 1, 58, 499. ; Aurivillius B. (1950), Mixed oxides with layer lattices. Structure of BaBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>, Arkiv for Kemi, 2, 37, 519. ; Lisińska-Czekaj A. (2009), Synthesis of Bi<sub>5</sub>TiNbWO<sub>15</sub> ceramics, Archives of Metallurgy and Materials, 54, 4, 869. ; Lisińska-Czekaj A. (2006), Photoluminescence of nanocrystalline bismuth titanate thin films synthesized by the sol-gel method, Materials Science Forum, 514-516, 128, doi.org/10.4028/www.scientific.net/MSF.514-516.128 ; Lisińska-Czekaj A. (2010), Dielektryczne i magnetyczne właściwości ceramiki multiferroicznej Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>, Materiały Ceramiczne, 63, 126. ; (2005), Nanoelectronics and informatiom technology. ; Newnham R. (1971), Structural basis of the bismuth ferroelectricity in titanate family, Materials Research Bulletin, 6, 1029, doi.org/10.1016/0025-5408(71)90082-1 ; Lisińska-Czekaj A. (2002), Synthesis and dielectric properties of SrBi<sub>3</sub>Ti<sub>2</sub>NbO<sub>12</sub> ceramics with layer perovskite structure, Key Engineering Materials, 206-213, 1429, doi.org/10.4028/www.scientific.net/KEM.206-213.1429 ; Jartych E. (2010), Hyperfine interactions in some Aurivillius Bi<sub><i>m</i>+1</sub>Ti<sub>3</sub>Fe<sub><i>m</i>-3</sub>O<sub>3<i>m</i>+3</sub> compounds, Journal of Magnetism and Magnetic Materials, 322, 51, doi.org/10.1016/j.jmmm.2009.08.022 ; Macedo Z. (2004), Impedance spectroscopy of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> ceramic produced by self-propagating high-temperature synthesis technique, Journal of the European Ceramic Society, 24, 2567, doi.org/10.1016/j.jeurceramsoc.2003.09.026 ; Snedden A. (2004), Defect and dopant properties of the Aurivillius phase Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>, Journal of Solid State Chemistry, 177, 3660, doi.org/10.1016/j.jssc.2004.06.012 ; (1996), Ferroelectric thin films: synthesis and basic properties. ; Boukamp B. (1986), A nonlinear least squares fit procedure for analysis of immitance data of electrochemical systems, Solid State Ionics, 20, 31, doi.org/10.1016/0167-2738(86)90031-7 ; Zoltowski P. (2005), Non-traditional approach to measurement models for analysis of impedance spectra, Solid State Ionics, 176, 1979, doi.org/10.1016/j.ssi.2004.11.022 ; Guillodo M. (2001), Electrical properties of dense Me-doped bismuth vanadate (Me=Cu, Co) pO<sub>2</sub>-dependent conductivity determined by impedance spectroscopy, Journal of the European Ceramic Society, 21, 2331, doi.org/10.1016/S0955-2219(01)00214-X ; Morozov M. (2002), Mechanism of formation of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>, Russian Journal of General Chemistry, 72, 7, 1038, doi.org/10.1023/A:1020734312307 ; Krzhizhanovskaya M. (2005), Aurivillius phases in Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>/BiFeO<sub>3</sub> system: thermal behaviour and crystal structure, Zeitschrift Fur Anorganische Und Allgemeine Chemie, 631, 1603, doi.org/10.1002/zaac.200500130 ; Lomanova N. (2006), Properties of Aurivillius phases in the Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>- BiFeO<sub>3</sub> system, Inorganic Materials, 42, 2, 189, doi.org/10.1134/S0020168506020142 ; Bernard H. (2010), Zastosowanie metody MOM do wytwarzania ceramiki Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>, Inżynieria Materiałowa, 178, 6, 1404. ; Czekaj D. (2010), Impedance spectroscopic studies of sol-gel derived barium strontium titanate thin films, Journal of the European Ceramic Society, 30, 465, doi.org/10.1016/j.jeurceramsoc.2009.06.036 ; Wodecka-Duś B. (2009), Fabrication and dielectric properties of donor doped BaTiO<sub>3</sub> ceramics, Archives of Metallurgy and Materials, 54, 923. ; Boukamp B. (2004), Electrochemical impedance spectroscopy in solid state ionics; Recent advances, Solid State Ionics, 169, 1-4, 65, doi.org/10.1016/j.ssi.2003.07.002 ; Boukamp B. (1995), A linear Kronig-Kramers transformation test for immitance data validation, Journal of the Electrochemical Society, 142, 6, 1885, doi.org/10.1149/1.2044210 ; Lasia A. (1999), Modern Aspects of Electrochemistry. ; E. Venkata Ramana (2006), AC impedance studies on ferroelectromagnetic SrBi<sub>5-<i>x</i></sub>La<sub><i>x</i></sub>Ti<sub>4</sub>FeO<sub>18</sub> ceramics, Materials Research Bulletin, 41, 1077, doi.org/10.1016/j.materresbull.2005.11.013 ; Machado R. (2004), First principles determination of ferroelectric instabilities in Aurivillius compounds, Physical Review, B70.
×