Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

This paper describes the concept of controlling the advancement speed of the shearer, the objective of which is to eliminate switching the devices off to the devices in the longwall and in the adjacent galleries. This is connected with the threshold limit value of 2% for the methane concentration in the air stream flowing out from the longwall heading, or 1% methane in the air flowing to the longwall. Equations were formulated which represent the emission of methane from the mined body of coal in the longwall and from the winnings on the conveyors in order to develop the numerical procedures enabling a computer simulation of the mining process with a longwall shearer and haulage of the winnings. The distribution model of air, methane and firedamp, and the model of the goaf and a methanometry method which already exist in the Ventgraph-Plus programme, and the model of the methane emission from the mined longwall body of coal, together with the model of the methane emission from the winnings on conveyors and the model of the logic circuit to calculate the required advancement speed of the shearer together all form a set that enables simulations of the control used for a longwall shearer in the mining process. This simulation provides a means for making a comparison of the output of the mining in the case of work using a control system for the speed advancement of the shearer and the mining performance without this circuit in a situation when switching the devices off occurs as a consequence of exceeding the 2% threshold limit value of the methane concentration. The algorithm to control a shearer developed for a computer simulation considers a simpler case, where the logic circuit only employs the methane concentration signal from a methane detector situated in the longwall gallery close to the longwall outlet.
Przejdź do artykułu

Abstrakt

This paper presents mathematical models enabling the calculation of the distribution and patterns of methane inflow to the air stream in a longwall seam being exploited and spoil on a longwall conveyor, taking into account the variability of shearer and conveyor operation and simulation results of the mining team using the Ventgraph-Plus software. In the research, an experiment was employed to observe changes in air parameters, in particular air velocity and methane concentration in the Cw-4 longwall area in seam 364/2 at KWK Budryk, during different phases of shearer operation in the area of the mining wall in methane hazard conditions. Presented is the method of data recording during the experiment which included records from the mine’s system for automatic gasometry, records from a wireless system of eight methane sensors installed in the end part of the longwall and additionally from nine methane anemometers located across the longwall on a grid. Synchronous data records obtained from these three independent sources were compared against the recording the operating condition of the shearer and haulage machines at the longwall in various phases of their operation (cleaning, cutting). The results of the multipoint system measurements made it possible to determine the volume of air and methane flow across the longwall working, and, consequently, to calculate the correction coefficients for determining the volume of air and methane from measurements of local air velocity and methane concentration. An attempt was made to determine the methane inflow from a unit of the longwall body area and the unit of spoil length on conveyors depending on the mining rate. The Cw-4 longwall ventilation was simulated using the data measured and calculated from measurements and the simulation results were discussed.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji