Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In polar regions, apart from tundra and glaciers, geothermally active areas with elevated temperatures are important elements of ecosystems. One such geothermally active region characterized by mosaic ecosystems and vast areas covered by recent lava fields is Iceland. The aim of our study was to explore the diversity of invertebrates inhabiting geothermally active lava fields in the Krafla area (Iceland). Eight bryophyte samples were collected from a warm surface, mainly from the steaming areas. We have found Nematoda, Rotifera, Tardigrada and Oribatida in the samples. Habitat analysis demonstrated there to be 12 bryophyte species (five liverworts and seven mosses). The diversity of bryophytes in a single sample ranged from one to six species. The most common bryophyte was Racomitrium lanuginosum (Hedw.) Brid. Four species of tardigrades were found, including one that was new. Pilatobius islandicus sp. nov. is described herein by morphological, morphometric and molecular approaches (COI, 28S rRNA, 18S rRNA). Oribatida mites were identified as two species (Malaconothrus monodactylus (Michael, 1888) and Camisia foveolata Hammer, 1955). The average density of invertebrates was 13.1 ind./g with a maximum of 40.8 ind./g calculated per dry material. The tardigrades found in our study belonged to herbivores, microbivores and omnivores, whereas the mites belonged to saprophages, which indicates complex trophic networks in geothermally active lava fields.
Przejdź do artykułu

Abstrakt

Climate change has been affecting plants over the last century and caused changes in life history features such as the flowering time. Herbarium specimens provide a snapshot of the past environmental conditions during their collection. The collection date in a herbarium specimen is a good proxy to determine the flowering period (phenology). In this study, phenological data from subarctic plant specimens collected over 100 years were gathered by using one of the largest herbarium databases in the World. The collection dates of 7146 herbarium specimens were analyzed and significant shifts in the phenology of subarctic plants were detected. In this study, most of the analyzed 142 species in a subarctic biogeographic region tended to flower earlier in the 1950–2018 period compared to the 1900–1949 as a possible result of the climate change. Flowering time shifted from 8 to 26 days in some species. Changes in flowering time may alter species interactions, community composition, and species distribution in a region. Therefore, results of this study may shed light on the possible shifts in phenology and plant responses under the climate change.
Przejdź do artykułu

Abstrakt

A total of 212 soil profiles were described and assessed for physical and chemical properties during July 2006 as part of an Ecological Land Classification study along the Churchill River in central Labrador. Two major soil types were found in the study area along the Churchill River: Podzols and Organic soils. Podzolic soils covered approximately 60% and Organic soils occurred in 24% of the study area. Approximately 15% of the study area was classified as rock and other unconsolidated material. Summary results and a sub−set of the following soil units (from 10 soil profiles) are presented here and were distinguished according to the Canadian System of Soil Classification (CSSC) (Soil Classification Working Group 1998): Orthic Humo−Ferric Podzol, Placic Ferro−Humic Podzol, Gleyed Humo−Ferric Podzol, Sombric Humo−Ferric Podzol, Gleyed Regosol and Orthic Luvic Gleysol. The basic properties of the soil units identified above included: (i) morpho− logical descriptions of soil profiles with differentiated horizons; (ii) field−texture tests were used to determine classes and physical properties of sands, silts, loams and occurrence of mottles; and (iii) a range of soil chemical composition of different horizons ( e.g. , pH, total organic carbon [TOC] and select metal concentrations) which indicated no anthropogenic contamination above background concentrations in the area.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji