Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

CO2 emission from combustion fossil fuels is considered as the primary factor in the global warming. Different methods for separation CO2 from combustion flue gases are extensively used across the world. The aim of this study is to analyze the most important technological solutions of CO2 separation. For this reason chemical absorption, physical absorption, adsorption approach, membrane filtration and cryogenic process were researched. Concluding, selection of the right method for carbon dioxide capture separation is a complex issue and a range of technological and economic factors should be taken into consideration prior to application on the industrial scale.
Go to article

Abstract

Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of 'zero-emission' technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650°C/30 MPa and reheated steam parameters of 670°C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.
Go to article

This page uses 'cookies'. Learn more