Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Keywords city ventilation

Abstract

Józefa Dietla street in Kraków has been constructed in the second half of the nineteenth century. It was a pioneering urban design solution, meant to act as a sort of ventilation duct for the city, so that its climate could be improved. An important element of this system of ventilating the city is the area currently occupied by a football pitch of the "Nadwiślan" sports club, which allows the breeze of the Vistula river into the city. This idea is evidence of the modern and forward thinking approach to urban planning in Kraków during those times. The role of Józefa Dietla street as a ventilation duct has currently been all but forgotten and is underappreciated despite the fact that the amount of air pollution in Kraków has greatly increased in comparison to the times when the street was being constructed. A measure of this disdain for the role that Józefa Dietla street and the area of the "Nadwiślan" play in keeping the sanitary conditions within the city at acceptable levels is the current layout of the area, which has significantly reduced the ventilating capacity of the street. The planned construction of a residential apartment building in place of the current football pitch will definitely hamper the capacity in which the street can be used for ventilation purposes. In this manner, the evidence of pro-ecological thinking of the urban planners of the XIX century is being wasted by their XXI century counterparts.
Go to article

Abstract

The frictional resistance coefficient of ventilation of a roadway in a coal mine is a very important technical parameter in the design and renovation of mine ventilation. Calculations based on empirical formulae and field tests to calculate the resistance coefficient have limitations. An inversion method to calculate the mine ventilation resistance coefficient by using a few representative data of air flows and node pressures is proposed in this study. The mathematical model of the inversion method is developed based on the principle of least squares. The measured pressure and the calculated pressure deviation along with the measured flow and the calculated flow deviation are considered while defining the objective function, which also includes the node pressure, the air flow, and the ventilation resistance coefficient range constraints. The ventilation resistance coefficient inversion problem was converted to a nonlinear optimisation problem through the development of the model. A genetic algorithm (GA) was adopted to solve the ventilation resistance coefficient inversion problem. The GA was improved to enhance the global and the local search abilities of the algorithm for the ventilation resistance coefficient inversion problem.
Go to article

Abstract

Mining ventilation should ensure in the excavations required amount of air on the basis of determined regulations and to mitigate various hazards. These excavations are mainly: longwalls, function chambers and headings. Considering the financial aspect, the costs of air distribution should be as low as possible and due to mentioned above issues the optimal air distribution should be taken into account including the workers safety and minimization of the total output power of main ventilation fans. The optimal air distribution is when the airflow rate in the mining areas and functional chambers are suitable to the existing hazards, and the total output power of the main fans is at a minimal but sufficient rate. Restructuring of mining sector in Poland is usually connected with the connection of different mines. Hence, dependent air streams (dependent air stream flows through a branch which links two intake air streams or two return air streams) exist in ventilation networks of connected mines. The zones of intake air and return air include these air streams. There are also particular air streams in the networks which connect subnetworks of main ventilation fans. They enable to direct return air to specified fans and to obtain different airflows in return zone. The new method of decreasing the costs of ventilation is presented in the article. The method allows to determine the optimal parameters of main ventilation fans (fan pressure and air quantity) and optimal air distribution can be achieved as a result. Then the total output power of the fans is the lowest which makes the reduction of costs of mine ventilation. The new method was applied for selected ventilation network. For positive regulation (by means of the stoppings) the optimal air distribution was achieved when the total output power of the fans was 253.311 kW and for most energy-intensive air distribution it was 409.893 kW. The difference between these cases showed the difference in annual energy consumption which was 1 714 MWh what was related to annual costs of fan work equaled 245 102 Euro. Similar values for negative regulation (by means of auxiliary fans) were: the total output power of the fans 203.359 kW (optimal condition) and 362.405 kW (most energy-intensive condition). The difference of annual energy consumption was 1 742 MWh and annual difference of costs was 249 106 Euro. The differences between optimal airflows considering positive and negative regulations were: the total output power of fans 49.952 kW, annual energy consumption 547 MWh, annual costs 78 217 Euro.
Go to article

Abstract

This paper describes the concept of controlling the advancement speed of the shearer, the objective of which is to eliminate switching the devices off to the devices in the longwall and in the adjacent galleries. This is connected with the threshold limit value of 2% for the methane concentration in the air stream flowing out from the longwall heading, or 1% methane in the air flowing to the longwall. Equations were formulated which represent the emission of methane from the mined body of coal in the longwall and from the winnings on the conveyors in order to develop the numerical procedures enabling a computer simulation of the mining process with a longwall shearer and haulage of the winnings. The distribution model of air, methane and firedamp, and the model of the goaf and a methanometry method which already exist in the Ventgraph-Plus programme, and the model of the methane emission from the mined longwall body of coal, together with the model of the methane emission from the winnings on conveyors and the model of the logic circuit to calculate the required advancement speed of the shearer together all form a set that enables simulations of the control used for a longwall shearer in the mining process. This simulation provides a means for making a comparison of the output of the mining in the case of work using a control system for the speed advancement of the shearer and the mining performance without this circuit in a situation when switching the devices off occurs as a consequence of exceeding the 2% threshold limit value of the methane concentration. The algorithm to control a shearer developed for a computer simulation considers a simpler case, where the logic circuit only employs the methane concentration signal from a methane detector situated in the longwall gallery close to the longwall outlet.
Go to article

Abstract

Mechanical ventilation (MV) is a supportive and life-saving therapy, however, it can cause ventilator-induced lung injury as a common complication. Thus, recruitment manoeuvres (RM) are applied to open the collapsed alveoli to ensure sufficient alveolar surface area for gas exchange. In the light of the fact that positive pressure ventilation is currently the standard treat- ment for improving pulmonary function, extrathoracic negative pressure is considered as an alter- native form of respiratory support. The aim of this study was to estimate the proinflammatory and oxidative response during MV and lung injury as well as the response after RM. All studied parameters were assessed at the following time points: T1-spontaneous breathing, T2- MV, T3- lung injury, T4 –RM. During MV (T2) elastase, MPO, ALP release, nitrite and superoxide generation significantly increased, whereas in later measurements a decrease in these values was noted. The MDA plasma concentration significantly (p<0.05) increased at T2, reaching a level of 13.30±0.87 nmol/ml; at other time points the values obtained were similar to the baseline value of 9.94±0.94 nmol/ml, whereas a gradual decrease in SOD activity at time T2-T4 points in comparison with the baseline value was found. During the study both neutrophil activity and oxi- dative stress indicate exacerbated response after MV and lung injury by bronchoalveolar lavage; however, extrathoracic negative pressure system as the MR ameliorates damaging changes which could further lead to serious lung injury.
Go to article

Abstract

This paper presents mathematical models enabling the calculation of the distribution and patterns of methane inflow to the air stream in a longwall seam being exploited and spoil on a longwall conveyor, taking into account the variability of shearer and conveyor operation and simulation results of the mining team using the Ventgraph-Plus software. In the research, an experiment was employed to observe changes in air parameters, in particular air velocity and methane concentration in the Cw-4 longwall area in seam 364/2 at KWK Budryk, during different phases of shearer operation in the area of the mining wall in methane hazard conditions. Presented is the method of data recording during the experiment which included records from the mine’s system for automatic gasometry, records from a wireless system of eight methane sensors installed in the end part of the longwall and additionally from nine methane anemometers located across the longwall on a grid. Synchronous data records obtained from these three independent sources were compared against the recording the operating condition of the shearer and haulage machines at the longwall in various phases of their operation (cleaning, cutting). The results of the multipoint system measurements made it possible to determine the volume of air and methane flow across the longwall working, and, consequently, to calculate the correction coefficients for determining the volume of air and methane from measurements of local air velocity and methane concentration. An attempt was made to determine the methane inflow from a unit of the longwall body area and the unit of spoil length on conveyors depending on the mining rate. The Cw-4 longwall ventilation was simulated using the data measured and calculated from measurements and the simulation results were discussed.
Go to article

This page uses 'cookies'. Learn more