Słowa kluczowe
jig separation feature
particle size
particle density
shape coefficient
particle settling velocity
separation precision

The process of enrichment in a jig has usually been described and analysed using particle density as a separation feature. However, a degree of particle loosening in the jig bed is affected by, inter alia, the terminal particle free settling velocity which in turn is affected by the size, density and shape of a particle. Therefore, the terminal particle settling velocity clearly characterises the feed transferred to a jig for the enrichment process. Taking the comprehensive particle geometric (particle size and shape) and physical properties (particle density) into account comes down to the calculation of the terminal particle settling velocity. The terminal particle settling velocity is therefore a complex separation feature which comprises three basic particle features (particle density, size and shape). This paper compares the effects of enrichment of coal fines in a jig, for two cases: when the commonly applied particle density is separation feature and for the particle settling velocity. Particle settling velocities were calculated in the selected three particle size fractions: –3.15+2.00, –10.00+8.00 and –20.00+16.00 mm based on the industrial testing of a jig for coal fines and detailed laboratory tests consisting in determining particle density, projective diameter and volume and dynamic particle shape coefficient. The calculated and drawn partition curves for two variants, i.e. when particle density and particle settling velocity were taken into account as the separation argument in selected particle size fractions, allowed to calculate and compare separation precision indicator. With the use of a statistical test, the assumption on the independence of random variables of the distribution of components included in the distribution of the particle settling velocity as a separation feature during enrichment in a jig was verified.

Przejdź do artykułu
In technology of coal fines beneficiation in Poland mainly fines jigging processes are in use. In case of steam coal fines beneficiation it is till 80% of the whole amount of produced assortments, while in case of coking coal fines it is 100%. The necessary condition of not homogenous feed separation which is directed to beneficiation process in pulsating water stream is a sufficient liberation of particles. The stratification of particles in working bed causes that particles of certain size, density and shape gather in individual layers in working bed of jig. The introduction of sufficient amount of additional water determines appropriate liberation of particles group, which generates partition into concentrate and tailings. The paper presents the results of sampling of industrial jig used for the beneficiation of coal fines by three various settings of additional amount of water under sieve which is directed to jigging. These amounts were equal to 35, 50 and 70 [m3/h]. Collected samples of separation products were then sieved into narrow particle size fractions and divided into density fractions. In such narrow size-density fractions the coordinates of partition curves were calculated for tailings of hard coal fines, which were subsequently approximated by means of Weibull distribution function. The separation precision measured by separation density, probable error and imperfection were determined on the basis of obtained model separation curves. The evaluation of separation effects was performed for a wide particle size fraction: feed directed to jigging process and narrow particle size fractions. The analysis of separation results in size-density fractions allowed to determine the influence of particle size change on the value of probable error. The results of separation precision in size-density fractions were compared with effects of separation of wide particle fraction, i.e. feed directed to jigging process.

Przejdź do artykułu