Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The analysis of climate changes in of the Tarfala valley and Kebnekaise Mts area, and changes within the range of the Scandinavian Glaciation shows that even in the warmest period of Holocene there were favourable environmental conditions for permafrost of the Pleistocene origin to be preserved in this area. The results of electrical resistivity surveys together with analysis of available publications indicate that two layers of permafrost can be distinguished in the Storglaciären forefield. The shallower, discountinuous, with thickness ca. 2–6 meters is connected to the current climate, The second, deeper located layer of permafrost, separated with talik, is older. Its thickness can reach dozens of metres and is probably the result of permafrost formation during Pleistocene. The occurrence of two-layered permafrost in the Tarfala valley in Kebnekaise area shows the evolution of mountain permafrost may be seen as analogous to that in Western Siberia. This means that the effect of climate changes gives a similar effect in permafrost formation and evolution in both altitudinal and latitudinal extent. The occurrence of two-layered permafrost in Scandes and Western Siberia plain indicates possible analogy in climatic evolution, and gives opportunity to understand them in uniform way.
Go to article

Abstract

Research on permafrost in the Abisko area of northern Sweden date from the 1950s. A mean annual air temperature of −3°C in the Abisko mountains (i.e. 1000 m a.s.l.) and −1°C beyond the mountain area at an altitude of around 400m suggests that both moun− tain and arctic permafrost occur there. Several geophysical surveys were performed by means of resistivity tomography (ERT) and electromagnetic mapping (EM). Wherever pos− sible the geophysical survey results were calibrated by digging tests pits. The results show that permafrost occurs extensively in the mountain areas, especially those above 900m a.s.l. and also sporadically at lower altitudes. At 400 m a.s.l. permafrost may be up to 30 m thick. Its thickness and extent are determined largely by the very variable local rock and soil con− ditions. Fossil permafrost is also likely to occur in this area.
Go to article

This page uses 'cookies'. Learn more