## Search results

### Search results

Number of results: 3
items per page: 25 50 75
Sort by:

## An enhanced tire model for dynamic simulation based on geometrically exact shells

### Abstract

In the present work, a tire model is derived based on geometrically exact shells. The discretization is done with the help of isoparametric quadrilateral finite elements. The interpolation is performed with bilinear Lagrangian polynomials for the midsurface as well as for the director field. As time stepping method for the resulting differential algebraic equation a backward differentiation formula is chosen. A multilayer material model for geometrically exact shells is introduced, to describe the anisotropic behavior of the tire material. To handle the interaction with a rigid road surface, a unilateral frictional contact formulation is introduced. Therein a special surface to surface contact element is developed, which rebuilds the shape of the tire.
Go to article

## Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation

### Abstract

The beam elements, which are widely used in the absolute nodal coordinate formulation (ANCF) can be treated as isoparametric elements, and by analogy to the classical finite element analysis (FEA) are integrated with standard, spatial Gauss-Legendre quadratures. For this reason, the shape of the ANCF beam cross section is restricted only to the shape of rectangle. In this paper, a distinct method of integration of ANCF elements based on continuum mechanics approach is presented. This method allows for efficient analysis of the ANCF beam elements with circular cross section. The integration of element vectors and matrices is performed by separation of the quadrature into the part that integrate along beam axis and the part that integrate in the beam cross section. Then, an alternative quadrature is used to integrate in the circular shape of the cross section. Since the number of integration points in the alternative quadrature corresponds to the number of points in the standard Gaussian quadrature the change in the shape of the cross section does not affects negatively the element efficiency. The presented method was verified using selected numerical tests. They show good relatively agreement with the reference results. Apart from the analysis of the beams with the circular cross section, a possibility of further modifications in the methods of the element integration is also discussed. Due to the fact that locking influence on the convergence of the element is also observed, the methods of locking elimination in the proposed elements are also considered in the paper.
Go to article

## Swing-up control of mass body interlinked flexible tether

### Abstract

One of the applications of tether system is in the field of satellite technology, where the mother ship and satellite equipment are connected with a cable. In order to grasp the motion of this kind of tether system in detail, the tether can be effectively modeled as flexible body and dealt by multibody dynamic analysis. In the analysis and modeling of flexible body of tether, large deformation and large displacement must be considered. Multibody dynamic analysis such as Absolute Nodal Coordinate Formulation with an introduction of the effect of damping force formulation can be used to describe the motion behavior of a flexible body. In this study, a parameter identification technique via an experimental approach is proposed in order to verify the modeling method. An example of swing-up control using the genetic algorithm control approach is performed through simulation and experiment. The validity of the model and availability of motion control based on multibody dynamics analysis are shown by comparison between numerical simulation and experiment.
Go to article