Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 17
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

This paper presents the design of digital controller for longitudinal aircraft model based on the Dynamic Contraction Method. The control task is formulated as a tracking problem of velocity and flight path angle, where decoupled output transients are accomplished in spite of incomplete information about varying parameters of the system and external disturbances. The design of digital controller based on the pseudo-continuous approach is presented, where the digital controller is the result of continuous-time controller discretization. A resulting output feedback controller has a simple form of a combination of low-order linear dynamical systems and a matrix whose entries depend nonlinearly on certain known process variables. Simulation results for an aircraft model confirm theoretical expectations.
Przejdź do artykułu

Abstrakt

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Przejdź do artykułu

Abstrakt

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.
Przejdź do artykułu

Abstrakt

In recent years, with the rapid development of digital components, digital electronic computers, especially microprocessors, digital controllers have replaced analog controllers on many occasions. The application of digital controller makes the performance analysis of impulsive system more and more important. This paper considers global exponential stability (GES) of impulsive delayed nonlinear hybrid differential systems (IDNHDS).Through the application of the Lyapunov method and the Razumikhin technique, a series of uncomplicated and useful guiding principles have been obtained. The results of a numerical simulation are presented to demonstrate that the method is correct and effective.
Przejdź do artykułu

Abstrakt

In the present paper finite-dimensional dynamical control systems described by semilinear ordinary differential state equations with multiple point delays in control are considered. It is generally assumed, that the values of admissible controls are in a convex and closed cone with vertex at zero. Using so-called generalized open mapping theorem, sufficient conditions for constrained local relative controllability near the origin are formulated and proved. Roughly speaking, it will be proved that under suitable assumptions constrained global relative controllability of a linear associated approximated dynamical system implies constrained local relative controllability near the origin of the original semilinear dynamical system. This is generalization to the constrained controllability case some previous results concerning controllability of linear dynamical systems with multiple point delays in the control and with unconstrained controls. Moreover, necessary and sufficient conditions for constrained global relative controllability of an associated linear dynamical system with multiple point delays in control are discussed. Simple numerical example, which illustrates theoretical considerations is also given. Finally, some remarks and comments on the existing results for controllability of nonlinear dynamical systems are also presented.
Przejdź do artykułu

Abstrakt

In the present paper .nite-dimensional, stationary dynamical control systems described by semilinear ordinary di.erential state equations with multiple point delays in control are considered. In.nite-dimensional semilinear stationary dynamical control systems with single point delay in the control are also discussed. Using a generalized open mapping theorem, su.cient conditions for constrained local relative controllability are formulated and proved. It is generally assumed, that the values of admissible controls are in a convex and closed cone with vertex at zero. Some remarks and comments on the existing results for controllability of nonlinear dynamical systems are also presented.
Przejdź do artykułu

Abstrakt

This paper presents a novel strategy of particle filtering for state estimation based on Generalized Gaussian distributions (GGDs). The proposed strategy is implemented with the Gaussian particle pilter (GPF), which has been proved to be a powerful approach for state estimation of nonlinear systems with high accuracy and low computational cost. In our investigations, the distribution which gives the complete statistical characterization of the given data is obtained by exponent parameter estimation for GGDs, which has been solved by many methods. Based on GGDs, an extension of GPF is proposed and the simulation results show that the extension of GPF has higher estimation accuracy and nearly equal computational cost compared with the GPF which is based on Gaussian distribution assumption.
Przejdź do artykułu

Abstrakt

This paper presents a brief survey of our research in which we have used control theoretic methods in modelling and control of cancer populations. We focus our attention on two classes of problems: optimization of anticancer chemotherapy taking into account both phase specificity and drug resistance, and modelling, and optimization of antiangiogenic therapy. In the case of chemotherapy the control action is directly aimed against the cancer cells while in the case of antiangiogenic therapy it is directed against normal cells building blood vessels and only indirectly it controls cancer growth. We discuss models (both finite and infinite dimensional) which are used to find conditions for tumour eradication and to optimize chemotherapy protocols treating cell cycle as an object of control. In the case of antiangiogenic therapy we follow the line of reasoning presented by Hahnfeldt et al. who proposed to use classical models of self-limiting tumour growth with variable carrying capacity defined by the dynamics of the vascular network induced by the tumour in the process of angiogenesis. In this case antiangiogenic protocols are understood as control strategies and their optimization leads to new recommendations for anticancer therapy.
Przejdź do artykułu

Abstrakt

The positivity and absolute stability of a class of nonlinear continuous-time and discrete-time systems with nonpositive linear part are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Przejdź do artykułu

Abstrakt

The paper deals with the problems of designing observers and unknown input observers for discrete-time Lipschitz non-linear systems. In particular, with the use of the Lyapunov method, three different convergence criteria of the observer are developed. Based on the achieved results, three different design procedures are proposed. Then, it is shown how to extend the proposed approach to the systems with unknown inputs. The final part of the paper presents illustrative examples that confirm the effectiveness of the proposed techniques. The paper also presents a MATLAB® function that implements one of the design procedures.
Przejdź do artykułu

Abstrakt

We propose a class of m-crane control systems, that generalizes two- and three-dimensional crane systems. We prove that each representant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is differentially flat. Then we investigate its control properties and derive a control law for tracking control problem.
Przejdź do artykułu

Abstrakt

The chaotic phenomena of coronary artery systems are hazardous to health and may induce illness development. From the perspective of engineering, the potential harm can be eliminated by synchronizing chaotic coronary artery systems with a normal one. This paper investigates the chaos synchronization problem in light of the methodology of sliding mode control (SMC). Firstly, the nonlinear dynamics of coronary artery systems are presented. Since the coronary artery systems suffer from uncertainties, the technique of derivative-integral terminal SMC is employed to achieve the chaos synchronization task. The stability of such a control system is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed method, some simulation results are illustrated in comparison with a benchmark.
Przejdź do artykułu

Abstrakt

The aim of this paper is to show that a real order generalization of the dissipative concepts is a useful tool to determine the stability (in the Lyapunov and in the input-output sense) and to design control strategies not only for fractional order non-linear systems, but also for systems composed of integer and fractional order subsystems (mixed-order systems). In particular, the fractional control of integer order system (e.g. PIλ control) can be formalized. The key point is that the gradations of dissipativeness, passivity and positive realness concepts are related among them. Passivating systems is used as a strategy to stabilize them, which is studied in the non-adaptive as well as in the adaptive case.
Przejdź do artykułu

Abstrakt

In this paper cluster consensus is investigated for general fractional-order multi agent systems with nonlinear dynamics via adaptive sliding mode controller. First, cluster consensus for fractional-order nonlinear multi agent systems with general formis investigated. Then, cluster consensus for the fractional-order nonlinear multi agent systems with first-order and general form dynamics is investigated by using adaptive sliding mode controller. Sufficient conditions for achieving cluster consensus for general fractional-order nonlinear multi agent systems are proved based on algebraic graph theory, Lyapunov stability theorem andMittag-Leffler function. Finally, simulation examples are presented for first-order and general form multi agent systems, i.e. a single-link flexible joint manipulator which demonstrates the efficiency of the proposed adaptive controller.
Przejdź do artykułu

Abstrakt

In this paper, we apply the heuristic method for determination of control functions for controllability analysis of nonlinear power systems. The problem of control of quasi-linear systems under proper assumptions on the nonlinear term is considered in the general statement. Making use of the Green’s function solution of nonlinear systems, the exact and approximate controllability conditions are expressed in terms of unknown controls in an explicit form. The way of resolving controls determination is discussed. As a particular application, a one-machine infinite-bus system is considered described by a coupled system of three first order ordinary differential equations. Two heuristic forms of admissible controls are considered providing approximate controllability within the same amount of time having different intensities. Results of numerical simulations are presented and discussed.
Przejdź do artykułu

Abstrakt

Active Noise Control (ANC) of noise transmitted through a vibrating plate causes many problems not observed in classical ANC using loudspeakers. They are mainly due to vibrations of a not ideally clamped plate and use of nonlinear actuators, like MFC patches. In case of noise transmission though a plate, nonlinerities exist in both primary and secondary paths. Existence of nonlinerities in the system may degrade performance of a linear feedforward control system usually used for ANC. The performance degradation is especially visible for simple deterministic noise, such as tonal noise, where very high reduction is expected. Linear feedforward systems in such cases are unable to cope with higher harmonics generated by the nonlinearities. Moreover, nonlinearities, if not properly tackled with, may cause divergence of an adaptive control system. In this paper a feedforward ANC system reducing sound transmitted through a vibrating plate is presented. The ANC system uses nonlinear control filters to suppress negative effects of nonlinearies in the system. Filtered-error LMS algorithm, found more suitable than usually used Filtered-reference LMS algorithm, is employed for updating parameters of the nonlinear filters. The control system is experimentally verified and obtained results are discussed.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji