Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

A transformer is an important part of power transmission and transformation equipment. Once a fault occurs, it may cause a large-scale power outage. The safety of the transformer is related to the safe and stable operation of the power system. Aiming at the problem that the diagnosis result of transformer fault diagnosis method is not ideal and the model is unstable, a transformer fault diagnosis model based on improved particle swarm optimization online sequence extreme learning machine (IPSO-OS-ELM) algorithm is proposed. The improved particle swarmoptimization algorithm is applied to the transformer fault diagnosis model based on the OS-ELM, and the problems of randomly selecting parameters in the hidden layer of the OS-ELM and its network output not stable enough, are solved by optimization. Finally, the effectiveness of the improved fault diagnosis model in improving the accuracy is verified by simulation experiments.
Go to article

Abstract

This paper presents the resolution of the optimal reactive power dispatch (ORPD) problem and the control of voltages in an electrical energy system by using a hybrid algorithm based on the particle swarmoptimization (PSO) method and interior point method (IPM). The IPM is based on the logarithmic barrier (LB-IPM) technique while respecting the non-linear equality and inequality constraints. The particle swarmoptimization-logarithmic barrier-interior point method (PSO-LB-IPM) is used to adjust the control variables, namely the reactive powers, the generator voltages and the load controllers of the transformers, in order to ensure convergence towards a better solution with the probability of reaching the global optimum. The proposed method was first tested and validated on a two-variable mathematical function using MATLAB as a calculation and execution tool, and then it is applied to the ORPD problem to minimize the total active losses in an electrical energy network. To validate the method a testwas carried out on the IEEE electrical energy network of 57 buses.
Go to article

Abstract

Five models and methodology are discussed in this paper for constructing classifiers capable of recognizing in real time the type of fuel injected into a diesel engine cylinder to accuracy acceptable in practical technical applications. Experimental research was carried out on the dynamic engine test facility. The signal of in-cylinder and in-injection line pressure in an internal combustion engine powered by mineral fuel, biodiesel or blends of these two fuel types was evaluated using the vibro-acoustic method. Computational intelligence methods such as classification trees, particle swarm optimization and random forest were applied.
Go to article

Abstract

In the paper an algorithm and computer code for the identification of the hysteresis parameters of the Jiles-Atherton model have been presented. For the identification the particle swarm optimization method (PSO) has been applied. In the optimization procedure five design variables has been assumed. The computer code has been elaborated using Delphi environment. Three types of material have been examined. The results of optimization have been compared to experimental ones. Selected results of the calculation for different material are presented and discussed.
Go to article

Abstract

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

This research presents a new technique which includes the principle of a Bezier curve and Particle Swarm Optimization (PSO) together, in order to design the planar dipole antenna for the two different targets. This technique can improve the characteristics of the antennas by modifying copper textures on the antennas with a Bezier curve. However, the time to process an algorithm will be increased due to the expansion of the solution space in optimization process. So as to solve this problem, the suitable initial parameters need to be set. Therefore this research initialized parameters with reference antenna parameters (a reference antenna operates on 2.4 GHz for IEEE 802.11 b/g/n WLAN standards) which resulted in the proposed designs, rapidly converted into the goals. The goal of the first design is to reduce the size of the antenna. As a result, the first antenna is reduced in the substrate size from areas of 5850 mm2 to 2987 mm2(48.93% approximately) and can also operates at 2.4 GHz (2.37 GHz to 2.51 GHz). The antenna with dual band application is presented in the second design. The second antenna is operated at 2.4 GHz (2.40 GHz to 2.49 GHz) and 5 GHz (5.10 GHz to 5.45 GHz) for IEEE 802.11 a/b/g/n WLAN standards.
Go to article

Abstract

The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Go to article

Abstract

This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Go to article

Abstract

This paper presents an effective method of network overload management in power systems. The three competing objectives 1) generation cost 2) transmission line overload and 3) real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II) is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO) and Differential evolution (DE). Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem
Go to article

Abstract

In this paper voltage stability is analysed based not only on the voltage deviations from the nominal values but also on the number of limit violating buses and severity of voltage limit violations. The expression of the actual state of the system as a numerical index like severity, aids the system operator in taking better security related decisions at control centres both during a period of contingency and also at a highly stressed operating condition. In contrary to conventional N – 1 contingency analysis, Northern Electric Reliability Council (NERC) recommends N – 2 line contingency analysis. The decision of the system operator to overcome the present contingency state of the system must blend harmoniously with the stability of the system. Hence the work presents a novel N – 2 contingency analysis based on the continuous severity function of the system. The study is performed on 4005 possible combinations of N – 2 contingency states for the practical Indian Utility 62 bus system. Static VAr Compensator is used to improve voltage profile during line contingencies. A multi- objective optimization with the objective of minimizing the voltage deviation and also the number of limit violating bus with optimal location and optimal sizing of SVC is achieved by Particle Swarm Optimization algorithm.
Go to article

Abstract

In this paper two different update schemes for the recently developed plug-in direct particle swarm repetitive controller (PDPSRC) are investigated and compared. The proposed approach employs the particle swarm optimizer (PSO) to solve in on-line mode a dynamic optimization problem (DOP) related to the control task in the constant-amplitude constant-frequency voltage-source inverter (CACF VSI) with an LC output filter. The effectiveness of synchronous and asynchronous update rules, both commonly used in static optimization problems (SOPs), is assessed and compared in the case of PDPSRC. The performance of the controller, when synthesized using each of the update schemes, is studied numerically.
Go to article

This page uses 'cookies'. Learn more