Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 11
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Single point incremental forming process is a most economical Die-less forming process. The major constraint of it is that it is a time consuming process. In this work, a new attempt was made in incremental forming process using Multipoint tool for SS430 sheets to increase the formability and to reduce forming time. Fractography analysis was made to study the size of voids that were formed during fracture. The forming limit diagrams were drawn and compared for single point incremental forming and the multipoint incremental forming of SS430 sheet. It was proved that the formability of SS430 sheet in the multipoint forming was better than the formability of that in single point forming and the time consumed was reduced. The strain distribution in both processes had also been studied along with surface roughness.
Przejdź do artykułu

Abstrakt

The brake linkage of a hoisting machine is a very important component determining the safety of the hoisting machine’s entire braking system. It is subject to weekly inspections. However, an efficiency test of brake performance is carried out every 6 months. Once every 3 years, a test must be carried out by an appraiser who pays particular attention to the executive and control components of the brakes as well as the strain - brake system and brake release components. The legal provisions regulating the testing of braking system linkages are not precise. So far, the control has been based on random measurement of strains using electrical resistance strain gauges stuck to the surface of the linkage. A new method for measuring the strains of the linkage has been proposed in the work. It is based on fibre optic strain sensors with Fibre Bragg Gratings (FBG). They are mounted using specially designed and tested holders for mounting on the brake linkage. They provide quick assembly and the measurement of strain in the direction parallel to the axis of the linkage. The structure of the holder also allows for the measurement in 4 positions turned every 90 relative to one another. Such a measurement enables a comprehensive analysis of strains and stresses in the brake linkage. In the work, it was shown that there is a complex state of strain and stress in the brake linkage. The previous procedures for linkage testing are inadequate in relation to this condition. An experimental and numerical method was proposed to assess the state of linkage stress. It should constitute the basis for the decision of the appraiser to allow the linkage for further use. The method proposed in the work also allows for continuous measurements of linkage strains as well as dynamic braking tests.
Przejdź do artykułu

Abstrakt

The paper presents a new method for measuring the strain and load of wire ropes guide using fiber optic sensors with Bragg gratings. Its principle consists in simultaneous fiber optic measurement of longitudinal strain of the rope and transverse strain of the bolt fixing the rope. The tensometric force transducers which have been used so far were only able to determine the load in the head securing the rope through an indirect measurement using a special strain insert. They required calibration, compensation of temperature changes, as well as periodic checking and calibration. The head fastening the rope required significant design changes. Measurement based on fiber optic sensors does not have these drawbacks and is characterized by a much higher accuracy and safety of measurements, because the working medium is light. The fastening head does not change. The measurement of the rope load may be based on the change of strain value or indirectly by means of measuring the deflection of the bolt fixing the rope holder. The proposed solution consists in placing the optical fiber with Bragg grating inside the bolt. It enables continuous measurements with a frequency of 2 kHz. A special test bench was built at the Research and Supervisory Centre of Underground Mining. Testing on guide ropes was carried out in a mining hoist in the Piast mine.
Przejdź do artykułu

Abstrakt

The article discusses changes in Polish regulations concerning assessment of the climate hazard in underground mines. Currently, the main empirical index representing the heat strain, used in qualification of the workplace to one of the climate hazard levels in Poland is the equivalent climate temperature. This simple heat index allows easy and quick assessment of the climate hazard. To a major extent, simple heat indices have simplifications and are developed for a specific working environments. Currently, the best methods used in evaluation of microclimate conditions in the workplace are those based on the theory of human thermal balance, where the physiological parameters characterising heat strain are body water loss and internal core temperature of the human body. The article describes the results of research on usage of equivalent climate temperature to heat strain evaluation in underground mining excavations. For this purpose, the numerical model of heat exchange between man and his environment was used, taken from PN-EN ISO 7933:2005. The research discussed in this paper has been carried out considering working conditions and clothing insulation in use in underground mines. The analyses performed in the study allowed formulation of conclusions concerning application of the equivalent climate temperature as a criterion of assessment of climate hazards in underground mines.
Przejdź do artykułu

Abstrakt

Potato virus Y (PVY) is one of the most destructive viruses infecting potato in Egypt and worldwide. Recent research has shown that a necrotic PVY-NTN strain is infecting potato in Upper Egypt. Chemical control is not effective to control this viral pathogen. An alternative to control PVY infecting potato is using a mild PVY strain to elicit systemic cross protection in potato plants against infection with a severe necrotic strain of PVY. Results of this study showed that a PVY necrotic strain produced a significant lesser number of local lesions on diagnostic plants (Robinia pseudoacacia L.) when these plants were treated first with a mild PVY strain. Data obtained from greenhouse and field experiments indicated that treatment of potato plants (variety Burna) with a mild PVY strain significantly protected potato from infection with a severe necrotic PVY strain, and resulted in a significant increase in tuber yield compared with infected plants without prior treatment with a mild PVY strain. The highest increase in potato tuber yield was obtained when potato plants were inoculated with a mild PVY strain 3 days before challenging with the severe necrotic PVY strain. This study proved that using a mild strain of PVY can significantly protect potato plants from infection with a severe strain of this virus under both greenhouse and field conditions and can present a potential method to reduce losses due to infection of this virus in Assiut governorate and Upper Egypt.
Przejdź do artykułu

Abstrakt

The paper analyzes the effect of ageing on the variations in the mechanical and technological properties of steel wire. The process of drawing 5.5 mm-diameter wire rod into 1.70 mm wire was carried out in 12 draws on a Koch KGT multi-stage drawing machine in the drawing velocity range of 5-25 m/s. Finished 1.7 mm-diameter wires after, respectively, 1, 24, 720 and 8760 hours of the completion of the drawing process were subjected to testing to determine their mechanical and technological properties. The yield strength, YS; tensile strength, UTS; uniform elongation, Ar; total elongation, Ac; reduction of area, Z; number of twists, Nt; and the number of bends, Nb, have been determined. It has been demonstrated that variations in mechanical properties occur after the multi-stage drawing process due to ageing, with their degree and mode being dependent on the drawing speed.
Przejdź do artykułu

Abstrakt

In the article the equations have been worked making it possible to model the motion of freerunning grain mixture flow on a flat sloping vibrating sieve within the framework of shallow water theory. Free-running grain mixture is considered as a heterogeneous system consisting of two phases, one of which represents solid particles and the other one gas. The mixture is brought into a state of fluidity by means of high-frequency vibration imposition. Coefficients of internal and external friction and dynamic-viscosity decrease by exponential law as the fluctuation intensity is increased. When considering grain mixture dynamics, the following assumptions are put forward: we ignore the air presence in space between particles, we consider the density of particles to be constant, the free-running mixture is similar to Newtonian liquid. The basic system of equations of grain mixture dynamics is due to the laws of continuum mechanics. The equation of continuity is issued from the law of conservation of mass, and the dynamic equations are issued from the law of variation of momentum. The stress tensor equals to the sum of the equilibrium tensor and the dissipative tensor. The equilibrium part of the stress tensor is represented by the spherical tensor, which is found to conform to Pascal law for liquids, and the dissipative part, which is responsible for viscous force effect and defined by Navier-Stokes law. Boundary conditions on the surfaces (restricting the capacity of the free-running grain mixture) have been researched. The distributions of apparent density and velocity field are assigned at the inlet and outlet flow sections of the mixture. The normal velocity component of the grain mixture on the side frames and on the sieve becomes zero, which meets the no-fluid-loss condition of the medium through the frame. Beyond that point at this time we satisfy dynamic conditions, which characterize the mixture sliding down the hard frame, motion flow resistance force is represented as average velocity linear dependence. A kinematic condition and two dynamic ones are stipulated on the free surface layer. One of the conditions states mass flow continuity across the free surface, the other one states the stress continuity while passing through the free surface. The basic premise of planned motion equations is the condition of small size of flow depth in comparison with its width. With the use of shallow water theory the basic principles of the equations of flow dynamics are simplified and for their solving a Cauchy problem can be set.
Przejdź do artykułu

Abstrakt

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.
Przejdź do artykułu

Abstrakt

Influence of the initial grain size on hot deformation behavior of the low-alloy Mn-Ti-B steel was investigated. The uniaxial compression tests were performed in range of the deformation temperatures of 900-1200°C and strain rates of 0.1-10 s–1. One set of samples was heated directly to the deformation temperature, which corresponded to the initial austenitic grain size of 19-56 μm; the other set of samples was uniformly preheated at the temperature of 1200°C. Whereas the values of activation energy, peak stress and steady-state stress values practically did not depend on the initial austenitic grain size, the peak strain values of coarser-grained structure significantly increase mainly at high values of the Zener-Hollomon parameter. This confirms the negative effect of the large size of the initial grain on the dynamic recrystallization kinetics, which can be explained by the reduction in nucleation density.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji