Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 182
items per page: 25 50 75
Sort by:

Abstract

Work in unfavorable, changing environmental conditions negatively affects people working on scaffoldings used on construction sites, which may increase the risk of occurrence of dangerous situations. The purpose of this article is to show the scale of temperature changes which workers are exposed to. The paper compares examples of temperature measurements obtained from a metrological station and during tests on scaffoldings located in the Lodz and Warsaw regions. This article also presents the methodology of examining environmental parameters of the surroundings where employees work on scaffoldings. Analysis results show that high temperatures and significant temperature variations frequently occur on the scaffoldings, which leads to a lack of adaptability and consequently to tiredness or decreased alertness. Unfavorable environmental conditions can lead to behaviors which, in turn, can cause accidents.
Go to article

Abstract

To investigate the mechanical properties of tunnel lining concrete under different moderate-low strain rates after high temperatures, uniaxial compression tests in association with ultrasonic tests were performed. Test results show that the ultrasonic wave velocity and mass loss of concrete specimen begin to sharply drop after high temperatures of 600°C and 400°C, respectively, at the strain rates of 10‒5s‒1 to 10‒2s‒1. The compressive strength and elastic modulus of specimen increase with increasing strain rate after the same temperature, but it is difficult to obtain an evident change law of peak strain with increasing strain rate. The compressive strength of concrete specimen decreases first, and then increases, but decreases again in the temperatures ranging from room temperature to 800°C at the strain rates of 10‒5s‒1 to 10‒2s‒1. It can be observed that the strain-rate sensitivity of compressive strength of specimen increases with increasing temperature. In addition, the peak strain also increases but the elastic modulus decreases substantially with increasing temperature under the same strain rate.
Go to article

Abstract

The rheological properties of self-compacting concrete are closely influenced by temperature and the time. Previous studies which aim was to research the effect of temperature on self-compacting concrete workability, showed that the behaviour of fresh SCC at varying temperatures differs from that of normal vibrated concrete. The paper presents the study of rheological properties of fresh self-compacting concrete mixtures made with portland, blast furnace and component cement. Two types of superplasticizers were used. It was proven that temperature has a clear effect on workability; it can be reduced by selecting the appropriate superplasticizer and cement.
Go to article

Abstract

Monthly and dekadal mean soil temperatures were evaluated with a use of measurements at depths of 5, 10, 20 and 50 cm, collected during the expeditions 1978—1986 and additionally at depths of 80 and 100 cm during the expeditions 1980—1986. Fourier analysis revealed a phase shift of 1 to 2 dekads between neighboring measurement depths.
Go to article

Abstract

On the ground of continuous records of air and soil temperature at standard levels, changes of soil temperature against changes of air temperature have been analyzed at thick and without snow cover. The first example concerns a six-day winter thaw, and the second one a four-day autumn cooling. A particular influence of energy advection has been noted. A delay of changes of soil temperature was found to increase with depth in relation to air temperature. A hypothesis on correlation between air temperature at a height of 5 cm and soil temperature at a depth of 5 cm has been verified.
Go to article

Abstract

Average duration of a thermal winter in Hornsund has been determined for 216 days. Average soil temperature at depth of 5 cm in winter is equal —9.8°C. During a spring that lasts 35 days only, soil temperatures at depth of 5 cm indicate distribution nearest to a normal one. Soil temperature distribution in winter substantially differs from the one in spring.
Go to article

Abstract

The paper presents the trends of air temperature of the Antarctic. In its elaboration 21 stations were taken into consideration carrying out temperature measurements in the years 1958–2000, and 34 stations in the years 1981–2000. After checking the homogeneity of the series by the Alexandersson’s (1986) test we found that at 16 stations the homogeneity has been broken. On the basis of the corrected measurement series we have determined the trends in air temperature. In the period 1958–2000 statistically significant (on 0.95 significance level) temperature increases occurred on the western coast of the Antarctic Peninsula (for example Faraday 0.67°C/10 years) and at the Belgrano and McMurdo stations. The greatest temperature rise was noted on the Antarctic Peninsula during the autumn-winter period. On the South Pole a negative trend in air temperature (–0.21°C) occurred, especially in the summer season. During recent years (1981-2000) significant changes took place in the air temperature tendencies in the Antarctic. In many regions of the Antarctic cooling began and on the cost of East Antarctica the temperature decreased by –0.82°C/10 years (Casey). In the interior of the continent also lower and lower temperatures occurred (Amundsen-Scott –0.42°C/10 years, Dome C –0.71°C/10 years). The coast of the Weddell Sea is getting colder (Halley –1.13°C/10 years, Larsen Ice –0.89°C/10 years). An increase in temperature was observed in the interior of West Antarctica (Byrd 0.37°C/10 years). The warming rate of the climate became weaker on the Antarctic Peninsula (Faraday 0.56°C/10 years). The largest temperature changes occurred in the autumn-winter season when in the Antarctic Peninsula region the temperature increased, while in the interior and at the coast of East Antarctica temperatures fell considerably.
Go to article

Abstract

A buckling analysis of temperature-dependent embedded plates reinforced by single-walled carbon nanotubes (SWCNTs) subjected to a magnetic field is investigated. The SWCNTs are distributed as uniform (UD) and three types of functionally graded nanotubes (FG), in which the material properties of the nano-composite plate are estimated based on the mixture rule. The surrounding temperature-dependent elastic medium is simulated as Pasternak foundation. Based on the orthotropic Mindlin plate theory, the governing equations are derived using Hamilton's principle. The buckling load of the structure is calculated based on an exact solution by the Navier method. The influences of elastic medium, magnetic field, temperature and distribution type, and volume fractions of SWCNT are shown on the buckling of the plate. Results indicate that CNT distribution close to the top and bottom are more efficient than that distributed near the mid-plane for increasing the stiffness of the plates.
Go to article

Abstract

Over the South American sector of the Antarctic Ocean intensive cyclonal activity occurred in turn with meridional circulation, which was a more common feature of winter 1986 than it usually is. At the Arctowski Station strong temperature oscillations were observed during the austral winter from May to October. In the end of July the lowest temperature of this winter, — 32.3°C, was recorded. In the first half of the winter an easterly air flow prevailed and in the second part — the westerly one. Winds were strong and gusty. The highest speed reached 74 ms-1 . Snowfalls were abundant; depth of snow exceeded 100 cm.
Go to article

Abstract

In the summer of 1979, in South Spitsbergen investigations of the extreme temperatures of the ground surface were carried out. The investigations permitted the determination of the magnitude of the extreme temperatures of the ground surface and their relation to the air temperature. The spatial variability of the extreme temperatures of the ground surface was observed.
Go to article

Abstract

Temperature of superficial water in the Ezcurra Inlet was measured from March 1989 to February 1990, with a use of a mercurial thermometer with accuracy +0.1°C. Temperature was measured usually once a month at selected points. Influence of various factors on temperature of superficial water was preliminarily analysed. Basing on these results, temperature distribution in the mentioned area was determined. Mean yearly temperatures for each station, average space temperatures on measurement days and mean yearly temperatures for the whole area of the Ezcurra Inlet were calculated.
Go to article

Abstract

The near-surface ice thermal structure of the Waldemarbreen, a 2.5-square km glacier located at 78°N 12°E in Spitsbergen, Svalbard , is described here. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually since 1996. The near-surface ice temperature was investigated with automatic borehole thermistors in the ablation and accumulation areas in 2007-2008. The mean annual surface ice temperatures (September-June) of the ablation area were determined to be -4.7°C at 1 m depth and -2.5°C at 9 m . For the accumulation area, they were -3.0°C at 2 m , and -2.3°C at 10 m depth between September and August. On the Waldemarbreen, at 10 m depth, the mean annual near-surface ice temperature was 4.0°C above the mean annual air temperature in the accumulation area. The Waldemarbreen may thus be classified as a polythermal type with cold ice which is below the pressure melting point and a temperate ice layer in the bottom sections of the glacier and with a temperate surface layer only during summer seasons. At a depth of 10 m , temperatures are of the order of -2°C to -3°C.
Go to article

Abstract

Obervations of wind directions and air temperatures in Hornsund, Spitsbergen, in 1978—1985 were used to compute frequency distribution of wind directions and mean air temperatures at particular wind directions. Prevailing easterly winds (60°, 90° and 120°) resulted in lower air temperatures (to —2.2°C) than winter and spring means and in higher (nearly 1°C) than summer and autumn mean temperatures. Greatest positive deviations from mean seasonal temperatures are observed in winter at southerly and southwesterly winds and reach 10°C. Greatest negative deviations from mean seasonal temperatures are noted at northerly winds (330° and 360°) in autumn and reach —3.7°C.
Go to article

Abstract

Studies on the thermics, humidity and refreezing rate of two types of periglacial soils of the marine lowlands of the Hornsund area (SW Spitsbergen) were carried out during spring ablation of the snow cover (1.06.—30.06.1987). Structural soil and peat soil (moss community) were chosen. The soils were studied in places almost completely devoid of the snow cover. A considerable differentiation of temperature in vertical profile and of humidity of surface layer in both soils were found. The dynamics of ground water table and the course and depth of spring refreezing of both soils were also different. The differences reflect the different origin of soils and consequently, their different grain-size distribution, physical properties and morphology of both types of soils as well as their water balance.
Go to article

Abstract

Results of measurements of temperature and salinity of surface waters of the Hornsund (South Spitsbergen) carried out at a coastal point of the Isbjornhamna Bay during the winter expedition 1979/80 of the Polish Academy of Sciences are discussed. Courses of both parameters, their variability, mean values and distributions are analyzed.
Go to article

Abstract

Spatial differentiation of temperature and relative humidity of air on western coast of Spitsbergen in 1979—1983 is presented. Applying the author's classification of types of atmospheric circulation in the studied area, its influence on distribution of these elements is shown. Air temperature in the area is related more to the degree of climate continentality than to its latitude. The lowest mean 5—year temperatures were calculated for stations with highest degrees of thermic continentality (Svea Gruber and Svalbard Lufthavn). The highest thermic differentiation occurs from November to March (1 —4°C) and the lowest in May—June and August—October (0.0— 1.5°C). It is opposite if relative humidity is concerned: the highest differences occur in summer (10—15%) and the lowest in winter (0—9%). Influence of atmospheric circulation on air temperature is larger during a polar night than a polar day. Again, it is opposite in the case of relative humidity. In both analyzed seasons the highest thermic differentiation occurred at the circulation type Ca. However, it was the lowest during a polar night at advection of air from northern and southern sectors, and during a polar day at advection from a northern sector and at the type Cc.
Go to article

Abstract

The paper presents the results of simulation tests of hydraulic resistance and temperature distribution of the prototype Stirling alpha engine supplied with waste heat. The following elements were analyzed: heater, regenerator and cooler. The engine uses compressed air as a working gas. Analyses were carried out for three working pressure values and different engine speeds. The work was carried out in order to optimize the configuration of the engine due to the minimization of hydraulic resistance, while maintaining the required thermal capacity of the device. Preliminary tests carried out on the real object allowed to determine boundary and initial conditions for simulation purposes. The simulation assumes that there is no heat exchange between the regenerator and the environment. The solid model used in simulation tests includes the following elements: supply channel, heater, regenerator, cooler, discharge channel. Due to the symmetrical structure of the analyzed elements, simulation tests were carried out using 1/6 of the volume of the system.
Go to article

Abstract

The Stirling engine type alpha is composed of two cylinders (expansion space E and compression space C), regenerator that forms the space between the cylinders and the buffer space (under the pistons). Before the start-up and as a result of long-term operation, the average pressure in the working space (above the pistons) and in the buffer space is the same. However, in the initial phase of operation, the average pressure in the working space is different then the average pressure in the buffer space depending on the crankshaft starting position (starting angle). This, in turn, causes a large variation in the starting torque. An additional unfavorable factor caused by a large variation in the course of the indicated torque is the rotational speed variation and the formation of torsional vibrations in the drive system. After some time, depending on the quality of the engine piston sealing, the average pressure in the working and buffer space will equalize. The occurrence of the above-described phenomenon affects the selection of the starting electric motor, which can be significantly reduced, when the crankshaft starting position is optimized (the starting torque is several times greater than the average torque occurring in the generator operation mode). This paper presents the analysis of the impact of the crankshaft starting position on the course of the indicated torque and the resulting start-up energy. Starting the engine at an unfavorable position of the crankshaft may, in extreme cases, increase the starting torque even three times.
Go to article

Abstract

The paper analyses the influence of seasonal temperature variations on fatigue strength of flexible and semi-rigid pavement structures chosen for KR4 traffic flow category. The durability of pavement determined assuming a yearly equivalent temperature of 10˚C and assuming season-dependent equivalent temperatures was compared. Durability of pavement was determined with the use of Asphalt Institute Method and French Method. Finite Element Method was applied in order to obtain the strain and stress states by the means of ANSYS Mechanical software. Obtained results indicate a considerable drop in pavement durability if seasonal temperature variations are considered (up to 64% for flexible pavements and up to 80% for semi-rigid pavements). Durability obtained by the French Method presents lower dependence on the analysed aspect.
Go to article

Abstract

Heating of steel or structural aluminum alloys at a speed of 2 to 50 K/min – characterizing the fire conditions – leads to a reduction in mechanical properties of the analyzed alloys. The limit of proportionality fp, real fy and proof f₀₂ yield limit, breaking strength fu and longitudinal limit of elasticity E decrease as the temperature increases. Quantitative evaluation of the thermal conversion in strengths of structural alloys is published in Eurocodes 3 and 9, in the form of dimensionless graphs depicting reduction coefficients and selected (tabulated) discrete values of mechanical properties. The author’s proposal for an analytical formulation of code curves describing thermal reduction of elasticity modulus and strengths of structural alloys recommended for an application in building structures is presented in this paper.
Go to article

Abstract

Tonnacypris glacialis (G.O. Sars, 1890) is a meiobenthic species widely distributed in Arctic freshwater lakes. Field study of its life cycle as well as the laboratory experiments showed clearly that only one generation of this ostracod species occurs during the vegetation season, and that the condition necessary for the next generation to appear is eggs freezing.
Go to article

Abstract

The paper presents a spatial distribution of changes of air temperature (T) in the Arctic. Estimates of their spatial relations in the study region were based on a correlation analysis. T in the Arctic is most strongly correlated spatially in winter and spring, and least in summer. The radius of extent of statistically significant correlation coefficients of changes of T at the stations Svalbard Lufthavn, Ostrov Kotelny and Resolute A is equal to 2000-2500 km in winter and 1500-2000 km in summer. An attempt was done to delimit the regions of consistent occurrence of the anomalies T with respect to the signs and magnitudes, as well as of the regions with the most coherent T. The Wroclaw dendrite method was used to solve this problem. Relations of the mean areał T of the climatic regions and of the Arctic as a whole, with the northern hemisphere of temperature and selected climatic factors are presented.
Go to article

Abstract

Knowledge of the temperature distribution in subsurface layers of the ground is important in the design, modelling and exploitation of ground heat exchangers. In this work a mathematical model of heat transfer in the ground is presented. The model is based on the solution of the equation of transient heat transfer in a semi-infinite medium. In the boundary condition on the surface of the ground radiation fluxes (short- and long-wave), convective heat flux and evaporative heat flux are taken into account. Based on the developed model, calculations were carried out to determine the impact of climatic conditions and the physical properties of the ground on the parameters of the Carslaw-Jeager equation. Example results of calculated yearly courses of the daily average temperature of the surface of the ground and the amount of particular heat fluxes on the ground surface are presented. The compatibility of ground temperature measurements at different depths with the results obtained from the Carslaw–Jaeger equation is evaluated. It was found that the temperature distribution in the ground and its variability in time can be calculated with good accuracy.
Go to article

Abstract

The frequency of wind occurrence at sectors each 30° as well as mean air temperature at particular wind direction were accounted for the warmest and the coldest year of the investigation period 1978—1987 at Polish Antarctic „Arctowski" Station. The effect of orography on wind direction and air temperature was determined. A great rate of dependence of air temperature and wind direction upon atmospheric circulation type was found. High air temperature at the winds from 300° and 330° directions is related both to the kind of air mass and foehn phenomena.
Go to article

Abstract

Observations from 1978—81, 1983 and 1985 collected at the Polish Polar Arctowski Station (King George Island, South Shetland Islands) were used to calculate frequencies of wind directions in 30° sectors and mean air temperatures observed at each wind direction. Results reveal that all over the year the warmest air masses flow onto the South Shetland Islands from the northwest while the coolest ones from the southeast and east.
Go to article

This page uses 'cookies'. Learn more