Search results

Filters

  • Journals

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Widely used CFD codes enable modelling of PC boilers operation. One of the areas where these numerical simulations are especially promising is predicting deposition on heat transfer surfaces, mostly superheaters. The basic goal of all simulations is to determine trajectories of ash particles in the vicinity of superheater tubes. It results in finding where on the surface the tube will be hit by particles, and what diameter and mass flow of the particles are. This paper presents results of CFD simulations for a single tube and a bundle of in-line tubes as well. It has been shown that available parameters like ash particle density, shape factor, reflection coefficients affect the trajectories in a different way. All the simulations were carried out with Fluent code of Ansys software.
Go to article

Abstract

Presented paper adresses issue of key research areas, which are important for development of backward regions in Poland. Proposed areas of priority research activities concentrates on: building resilience of regional structures on socio-economic crises; using megatrends impact on development paths; implementing public intervention generating economic growth; developing territorial keys for development; utilising capacity of cities, especially biggest; increasing quality of public management, strengthening of innovativeness and competitiveness of EU regions and cities; using better social and cultural dimension of socio-economic development; increasing potential of cross-border cooperation and using new development concepts, monitoring of socio-economic development through objective measuring of levels and paths. For Poland It is very important to use research activities to support process of closing gap with more affl uent EU regions.
Go to article

Abstract

The paper presents a method of identifying distant emission sources of fine particulate matter PM2.5 affecting significantly PM2.5 concentrations at a given location. The method involves spatial analysis of aggregate information about PM2.5 concentrations measured at the location and air masses backward trajectories calculated by HYSPLIT model. The method was examined for three locations of PM2.5 measurement stations (Diabla Góra, Gdańsk, and Katowice) which represented different environmental conditions. The backward trajectories were calculated starting from different heights (30, 50, 100 and 150 m a. g. l.). All points of a single backward trajectory were assigned to the PM2.5 concentration corresponding to the date and the site of the beginning of trajectory calculation. Daily average concentrations of PM2.5 were used, and in the case of Gdańsk also hourly ones. It enabled to assess the effectiveness of the presented method using daily averages if hourly ones were not available. Locations of distant sources of fine particulate matter emission were determined by assigning to each grid node a mean value of PM2.5 concentrations associated with the trajectories points located within the so-called search ellipse. Nearby sources of fine particulate matter emission were eliminated by filtering the trajectories points located close to each other (so-called duplicates). The analyses covered the period of January-March 2010. The results indicated the different origin of air masses in the northern and southern Poland. In Diabla Góra and Gdańsk the distant sources of fine particulate matter emission are identified in Belarus and Russia. In Katowice the impact of the Belarusian PM2.5 emission sources was also noted but as the most important fine particulate matter emission sources were considered those located in the area of Romania, Hungary, Slovakia and Ukraine.
Go to article

Abstract

In this paper the MTPA, MTPF, constant torque and constant flux control trajectories are presented. These trajectories are calculated for a 6-phase asymmetric insettype SMPMSM generator with the assumption of a certain level of 3rd harmonic current injection. This injection technique increases the generator performance due to the cooperation of the fundamental and 3rd harmonic. The presented trajectories are used for fast control of the generator working in the gearless wind turbine system.
Go to article

This page uses 'cookies'. Learn more