Science and earth science

Polish Polar Research


Polish Polar Research | 2008 | vol. 29 | No 1 |

Download PDF Download RIS Download Bibtex


Bowseria arctowskii gen. et sp. nov., a new organic-walled monothalamous (single-chamber) foraminiferan is described from samples collected in Admiralty Bay (King George Island, West Antarctica) at 100- 200 m water-depth (mwd). The species is characterized by a large (1- 2 mm) elongate theca with a single terminal aperture. Molecular phylogenetic analyses, based on partial small subunit rDNA sequences, indicate that the new species belong to a clade of single-chambered foraminifers that branch as a sister group to the multi-chambered textulariids and rotaliids. The most closely related to the new species is an undetermined allogromiid from under the Ross Ice Shelf.

Go to article

Authors and Affiliations

Frédéric Sinniger
Béatrice Lecroq
Wojciech Majewski
Jan Pawłowski
Download PDF Download RIS Download Bibtex


An investigation of cyanobacterial microflora in the northern, deglaciated part of James Ross Island in the NW part of the Weddell Sea, Antarctica , was conducted during the Antarctic summer season 2005-2006. Five main types of habitats with dominant cyanobacterial assemblages were analyzed (soils, seepages, streams, wetted rocky walls and lakes), and main ecological variables were measured (pH, temperature, intensity of global radiation, conductivity and nutrients), as a background for further ecological and ecophysiological studies. The definable traditional cyanobacterial morphospecies were identified.

Go to article

Authors and Affiliations

Jiří Komárek
Josef Elster
Download PDF Download RIS Download Bibtex


Tonnacypris glacialis (G.O. Sars, 1890) is a meiobenthic species widely distributed in Arctic freshwater lakes. Field study of its life cycle as well as the laboratory experiments showed clearly that only one generation of this ostracod species occurs during the vegetation season, and that the condition necessary for the next generation to appear is eggs freezing.

Go to article

Authors and Affiliations

Barbara Wojtasik
Download PDF Download RIS Download Bibtex


Ornithogenic tundra developing near large seabird colonies with its dense vegetation creates sites for foraging, hiding and breeding of herbivores. Grazing, trampling and faeces deposition are considered as the most important ways that vertebrate herbivores influence the plants. Excrement deposition level informs us on the intensity of grazing i.e. foraging ground attractiveness. We have compared vertebrate herbivores’ faeces deposition (biomass) in the vicinity of big colonies of piscivorous (kittiwake Rissa tridactyla and Brünnich’s guillemot Uria lomvia) and planktivorous (little auk Alle alle) seabirds and the control area was in Hornsund, SW Spitsbergen. Much higher level of faeces deposition was recorded nearby seabird colonies as compared to the control area. These finding points out that vertebrate herbivores concentrate and feed more intensively on rich ornithogenic pastures. Number of herbivores and their faeces deposition level recorded nearby planktivorous seabird colony were greater as compared to those found nearby the colony of piscivores. The highest number of geese (Branta bernicla and Anser brachyrhynchus) and of their faeces biomass were found near the colony of planktivorous little auk, where distinct gradient in faeces deposition level along the colony-seashore axis was recorded. Reindeers Rangifer tarandus were observed in considerable numbers near the little auk colony, and were not recorded at all near cliff-nesting sites of kittiwakes and guillemots. Total deposition of excrements produced by geese was generally higher if compared to reindeers.

Go to article

Authors and Affiliations

Dariusz Jakubas
Katarzyna Zmudczyńska
Katarzyna Wojczulanis-Jakubas
Lech Stempniewicz
Download PDF Download RIS Download Bibtex


The buoyant hypopycnal flow of brackish water and suspended sediment transport and settling were studied in two sub-polar fjords: the glacial Kongsfjörden and the outwash (non-glacial contact) Adventfjörden, Svalbard . The data presented indicates faster water mixing on the tidal flat in comparison to the englacial runoff, which leads to faster horizontal density gradients decreases in the non-glaciated fjord. The fast settling of particles in the narrow zone of the steep slope at the edge of the tidal flat leads to the removal of 25% of the surface suspended sediment. The rapid settling is due to increasing salinity, decreasing velocity, and flocculation of fine particles. The fast settling of suspended particulate matter (SPM) in the tidal flat area causes sediment redeposition and resuspension followed by sediment transport along the bottom with hyperpycnal flows. This leads to grain sorting in the fjord head. In contrast, at the glacier front, SPM is transported farther into the fjord, where tidal pumping and water mixing lead to the removal of 71% of total SPM. The fjords investigated represent two different sedimentological regimes. In the glaciated Kongsfjörden, the buoyant hypopycnal flow of brackish water is the main sediment transporting factor. In the non-glacial Adventfjörden, hyperpycnal flows transport sediment along the bottom.

Go to article

Authors and Affiliations

Marek Zajączkowski
Download PDF Download RIS Download Bibtex


The Hornsund region is characterised by a topoclimatic variation, which results principally from the local orography, the vicinity of open sea and the two contrasting environments: non-glaciated and glaciated. The specific types of atmospheric circulation determine the local thermal differences. The west coast is characterised by the most favourable thermal conditions, where air temperature is largely determined by foehn processes. The temperature at the Baranowski Station is 0.8°C higher on average than that of the Polish Polar Station on the northern shore of Hornsund . The temperature in the northern shore of the fjord happens to be higher than that on the west coast, which is attributed to the NW cyclonic inflow of cool Arctic air masses. During intermediate weather, when ground frost-thaw takes place, the northern shore of Hornsund is warmer by 0.5°C ; whereas, during moderately frosty weather, it is warmer by 0.2°C than the west coast. The differences result from the effect of the warmer fjord waters on the surrounding air temperature. During moderately warm weather, more favourable conditions occur near the Baranowski Station, expressed by the mean temperature difference of 0.9°C. The greatest temperature difference of 1.5°C on average is normally recorded during warm weather.

Go to article

Authors and Affiliations

Krzysztof Migała
Tomasz Nasiółkowski
Jerzy Pereyma

Editorial office


Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland

Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland

Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland

Associate Editors

Piotr JADWISZCZAK (Białystok),


Krzysztof JAŻDŻEWSKI (Łódź),


Monika KĘDRA (Sopot)


Ewa ŁUPIKASZA (Sosnowiec)


Piotr PABIS (Łódź),


Editorial Advisory Board

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.



phone: (48 22) 697 88 53

Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Social Science and Hummanities
phone: (48 81) 537 68 99

Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej UMCS
Al. Kraśnicka 2D
20-718 Lublin, POLAND

Instructions for authors

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.

A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.

Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa.
Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffioyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).
WARD B.L. 1984. Distribution of modern benthic foraminifera of McMurdo Sound, Antarctica. M.Sc. Thesis. Victoria University, Wellington (unpublished).

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.

Open Access policy

Polish Polar Research jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0.

Polish Polar Research is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0

Additional information

Abstracting & Indexing

Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

This page uses 'cookies'. Learn more