
 
 

 

A R C H I V E S  

o f  

F O U N D R Y  E N G I N E E R I N G  

DOI: 10.1515/afe-2017-0102 

 

 

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences 

 
 

ISSN (2299-2944) 
Volume 17 

Issue 3/2017 
 

117 – 122 
 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 7 ,  I s s u e  3 / 2 0 1 7 ,  1 1 7 - 1 2 2  117 

 

Approximation of Ausferrite Content in the 

Compacted Graphite Iron with the Use 

of Combined Techniques of Data Mining 
 

K. Regulski a, D. Wilk-Kołodziejczyk a, b *, B. Kacprzyk c, G. Gumienny c, G. Rojek a, B. Mrzygłód a 
a AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science,  

Mickiewicza 30, Kraków, Poland  
b Foundry Research Institute, ul. Zakopiańska 73, 30-418 Kraków, Poland 

c Department of Materials Engineering and Production Systems, Lodz University of Technology,  

Stefanowskiego 1/15 Street, 90-924 Łódź, Poland 

* Corresponding author: Email address: wilk.kolodziejczyk@gmail.com 

 

Received 07.06.2017; accepted in revised form 28.07.2017 
 
 

Abstract 
 

This article presents the methodology for exploratory analysis of data from microstructural studies of compacted graphite iron to gain 

knowledge about the factors favouring the formation of ausferrite. The studies led to the development of rules to evaluate the content of 

ausferrite based on the chemical composition. Data mining methods have been used to generate regression models such as boosted trees, 

random forest, and piecewise regression models. The development of a stepwise regression modelling process on the iteratively limited 

sets enabled, on the one hand, the improvement of forecasting precision and, on the other, acquisition of deeper knowledge about the 

ausferrite formation. Repeated examination of the significance of the effect of various factors in different regression models has allowed 

identification of the most important variables influencing the ausferrite content in different ranges of the parameters variability. 
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1. Introduction 
 

CGI (Compacted Graphite Iron), having a specific graphite 
form with large matrix contact surface, is a unique casting 
material. This type of cast iron tends to favour direct ferritization 
and is characterized by a complex of very interesting properties. 
Compared to grey iron, this material is characterized by higher 
strength properties and better ductility. Compared to spheroidal 
graphite iron, compacted graphite iron exhibits lower coefficient 
of thermal expansion, higher thermal conductivity, higher 
resistance to dynamic temperature changes, and better damping 
and casting properties. These advantages predestine the material 

for a variety of uses. The first utilitarian use of this cast iron was 
for the high-speed brake discs. Currently it is mainly used for the 
construction of IC engine blocks, exhaust manifolds, etc. The 
complex properties of this type of cast iron are the subject of 
intensive research and many publications [1,2]. 

 
 

2. Microstructure of CGI 
 
There are only few publications on the effect that alloying 

additives have on the microstructure and properties of compacted 
graphite iron [3,4]. By changing the chemical composition, it is 
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possible to modify to a large extent the cast iron microstructure 
and consequently its properties. There are numerous publications 
describing the possibility of obtaining ausferrite in compacted 
graphite iron, to produce next AVI (Austempered Vermicular 
Iron) or CAVI (Carbidic Austempered Vermicular Iron) [5,6]. 
Ausferrite is a mixture of bainitic ferrite and carbon-saturated 
austenite. It is a desirable component of the microstructure, 
because under the influence of stress, as a result of twinning, this 
constituent undergoes martensitic transformation and thus 
strengthening. To obtain ausferrite, the casting should be 
subjected to heat treatment, which consists of quenching with 

isothermal holding within the range of austenite  bainite 
transition temperature. There is also an alternative way to obtain 
ausferrite by modifying the cast iron chemical composition. This 
is done using molybdenum, copper, or nickel added in appropriate 
proportions. 

 
 

2.1. Research methodology 
 
Metal was melted in a medium frequency induction furnace 

with a crucible of 30 kg capacity. The vermicularizing treatment 
was carried out by an Inmold process. The furnace charge 
consisted of special pig iron containing 0.01% sulphur, and of 
FeSi75 ferrosilicon, FeMn75 Fe ferromanganese, and technically 
pure Mo, Cu, Ni and Cr. The cast iron at a temperature of about 
1480°C was poured into a sand mould, schematically shown in 
Figure 1. 

 

 
Fig. 1. Schematic layout of mould components for the 

vermicularizing treatment of cast iron by Inmold process 
1 – downgate, 2 – reaction chamber, 3 – mixing chamber,  

4 – control chamber, 5 – pilot casting, 6 – overflow 
 
In the gating system there was a spherical ø85 mm diameter 

reaction chamber (2). It contained Lamet® 5504 magnesium 
master alloy produced by Elkem Company in Norway. The 
composition of the master alloy is shown in Table 1. The reaction 
chamber was equipped with a mixing chamber (3) ensuring 
accurate dissolution of the master alloy and control chamber (4) 
where the process of the cast iron cooling and solidification was 
recorded. The trial casting (5) had the shape of steps with 3, 6, 12 
and 24 mm wall thickness. The range of chemical composition 
used in the test cast iron is shown in Table 2. Samples for 
metallographic tests were cut out from the central part of the 
stepped casting. The surface fraction of carbides was examined 
with an NIS-Elements BR image analysis software. Hardness of 

cast iron was tested using an HPO-2400 hardness tester operating 
under the following conditions: ball diameter = ø2.5 mm, load F = 
1840 N. 

 

Table 1.  

Chemical composition of the master alloy 

Chemical composition, wt% 

Si Mg Ca La Al Fe 
44 – 48 5 – 6 0.4 – 0.6 0.25 – 0.40 0.8 – 1.2 rest 

 
Table 2.  

Chemical composition of the CGI tested 

Chemical composition, wt% 

C Si Mn Mg Mo Cu Ni Cr 
2.91 – 
3.82 

2.28 – 
2.71 

0.03 – 
1.31 

0.015– 
0.023 

0 – 
2.44 

0 – 
3.80 

0 – 
21.04 

0 – 
2,81 

 
 

3. Data analysis and data mining 
 
Preliminary data analysis was performed on a sample of 180 

records. The data concerned different chemical compositions and 
different wall thicknesses designed for individual compositions. 
The successive alloying additions were introduced first as single 
elements and then as mixtures. The calculated correlations have 
proved the existence of a dependence, clearly indicating at the 
same time that none of the compounds exhibits a linear trend (Fig. 
2.). 

 

 
Fig. 2. Matrix form of scatterplots 

 
 

3.1. Former studies 
 
In previous works, the authors have implemented models of 

inference based on the obtained results [7]. Forecasting of  
microstructure based on the chemical composition has been very 
effective especially for phase constituents such as martensite or 
austenite (Table 3). Unfortunately, the prediction of ausferrite 
content has proved to be more difficult. 

 
Table 3.  

Determination coefficient in the prediction models of CGI 

microstructure  
R2 carbides pearlite ferrite marten 

site 

aus 

tenite 

aus 

ferrite 

ANN 0,96 0,98 0,9 0,99 0,99 0,87 
SVM 0,59 0,86 0,7 0,19 0,95 0,81 

CART 0,64 0,9 0,71 0,98 0,98 0,83 
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The basic problem in predicting the content of ausferrite was 
the selection of a training sample. Experimental data concerned 
mostly the cases where this microstructural constitutent was 
absent. Predictive models that were designed to forecast the 
presence of six components were unable to learn and correctly 
predict the ausferrite content, and it could be said that their 
accuracy was acceptable only in the situations when ausferrite 
was not present (Fig. 3). 

 

 
Fig. 3. Incorrect prediction of ausferrite content in models for 

the six microstructural constituents 
 
On these results was based the decision to develop further 

prognostic models specialized in the prediction of ausferrite 
content and apply more adapted data mining techniques to allow 
learning based on the, so called, weak learners, i.e. explanatory 
variables that are less correlated with the dependent variable. 

 
 

3.2. Data mining regression methods 
 
The situation in which a model predicting the value of 

continuous variable is built is referred to as a regression. 
Statistical methods for modelling the regression have been 
developed in recent years fairly intensively. Limits to which is 
subjected the method of the estimation of linear and nonlinear 

regression equations are overcome by the use of data mining 
models that are not subject to assumptions about the density 
distribution of explanatory variables. 

An example of such a technique is Multivariate Adaptive 

Regression Splines (MARSplines) [8,9]. This method does not 
require assumptions about the distribution of explanatory 
variables or assumptions about the correlation dependencies 
between variables, hence results the definition of MARSplines as 
a non-parametric technique. The dependence is determined by the 
underlying functions, which in turn are the result of data analysis. 
The idea of the algorithm is similar to the Piece Wise Regression 
(PR) [10]). The boundaries of the ranges defined for the 
dependent variable are determined from the data and define the 
applicability range of particular regression models. MARSplines 
allows forecasting based on quantitative and qualitative variables 
[11,12]. The data space is divided into areas where separate 
regression models and even classification models are 
implemented. This technique, very popular among the data 

mining methods, allows regression based on the multi-
dimensional space of the learning vectors [13]. The method is 
particularly valuable because it offers high precision in situations 
where dependencies are complex, non-linear, non-monotonic, and 
thus difficult for parametric modelling. MARSplines is also used 
successfully in the metal processing industry [14,15]. 

Artificial neural networks (ANNs), as another technique for 
solving regression tasks, allow building very precise models [16]. 
Although ANNs are equally effective in recognizing patterns, and 
making classification and detection, in the metallurgical industry 
they are most often used for the mapping processes 
(metamodelling), which are difficult to describe with numerical 
models, or the calculation time is too long [17]. 

ANNs are the mathematical structures of simple 
computational elements that enable complex transformation of 
input signals by means of activation functions and multiplication 
of weights at neuron inputs. They have a multilayered structure, 
and during training, the error is propagated from the output 
towards the input to the network, including the optimization of 
weights at the neuron inputs to match the output signal (network 
training takes place in iterations called epochs and aims to 
minimize error function). Once trained network can be used to 
predict unknown values based on input signals. 

The greatest advantage of the networks is their adaptability in 
situations where there are multiple input signals, the dependencies 
are complex and unknown, and data may have outliers or  
deficiencies. Networks are good at generalizing models, but it 
should be remembered that the results are only approximations. 

Neural networks can be used as a benchmark in modelling 
problems complex and not fully explained. The predictability is 
high, but no explicit relationships exist between parameters. The 
network operates on a black box principle- it calculates the results 
as expected but does not explain how to find a solution. It does 
not contribute to a better understanding of the phenomenon, 
either, which is at odds with the goal of data mining research [18]. 

Random Forest (RF, also known as Bagged Decision Trees) 
is a method based on the principle of induction of decision trees 
[19]. It consists in creating complex models composed of multiple 
decision trees combined into one regression model [20,21]. Trees 
themselves calculate the value for each successive input, and then 
the result is averaged. Owing to this approach, the model has 
finally become independent of outliers, which was previously a 
major disadvantage of individual decision trees. Random forest is 

a weak learners team that can solve problems of regression. 
The idea of Boosted Trees (BT) is also based on a set of 

decision trees, but the solution is slightly different. In the case of 
boosted trees, the selected boosted algorithm is used for the 
construction of subsequent trees. Boosting involves, as in the case 
of RF, weak learners. At the beginning, the algorithm induces 
trees without considering the weights of the signals and then 
increases the weight of observations in the event of a 
classification error. The next trees are built on the same set of 
training data, but using the weight of previous trees. This process 
may require the construction of hundreds of trees in order to 
minimize the error of an incorrect prediction [22]. 

Using sets of decision trees can lead to significant 
improvements in forecasting accuracy. 
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3.3. Combined techniques 
 

Casting technology still represents a large scale of uncertainty 

[23], mainly as regards the processes involved in the melt 

preparation [24,25]. Scientific approaches often refer to methods 

of reasoning and artificial intelligence [26,27]. These researches 

implement systems that use formalized knowledge in the form of 

rules [28]. Frequently, rule-based knowledge is also used in the 

control devices and software of equipment assisting foundry 

processes [29-33]. 

Several regression techniques were used in the study to obtain 

the greatest possible feedback as regards the knowledge of 

dependencies. The models used included ANNs; Boosted Trees 

(BT); Random Forrest (RF); PieceWise Regression (PR); 

MARSplines (MARS); and also General Linear Models (GLM). 

All these models have enabled gaining knowledge of the 

dependencies in a set of variables and knowledge about the 

influence of individual factors on the ausferrite content. 

Initially, models were based on original data from the 

experiment. Subsequently, a subset of the data was created by 

selecting only the cases that referred to the ausferrite. This 

limitation allowed creating models that have learned to predict the 

specific content of ausferrite and not just confirm its  occurrence 

(Fig.4.). 
 

 
Fig. 4. Data mining process using combined regression techniques 
 

On a reduced sample comprising 72 records, only the models 
that gave the best results were built. i.e. ANNs; Boosted Trees and 
PieceWise Regression. Based on the models obtained, knowledge 
of the dependencies and of the influence of individual alloying 
constituents was completed, thus creating new rules. 

 
 

3.4. Results 

 
Data mining techniques have allowed for the development of 

better or worse prediction models forecasting the ausferrite 
content. The quality of fit and precision of each model is 
described in Table 4. However, in addition to the accuracy of the 
prediction itself, it is important to point out as an important aspect 
the possibility of obtaining rules (knowledge) about the volatility 
of individual factors and their influence on the dependent 
variable. 
 
 

Table 4.  
The quality of fit and precision of each model 

 MSE MAE r R2 RMSE 

ANN'180 22,9 2,9 0,99 0,99 4,8 

BT'180 30,1 3,4 0,99 0,98 5,5 

PR'180 40,0 3,2 0,99 0,98 6,3 

GLM'180 48,7 3,3 0,99 0,97 7,0 

MARS'180 102,9 6,4 0,97 0,95 10,1 

RF'180 130,8 7,2 0,97 0,94 11,4 

ANN'72 34,2 4,2 0,97 0,93 5,8 

BT'72 56,3 5,3 0,94 0,88 7,5 

PR'72 51,8 4,6 0,94 0,89 7,2 

ANN'72; 5pr 103,7 7,3 0,87 0,76 10,2 

CART'72 349,5 11,0 0,49 0,24 18,7 

MARS'72 376,2 13,2 0,42 0,18 19,4 

CART submodel ferrite 17,9 1,6 0,68 0,47 4,2 

CART submodel pearlite 55,4 3,9 0,79 0,62 7,4 

CART submodel carbides 41,3 3,7 0,71 0,50 6,4 

CART submodels based 168,7 8,3 0,80 0,64 13,0 

MARS submodels based 127,5 8,2 0,85 0,72 11,3 

MARS microstructure based 2,3 0,9 0,998 0,995 1,5 

 
It has been reported that ausferrite is formed as a result of  

molybdenum addition to the alloy, but only in cases where Mo is 
the alloying additive, the resulting ausferritic structure can occur 
(Fig. 5). At the same time it has been noted that molybdenum 
conditions the appearance of ausferrite, but does not determine the 
level of its content. Manganese, copper and nickel are important 
in this case (Fig.6). 

 

 
Fig. 5. Tree made with boosted algorithm  

 

 
Fig. 6. Tree boosted by weight changes 

 
With the data filtering process, the model precision  changes. 

After removing the relatively easy-to-train (without ausferrite) 
models, the match coefficients deteriorate, but at the same time 
considerable improvement is observed in the predictability of 
actual content levels (Fig.7). 

In the case of boosted trees, a change was noticed as a result 
of the reduction of data set. On the full set, the algorithm 
developed more than 800 trees with an error of 30 (Fig. 8), while 
on the reduced set about 320 trees, but the MSE error almost 
doubled (Fig. 9). 
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Fig. 7. Measure of PR model prediction fit 

 

 
Fig. 8. Cost sequence in BT model for 180 records 

 

 
Fig. 9. Cost sequence in BT model for 72 records 

 
During the formation of successive models, the significance 

of the influence of individual alloying additions and casting wall 
thicknesses was investigated. Due to the different specifics of 
models, as well as the different choice of training sets, the results 
of these calculations differed by showing subtle relationships 
between variables (Fig. 10). 

Studies suggest that ausferrite formation is a two-stage 
process. The mere presence of various additives is important in 
the formation of other phases, but it is only the level of their 
content that is responsible for the transformation promoting the 
formation of ausferrite. And so, an increase in chromium content 
favours the formation of carbides; in low concentrations nickel is 
ferrite- and pearlite-forming element, in the range of 5-9% it 
favours the formation of martensite, while in higher 
concentrations it forms austenite. Copper is the addition that most 

strongly affects the formation of pearlite. Based on the knowledge 
about the content of carbides, pearlite and ferrite, it is possible to 
build a more accurate approximation model. However, since such 
knowledge is not available a priori, a model based on the sub-
models (Table 4) has been constructed - it predicts the content of 
pearlite, ferrite and carbides based on the chemical composition, 
and next basing on these results,  in the second step, it predicts the 
ausferrite content. 

 

 
Fig. 10. Standardized effect of variables on the content of 

ausferrrite in individual models 
 

This modelling structure allows mapping of the physical 
process, but estimation of parameters present in such a model 
needs to be refined, as the submodel error propagates to the final 
result of the forecast. 

 
 

4. Conclusions 
 
The aim of the study was to develop a model of 

approximation of the content of ausferrite in compacted graphite 
iron based on the chemical composition and casting wall 
thickness. As a result of the work, knowledge about the 
relationship between alloy components and casting microstructure 
was obtained. The rule base was enriched with conclusions about 
the strength of the influence of individual alloying elements and 
also with conclusions about the formation of microstructure and 

mutual correlations between individual phases. The research used 
a number of regression modelling methods and also data mining 
methods, like boosted trees, random forest, neural networks and 
MARSplines, which helped to judge which of the methods are 
best in this case of modelling. ANNs offer the highest precision, 
but models based on decision trees provide the opportunity to gain 
knowledge in the form of rules. 
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