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Abstract. The paper refers to the importance of test results uncertainty in the assessment of the construction product performance. Uncer-
tainty understood as dispersion attributed to any value which is result of the tests, calculations or other evaluations, occurs at every level of 
assessment (material, product, construction). Authors presented the various approaches to uncertainty estimation, especially in situation of 
small number of tests results which is characteristic for testing of construction products. Effects of uncertainty on final assessment of con-
struction product was analyzed using the example of bearing capacity of thin-walled structure obtained by numerical calculation. Different 
values of material tests uncertainty resulting from different approaches to its assessment was taken into account. It was demonstrated that the 
difference in the results of strength tests of a material, which falls within the limits of uncertainty, may result in a very significant difference 
in the evaluation of a structure.
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Each value resulting from tests may only be considered 
in terms of probability. Unfortunately, in a small number of 
cases it is possible to express this probability using a prob-
ability density function (PDF) which is characterised by the 
expectation value and standard deviation (SD). In all tests 
which yield qualitative results (ordinal scale with two catego-
ries e.g. “fulfilled”, “not fulfilled”) or semi-quantitative results 
(ordinal scale with more than two categories), which, in the 
authors’ opinion, are the majority of tests to which construc-
tion products are subjected, the determination of a PDF is an 
issue requiring extensive inter-laboratory tests performed on 
repeatable items [5‒7]. Usually this is not possible for tests on 
construction products.

Linking a value being measured with a PDF that is assigned 
to it is much easier for quantitative methods, for which the 
estimation of the uncertainty of a test result, allowing one to 
provide a PDF, is subject to numerous guidelines and instruc-
tions. The basic principles have been developed by the Joint 
Committee for Guides in Metrology [8], and are commonly 
applied by virtually all laboratories. However, as will be 
demonstrated for destructive (e.g. mechanical) testing, the 
estimation of uncertainty may be associated with numerous 
ambiguities.

Presented by Walker et al. [9] typology and terminology of 
harmonized uncertainty provide uncertainity identification by 
location, including inter alia parameter uncertainty (associated 
with the variability of input data) and model uncertainty (asso-
ciated also, but not only with lack of sufficient understanding 
of the system). These two kind of uncertainty sources are 
presented in test results and in estimation of uncertainty of 
the test results (uncertainty of estimated uncertainty). Vari-
ability relating to laboratory testing results has many compo-
nents. Some of them, e.g. metrological parameters of testing 
equipment, can be relatively easily expressed numerically 

1. Introduction

During decision-making processes, knowledge about uncer-
tainty of information which support the decision is crucial. 
Uncertainty is present at all levels of civil engineering: from 
testing of materials and products, material and structures mod-
elling to building process [1‒3]. In this paper only part of the 
process starting from material testing to subsequent assessment 
of construction product is considered.

Civil engineering uses an enormous variety of construction 
products which ultimately affect the fulfilment of safety-re-
lated requirements by a structure. Consequently, these products 
need to be evaluated. The evaluation is performed at numerous 
levels: starting from the microstructure of materials through the 
properties of component materials and ending with the perfor-
mance of a finished product. Laboratories perform various tests, 
including mechanical, physical and functional ones, on finished 
construction products for all types of resistance to exposure 
to e.g. temperature, water, UV radiation, pressure, mechanical 
shocks, fire, electromagnetic radiation and biological impacts. 
The range of requirements and the required laboratory tests 
on component materials and finished products is determined 
individually for each product type (e.g. in harmonised technical 
specifications) [4].

However, the fundamental question is: to what extent is the 
assessment of a product based on tests reliable?

In this context, the determination of relationships between 
the results of laboratory tests based on various conventions and 
the actual behaviour of a product during the subsequent use 
thereof may be a scientific challenge. It is not, however, the 
subject of this paper.
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(of course these parameters are also burdened with parameter 
uncertainty). There are, however, many unrecognised factors 
likely to affect the repeatability and reproducibility of tests, 
which are difficult to be identified precisely. Lack of sufficient 
knowledge leads to a very simplified and different models 
adopted by laboratories to estimation of the test result uncer-
tainty (model uncertainty).

The stage that follows laboratory tests is taking the results 
into account in further evaluations. At this stage, a uniform pro-
cedure is also missing. For certain products, statistical methods 
have been determined for taking the dispersion of tests results 
into account in the conformity assessment. However, this is 
usually (for example, for concrete [10]) related to tests repeated 
as part of the factory production control, where knowing of the 
variability of the entire population is essential. Methods for 
the evaluation of construction products’ quality based on the 
assumed producer’s risk and consumer’s risk have also been 
described [11]. In such schemes it is not necessary to know the 
population standard deviation and only the standard deviation 
of current results is taken into account; however, the minimum 
number of samples under such control is fifteen. In addition, 
specifications containing principles for taking variability into 
account relate only to the random dispersion of current results, 
expressed by the standard deviation. Most frequently, this is 
not the only source of potential variability of a result or the 
only component of uncertainty. In turn, general documents ad-
dressing the issue of taking uncertainty into account in the eval-
uation of conformity [12] are primarily adjusted to metrology, 
and their application in the assessment of construction products 
yields non-rational results i.e. there is no possibility for either 
positive or negative assessment.

As will be demonstrated in this paper, results of laboratory 
tests performed on the same test item may be characterised by 
a great variability, which is not easy to estimate. Where a lab-
oratory performing tests on a small (3÷5) number of samples 
due to necessity (costs, standard-related requirements) has 
poor knowledge of the possible variability of a result, uniform 
methods for the determination of an uncertainty are missing, 
and there are no rational principles of taking uncertainty into 
account in the evaluation of a product, considerable doubt arises 
over reliability of this evaluation. This issue is particularly rel-
evant to the characteristics related to safety of the structures in 
which the product will be used.

This paper, in order to discuss the influence of the variability 
of a material test result on the assessment of the product, uses 
the example of strength tests and evaluation of load-bearing 
capacity.

The authors have not found a publication which addresses 
this issue.

2. Basic aspects of estimation of uncertainty

In order to determine variability which may characterise a test 
result, uncertainty is estimated. The philosophy of the notion 
of uncertainty, arising from the laws of physics, is expressed in 
the statement contained in [8]: “The uncertainty of the result of 

a measurement reflects the lack of exact knowledge of the value 
of the measurand”. A formal definition of uncertainty presented 
in the VIM Vocabulary of Metrology [13] clearly indicates that 
this is a numerical value: “non-negative parameter character-
izing the dispersion of the quantity values being attributed to 
a measurand, based on the information used”.

While in the case of measurements of physical quantities 
(geometrical dimensions, force, weight) we speak of a mea-
surand, in the case of numerous tests on materials and construc-
tion products we rather speak of tested performance or char-
acteristic, the testing of which is based on specific procedures, 
and the result is defined by the method (e.g. determination of 
puncture resistance by falling cone method). When applying 
the philosophy presented in EA Guidelines 4/16 [1], while es-
timating the uncertainty, a test result must be treated similarly 
to a measurement result. However, examples of significant con-
straints relating to the estimation of uncertainty of test results 
as compared to the estimation of uncertainty of measurement 
will be demonstrated further on.

These constraints, do not allow one to obtain reliable 
uncertainty values, and therefore do not allow one to thor-
oughly evaluate the variability which may characterise a test 
result. Furthermore, laboratories adopt different approaches 
to estimating the uncertainty, which – for the same sets of 
results – may produce divergent uncertainty values. The main 
differences arise from other methods of taking factors 
affecting the result into account, and applying other expansion 
coefficients.

2.1. Evaluation of the influence of external factors. In order 
to construct a PDF for a test result, a mathematical model is 
required which takes into account the dependence of the output 
quantity on all quantities affecting the final result [8, 1]. Where 
it is not possible to directly include a quantity affecting the 
result (e.g. a change to environmental conditions or the in-
fluence of an operator) into a mathematical model, the basic 
research method assessing the effect of individual factors on 
the variability of results is multiple repetitions with an isolated 
change to particular factors [14]. Such experimental evaluations 
of component uncertainties are possible where measurements 
are involved which may be repeated many times on the same 
item (e.g. measurement of weight or length), or where it is 
possible to obtain a large amount of homogeneous test mate-
rial (e.g. testing for a solution’s concentration in chemistry). 
However, it is difficult to imagine experiments involving mul-
tiple repetitions which are aimed at evaluating the influence 
of random effects on the result of strength tests of large-size 
concrete structural components. Unreasonably high costs are 
not the only problem in such case. Another aspect ruling out 
such an experiment is the fact that it would not be possible, 
even with multiple repetitions, to assign variability of a result 
to specific factors during the test, because the test item itself is 
characterised by significant variability (heterogeneity), and the 
test cannot be repeated on the same sample.

Determination of flexural resistance of lintels according 
to EN 846‒9 [15] is one of the tests examples in which the 
standard deviation of results is affected by both random effects 
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associated with the test itself and the heterogeneity of the tested 
items. Table 1 shows illustrative results of the tests of four 
different lintels with three specimens of each. This example 
clearly shows that sample SD taken from results obtained in 
the same laboratory and similar or the same conditions (like 
equipment, operator, temperature), differ significantly for dif-
ferent product. In fact, laboratory cannot separate SD contribu-
tions coming from product heterogeneity and from laboratory 
uncertainty.

Obviously, the difference between values of standard devia-
tions is not only due to the differences in homogeneity between 
individual products; it is also related to the fact that the SD was 
calculated based on three results, and not the entire population.

However, sample SD is often the only information on vari-
ability available to the laboratory, and it is frequently treated 
as the main component of the uncertainty.

Another extremely different approach in the case of a sig-
nificant influence of a product’s heterogeneity on the SD of 
the result is to limit oneself to taking into account in uncer-
tainty only the components resulting from the accuracy of the 
used testing equipment (information obtained from calibration 
certificates). Both approaches may yield extremely different 
results. For data presented in Table 1, lintel 3, the standard un-
certainty related to the values of a mean from three samples and 
taking sample SD into account would be 7.3 kN, while taking 
into account only the accuracy of measuring equipment could 
yield standard uncertainty of approx. 0.5 kN (for the 1st class 
of a testing machine).

Table 1 
Results of flexural resistance of five different lintels, kN  

(Tests performed at the Building Research Institute Laboratory)

specimen Lintel

1 2 3 4

flexural resistance

1 89.1 82.1 89.1 82.5

2 90.6 79.6 100.0 95.4

3 95.4 71.4 74.7 89.0

Sample standard deviation: 
kN

% of sample mean
3.3
3.6

5.6
7.2

12.7
14.4

6.5
7.3

2.2. Coverage factors. Laboratories are required to provide 
expanded uncertainty of results at a confidence level of 95% 
[8, 1]. The expanded uncertainty U is obtained by multiplying 
the standard uncertainty u by a coverage factor kx:

 U = kx ¢ u (1)

Selection of the kx factor results from PDF. If u stands for 
combined uncertainty which is a resultant of many input quan-
tities with different PDFs, selection of the kx factor becomes 

a significant mathematical problem associated with model 
uncertainty [9] in estimation of tests uncertainty. Various ap-
proaches to this issue may result in significant divergences in 
estimated uncertainty of the test result.

3. Methods for the evaluation  
of results variability

Low precision (high SDs of repeatability and reproducibility) of 
certain research methods may result in a divergence of results 
obtained by different laboratories. Therefore, the same product 
can be evaluated differently when it is re-tested [16].

For science branches such as chemistry or biology, tests 
for proficiency and inter-laboratory tests are of great signifi-
cance to the evaluation of variability of results. A possibility 
of external estimation of the assigned value in inter-laboratory 
tests (e.g. by the use of standard solutions) allows one to draw 
conclusions about the bias, precision and uncertainty of a par-
ticular laboratory [e.g. 17, 18]. For most tests on construction 
products, the assigned value is unknown. There are no reference 
materials and it is impossible to repeat a test on the same item 
because it is destroyed. This reduces possibilities to draw con-
clusions about the laboratory uncertainty based on the results 
of inter-laboratory comparisons [19]. Therefore, laboratories 
are usually condemned to rely on their own, simplified analysis 
of uncertainty.

3.1. Dispersion of results and standard deviations. In order 
to evaluate how great the difference between results of tests on 
the same material can hypothetically be, an example of tensile 
strength tests in accordance with the EN ISO 6892‒1 standard 
[20] was used. It was based on the results of thirty tests per-
formed in one laboratory (Building Research Institute Labora-
tory) under repeatability conditions. In this article these results 
will be referred to as the “population”.

Tensile tests are usually performed on five samples, which 
can be compared to the sampling of a five-element set from 
a population of results. Therefore, ten sets of five samples each 
were randomly selected from the population of stress–strain 
curves R = f(e). The random selection was performed using 
“Sampling” function in the Analysis ToolPak package of Mic-
rosoft Excel software.

Such sampling may yield significantly different results in 
terms of both values and their dispersion. This is presented 
in Fig. 1. For eleven selected values of strain, the following 
differences were shown:

 Δ = R ̅ p ¡ R ̅ i and Δs = σ ¡ si (2)

Where:
R ̅ p –  mean value of stress at a particular strain e for the entire 

population of results, MPa
R ̅ i –  mean value of stress for set i consisting of five randomly 

selected results from the population, MPa 
σ – standard deviation for the population
si – sample standard deviation for set i
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The analogously obtained values ∆ and ∆s for the maximum 
stress Rm were also included in the figure.

As can be seen in Fig. 1, the differences between stress re-
sults for five-sample sets randomly selected from the population 
are surprisingly large.

The largest difference between the mean stress for the 
five-sample set and for the population reached a value of 
∆max = 10.2 MPa (approx. 3% of the value being measured). 
The largest difference between the standard deviation of the 
population and the five-sample set was ∆smax = 22.1 MPa. 
These results confirm that where tests on the same material 
in the same laboratory are performed several times, obtained 
values can be significantly different in both the value and the 
uncertainty assigned to that value.

3.2 Examples of methods for the estimation of uncertainties, 
and the consequences of their use. The following examples 
(3.2.1–3.2.6) show the differences which may occur in the eval-
uation of the variability of results. An estimation of uncertain-
ties was performed, making various theoretical assumptions and 
using various sets of results from the same population. Some of 
the presented methods for the estimation of uncertainties cannot 
be considered correct; however, they are presented in order to 
illustrate the issue, as they occur very frequently in laboratory 
practice. The aim of this paper, however, is not to conduct full 
analysis of factors contributing to the uncertainty of tensile tests 

results. Therefore, simplifications were used, which involved 
inter alia not taking into account the contribution of the elon-
gation measurement in the uncertainty budget. Therefore, the 
values of maximum stress Rm, in relation to which a certain 
independence from elongation can be adopted, were selected 
as the data for the examples presented below.

Results of the estimated uncertainties and the maximum and 
minimum results for Rm obtained using the methods described 
below are presented in Table 2.

Table 2 
Differences in uncertainty values obtained using different methods 

and different sets of results. u max, u min / U max, 
U min – maximum and minimum obtained value of standard 

uncertainty/expanded uncertainty. kx – coverage factor. 
All values except for kx, in MPa

Method 
described 
in point:

Rm max
Rm min
(MPa)

u max
u min
(MPa)

kx U max
U min
(MPa)

3.2.1
399.6

386.7

0.57 2 1.2
1.2

3.2.2, 
3.2.3

6.7 2 13,4

3.2.4
391.8

388.6

7.1
6.7

2 14
13

3.2.5 7.10
6.67

2.1
1.9

14.9
12.7

3.2.6.a
391.8

388.6

2.4
0.4

2.78 6.6
1.1

3.2.6.b 2.4
0.4

2.13 5.1
0.8

3.2.1. Uncertainty resulting from standard deviation of the 
population. In order to obtain information on the dispersion 
of results within the population, standard deviation σ(Rm) for 
all results of the maximum stress was estimated. The value of 
the SD was 3.1 MPa.

As the result of the test for maximum stress is a mean value 
from all samples, the following was adopted as standard uncer-
tainty in this case:

 

4 

 
 

Fig. 1. Differences between the values of the means (a) and standard 
deviations (b) obtained in accordance with equation (2).  
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expanded uncertainty was obtained by using kx = 2 i.e. an 
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The presented method for estimating uncertainty does not 
take into account the variability resulting from the 
measurement equipment used, which, as will be shown in 
the next section, yielded an understated value of 
uncertainty in this case. 
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equipment used into account. A typical method used in 
laboratory practice for the determination of uncertainty in 
tensile stress testing, taking into account also the 
parameters of the equipment used (such an approach was 
presented by e.g. L. Brunarski et al. [21]), is based on the 
following model formulated to account for the interrelation 
of the input quantities that influence the result: 
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σ – SD for the population
N = 30 – number of samples

Having assumed a PDF with a normal distribution, expanded 
uncertainty was obtained by using kx = 2 i.e. an approximate 
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The presented method for estimating uncertainty does not 
take into account the variability resulting from the measurement 
equipment used, which, as will be shown in the next section, 
yielded an understated value of uncertainty in this case.

3.2.2 Taking parameters of the measurement equipment used 
into account. A typical method used in laboratory practice for 
the determination of uncertainty in tensile stress testing, taking 
into account also the parameters of the equipment used (such 
an approach was presented by e.g. L. Brunarski et al. [21]), is 
based on the following model formulated to account for the 
interrelation of the input quantities that influence the result:
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F – force, N 
a, b – respectively, width and thickness of the sample, 
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quantities u(xi) into standard uncertainty of the output 
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Where ci is the sensitivity coefficient. 
The PDF of component F is characterised by the 

expectation value, which is a result of the measurement of 
force and u(F) – standard uncertainty related to the 
measurement of force. In simple terms, when assuming the 
1st class of a testing machine, a rectangular distribution of 
the PDF can be assumed, and it can be presented as [8]: 
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Similarly, in order to estimate the components resulting 
from measurement of the width and thickness of the 
sample: u(a) and u(b), one can use the data resulting from 
the calibration of measuring instruments. Assuming that 
the error in a calibration certificate is equal to 0, the 
following are taken into account: uncertainty of calibration 
(PDF with normal distribution) and the possible reading 
error resulting from resolution of the instrument (PDF with 
rectangular distribution). It is also frequently assumed that 
the reading error has been taken into account in the 
uncertainty of calibration. Such an assumption was made in 
this example. The quantities a = 19.50 mm and b = 0.95 
mm were measured using a slide calliper, for which the 
expanded uncertainty in the calibration certificate was 
0.031 mm (normal distribution of PDF). 

The influence of all random factors, during the 
measurement of both the force and the dimensions of the 
sample, is taken into account in the spread of results dR 
with a PDF with normal distribution and the expectation 
value of 0. In this case, the complete population of samples 
was still used, therefore the value obtained in section 3.2.1 
was adopted as standard uncertainty. 

At the level of estimation of expanded uncertainty, one 
must take into account that the PDF assigned to the output 
quantity R, may have a distribution other than normal, as it 
is a combination of four functions with various scales and 
distributions.  
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Limit Theorem (CLT) indicated in the GUM Guide [8] is 
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is not dominated by a standard uncertainty component 
obtained from a Type A evaluation based on just a few 

observations, or by a standard uncertainty component 
obtained from a Type B evaluation based on an assumed 
rectangular distribution, it can be assumed that the output 
quantity has a normal distribution, and we obtain for 
expanded uncertainty of the output value for a level of 
confidence 95%, kx  2. 

The estimated uncertainty is presented in Table 2, 
section 3.2.2, and, as can be seen, its value is several times 
higher than the value of the uncertainty based only on the 
standard deviation of test results (3.2.1) (in contrast to the 
results described in section 2.1). 
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νi  – number of the degrees of freedom for input quantity xi 
y – output quantity 

In this case, however, given that for the components 
estimated using method B (according to [8]: method of 
evaluation of uncertainty by means other than the 
statistical analysis of series of observations, e.g. calibration 
certificates, permissible error) the number of the degrees of 
freedom ν = is adopted in accordance with [8], and these 
components had a dominant effect on the uncertainty, the 
effective number of the degrees of freedom reached values 
exceeding 300, therefore factor kx = t95 (νeff ) = 2. 

As is indirectly apparent from the data shown in Fig. 1, 
standard deviations of results for values of stresses other 
than Rm may be significantly greater, and hence the νeff  
values may be different as well. This is of no practical 
significance where dR was determined based on results for 
thirty samples; however, for N = 5 samples, where dR 
becomes the dominant component, νeff 4 and t952.78.  
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in section 3.1. The maximum value of SD was smax = 5.33 
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xi, is carried out in accordance with the following equation 
[8]:  
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Where ci is the sensitivity coefficient. 
The PDF of component F is characterised by the 

expectation value, which is a result of the measurement of 
force and u(F) – standard uncertainty related to the 
measurement of force. In simple terms, when assuming the 
1st class of a testing machine, a rectangular distribution of 
the PDF can be assumed, and it can be presented as [8]: 

FFu  01,0
3
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Similarly, in order to estimate the components resulting 
from measurement of the width and thickness of the 
sample: u(a) and u(b), one can use the data resulting from 
the calibration of measuring instruments. Assuming that 
the error in a calibration certificate is equal to 0, the 
following are taken into account: uncertainty of calibration 
(PDF with normal distribution) and the possible reading 
error resulting from resolution of the instrument (PDF with 
rectangular distribution). It is also frequently assumed that 
the reading error has been taken into account in the 
uncertainty of calibration. Such an assumption was made in 
this example. The quantities a = 19.50 mm and b = 0.95 
mm were measured using a slide calliper, for which the 
expanded uncertainty in the calibration certificate was 
0.031 mm (normal distribution of PDF). 

The influence of all random factors, during the 
measurement of both the force and the dimensions of the 
sample, is taken into account in the spread of results dR 
with a PDF with normal distribution and the expectation 
value of 0. In this case, the complete population of samples 
was still used, therefore the value obtained in section 3.2.1 
was adopted as standard uncertainty. 

At the level of estimation of expanded uncertainty, one 
must take into account that the PDF assigned to the output 
quantity R, may have a distribution other than normal, as it 
is a combination of four functions with various scales and 
distributions.  

However, when a practical consequence of the Central 
Limit Theorem (CLT) indicated in the GUM Guide [8] is 
applied, namely where the combined standard uncertainty 
is not dominated by a standard uncertainty component 
obtained from a Type A evaluation based on just a few 

observations, or by a standard uncertainty component 
obtained from a Type B evaluation based on an assumed 
rectangular distribution, it can be assumed that the output 
quantity has a normal distribution, and we obtain for 
expanded uncertainty of the output value for a level of 
confidence 95%, kx  2. 

The estimated uncertainty is presented in Table 2, 
section 3.2.2, and, as can be seen, its value is several times 
higher than the value of the uncertainty based only on the 
standard deviation of test results (3.2.1) (in contrast to the 
results described in section 2.1). 

 
3.2.3. Welch-Satterthwaite formula. The dominant 
influence of the components associated with the 
measurement may deny the possibility for application of an 
assumption based on the CLT with a normal distribution of 
the input quantity. Where the application of CLT becomes 
unjustified, it is recommended [8] that t-distribution with 
an effective degree of freedom veff obtained from the 
Welch-Satterthwaite formula be applied.  
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νi  – number of the degrees of freedom for input quantity xi 
y – output quantity 

In this case, however, given that for the components 
estimated using method B (according to [8]: method of 
evaluation of uncertainty by means other than the 
statistical analysis of series of observations, e.g. calibration 
certificates, permissible error) the number of the degrees of 
freedom ν = is adopted in accordance with [8], and these 
components had a dominant effect on the uncertainty, the 
effective number of the degrees of freedom reached values 
exceeding 300, therefore factor kx = t95 (νeff ) = 2. 

As is indirectly apparent from the data shown in Fig. 1, 
standard deviations of results for values of stresses other 
than Rm may be significantly greater, and hence the νeff  
values may be different as well. This is of no practical 
significance where dR was determined based on results for 
thirty samples; however, for N = 5 samples, where dR 
becomes the dominant component, νeff 4 and t952.78.  
 
3.2.4. Uncertainty for five-sample sets. Examples 3.2.1, 
3.2.2 and 3.2.3 concerned a situation where a population of 
results is at our disposal, which usually does not occur in a 
third party’s testing laboratory. In this example, two sets, 
with the maximum and minimum value of sample SD of 
the Rm values, were selected from ten five-sample sets 
randomly selected in accordance with the above description 
in section 3.1. The maximum value of SD was smax = 5.33 
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Where ci is the sensitivity coefficient. 
The PDF of component F is characterised by the 

expectation value, which is a result of the measurement of 
force and u(F) – standard uncertainty related to the 
measurement of force. In simple terms, when assuming the 
1st class of a testing machine, a rectangular distribution of 
the PDF can be assumed, and it can be presented as [8]: 
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Similarly, in order to estimate the components resulting 
from measurement of the width and thickness of the 
sample: u(a) and u(b), one can use the data resulting from 
the calibration of measuring instruments. Assuming that 
the error in a calibration certificate is equal to 0, the 
following are taken into account: uncertainty of calibration 
(PDF with normal distribution) and the possible reading 
error resulting from resolution of the instrument (PDF with 
rectangular distribution). It is also frequently assumed that 
the reading error has been taken into account in the 
uncertainty of calibration. Such an assumption was made in 
this example. The quantities a = 19.50 mm and b = 0.95 
mm were measured using a slide calliper, for which the 
expanded uncertainty in the calibration certificate was 
0.031 mm (normal distribution of PDF). 

The influence of all random factors, during the 
measurement of both the force and the dimensions of the 
sample, is taken into account in the spread of results dR 
with a PDF with normal distribution and the expectation 
value of 0. In this case, the complete population of samples 
was still used, therefore the value obtained in section 3.2.1 
was adopted as standard uncertainty. 

At the level of estimation of expanded uncertainty, one 
must take into account that the PDF assigned to the output 
quantity R, may have a distribution other than normal, as it 
is a combination of four functions with various scales and 
distributions.  

However, when a practical consequence of the Central 
Limit Theorem (CLT) indicated in the GUM Guide [8] is 
applied, namely where the combined standard uncertainty 
is not dominated by a standard uncertainty component 
obtained from a Type A evaluation based on just a few 

observations, or by a standard uncertainty component 
obtained from a Type B evaluation based on an assumed 
rectangular distribution, it can be assumed that the output 
quantity has a normal distribution, and we obtain for 
expanded uncertainty of the output value for a level of 
confidence 95%, kx  2. 

The estimated uncertainty is presented in Table 2, 
section 3.2.2, and, as can be seen, its value is several times 
higher than the value of the uncertainty based only on the 
standard deviation of test results (3.2.1) (in contrast to the 
results described in section 2.1). 

 
3.2.3. Welch-Satterthwaite formula. The dominant 
influence of the components associated with the 
measurement may deny the possibility for application of an 
assumption based on the CLT with a normal distribution of 
the input quantity. Where the application of CLT becomes 
unjustified, it is recommended [8] that t-distribution with 
an effective degree of freedom veff obtained from the 
Welch-Satterthwaite formula be applied.  
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νi  – number of the degrees of freedom for input quantity xi 
y – output quantity 

In this case, however, given that for the components 
estimated using method B (according to [8]: method of 
evaluation of uncertainty by means other than the 
statistical analysis of series of observations, e.g. calibration 
certificates, permissible error) the number of the degrees of 
freedom ν = is adopted in accordance with [8], and these 
components had a dominant effect on the uncertainty, the 
effective number of the degrees of freedom reached values 
exceeding 300, therefore factor kx = t95 (νeff ) = 2. 

As is indirectly apparent from the data shown in Fig. 1, 
standard deviations of results for values of stresses other 
than Rm may be significantly greater, and hence the νeff  
values may be different as well. This is of no practical 
significance where dR was determined based on results for 
thirty samples; however, for N = 5 samples, where dR 
becomes the dominant component, νeff 4 and t952.78.  
 
3.2.4. Uncertainty for five-sample sets. Examples 3.2.1, 
3.2.2 and 3.2.3 concerned a situation where a population of 
results is at our disposal, which usually does not occur in a 
third party’s testing laboratory. In this example, two sets, 
with the maximum and minimum value of sample SD of 
the Rm values, were selected from ten five-sample sets 
randomly selected in accordance with the above description 
in section 3.1. The maximum value of SD was smax = 5.33 
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Similarly, in order to estimate the components resulting from 
measurement of the width and thickness of the sample: u(a) 
and u(b), one can use the data resulting from the calibration of 
measuring instruments. Assuming that the error in a calibration 
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uncertainty of calibration (PDF with normal distribution) and 
the possible reading error resulting from resolution of the instru-
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were measured using a slide calliper, for which the expanded 
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distribution of PDF).
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of both the force and the dimensions of the sample, is taken into 
account in the spread of results dR with a PDF with normal dis-
tribution and the expectation value of 0. In this case, the com-
plete population of samples was still used, therefore the value 
obtained in section 3.2.1 was adopted as standard uncertainty.

At the level of estimation of expanded uncertainty, one must 
take into account that the PDF assigned to the output quantity R, 
may have a distribution other than normal, as it is a combination 
of four functions with various scales and distributions.
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Limit Theorem (CLT) indicated in the GUM Guide [8] is ap-
plied, namely where the combined standard uncertainty “is 
not dominated by a standard uncertainty component obtained 
from a Type A evaluation based on just a few observations, or 
by a standard uncertainty component obtained from a Type B 
evaluation based on an assumed rectangular distribution”, it can 
be assumed that the output quantity has a normal distribution, 
and we obtain for expanded uncertainty of the output value for 
a level of confidence 95%, kx ¼ 2.

The estimated uncertainty is presented in Table 2, sec-
tion 3.2.2, and, as can be seen, its value is several times higher 
than the value of the uncertainty based only on the standard 
deviation of test results (3.2.1) (in contrast to the results de-
scribed in section 2.1).

3.2.3. Welch-Satterthwaite formula. The dominant influence 
of the components associated with the measurement may deny 
the possibility for application of an assumption based on the 
CLT with a normal distribution of the input quantity. Where 
the application of CLT becomes unjustified, it is recommended 
[8] that t-distribution with an effective degree of freedom veff 
obtained from the Welch-Satterthwaite formula be applied.
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The conversion of standard uncertainties of input 
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quantity u(Y) in the case of non-correlated input quantities 
xi, is carried out in accordance with the following equation 
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Where ci is the sensitivity coefficient. 
The PDF of component F is characterised by the 

expectation value, which is a result of the measurement of 
force and u(F) – standard uncertainty related to the 
measurement of force. In simple terms, when assuming the 
1st class of a testing machine, a rectangular distribution of 
the PDF can be assumed, and it can be presented as [8]: 
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Similarly, in order to estimate the components resulting 
from measurement of the width and thickness of the 
sample: u(a) and u(b), one can use the data resulting from 
the calibration of measuring instruments. Assuming that 
the error in a calibration certificate is equal to 0, the 
following are taken into account: uncertainty of calibration 
(PDF with normal distribution) and the possible reading 
error resulting from resolution of the instrument (PDF with 
rectangular distribution). It is also frequently assumed that 
the reading error has been taken into account in the 
uncertainty of calibration. Such an assumption was made in 
this example. The quantities a = 19.50 mm and b = 0.95 
mm were measured using a slide calliper, for which the 
expanded uncertainty in the calibration certificate was 
0.031 mm (normal distribution of PDF). 

The influence of all random factors, during the 
measurement of both the force and the dimensions of the 
sample, is taken into account in the spread of results dR 
with a PDF with normal distribution and the expectation 
value of 0. In this case, the complete population of samples 
was still used, therefore the value obtained in section 3.2.1 
was adopted as standard uncertainty. 

At the level of estimation of expanded uncertainty, one 
must take into account that the PDF assigned to the output 
quantity R, may have a distribution other than normal, as it 
is a combination of four functions with various scales and 
distributions.  

However, when a practical consequence of the Central 
Limit Theorem (CLT) indicated in the GUM Guide [8] is 
applied, namely where the combined standard uncertainty 
is not dominated by a standard uncertainty component 
obtained from a Type A evaluation based on just a few 

observations, or by a standard uncertainty component 
obtained from a Type B evaluation based on an assumed 
rectangular distribution, it can be assumed that the output 
quantity has a normal distribution, and we obtain for 
expanded uncertainty of the output value for a level of 
confidence 95%, kx  2. 

The estimated uncertainty is presented in Table 2, 
section 3.2.2, and, as can be seen, its value is several times 
higher than the value of the uncertainty based only on the 
standard deviation of test results (3.2.1) (in contrast to the 
results described in section 2.1). 

 
3.2.3. Welch-Satterthwaite formula. The dominant 
influence of the components associated with the 
measurement may deny the possibility for application of an 
assumption based on the CLT with a normal distribution of 
the input quantity. Where the application of CLT becomes 
unjustified, it is recommended [8] that t-distribution with 
an effective degree of freedom veff obtained from the 
Welch-Satterthwaite formula be applied.  
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νi  – number of the degrees of freedom for input quantity xi 
y – output quantity 

In this case, however, given that for the components 
estimated using method B (according to [8]: method of 
evaluation of uncertainty by means other than the 
statistical analysis of series of observations, e.g. calibration 
certificates, permissible error) the number of the degrees of 
freedom ν = is adopted in accordance with [8], and these 
components had a dominant effect on the uncertainty, the 
effective number of the degrees of freedom reached values 
exceeding 300, therefore factor kx = t95 (νeff ) = 2. 

As is indirectly apparent from the data shown in Fig. 1, 
standard deviations of results for values of stresses other 
than Rm may be significantly greater, and hence the νeff  
values may be different as well. This is of no practical 
significance where dR was determined based on results for 
thirty samples; however, for N = 5 samples, where dR 
becomes the dominant component, νeff 4 and t952.78.  
 
3.2.4. Uncertainty for five-sample sets. Examples 3.2.1, 
3.2.2 and 3.2.3 concerned a situation where a population of 
results is at our disposal, which usually does not occur in a 
third party’s testing laboratory. In this example, two sets, 
with the maximum and minimum value of sample SD of 
the Rm values, were selected from ten five-sample sets 
randomly selected in accordance with the above description 
in section 3.1. The maximum value of SD was smax = 5.33 
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νi – number of the degrees of freedom for input quantity xi
y – output quantity

In this case, however, given that for the components esti-
mated using method B (according to [8]: “method of evaluation 
of uncertainty by means other than the statistical analysis of 
series of observations”, e.g. calibration certificates, permissible 
error) the number of the degrees of freedom ν = 1 is adopted 
in accordance with [8], and these components had a dominant 
effect on the uncertainty, the effective number of the degrees 
of freedom reached values exceeding 300, therefore factor 
kx = t95 (νeff ) = 2.

As is indirectly apparent from the data shown in Fig. 1, 
standard deviations of results for values of stresses other than 
Rm may be significantly greater, and hence the νeff values may be 
different as well. This is of no practical significance where dR 
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was determined based on results for thirty samples; however, 
for N = 5 samples, where dR becomes the dominant compo-
nent, νeff →4 and t95 →2.78.

3.2.4. Uncertainty for five-sample sets. Examples 3.2.1, 3.2.2 
and 3.2.3 concerned a situation where a population of results is 
at our disposal, which usually does not occur in a third party’s 
testing laboratory. In this example, two sets, with the maximum 
and minimum value of sample SD of the Rm values, were se-
lected from ten five-sample sets randomly selected in accor-
dance with the above description in section 3.1. The maximum 
value of SD was smax = 5.33 MPa, the minimum value was 
smin = 0.84 MPa. In further calculations, the value of SD for 
the mean was taken into account, in accordance with formula 
(3), where σ = s and N = 5.

For both sets, with the maximum and minimum SD, the 
uncertainty was estimated based on the model of measurement 
presented in equation (4).

Two values of standard uncertainty were obtained, namely 
umax and umin. Table 2 presents values corresponding to them, 
namely Rmmax and Rmmin, which are mean values from five 
samples set with the maximum and minimum value of SD.

Due to the unknown distribution of the combined uncer-
tainty (the input PDFs have normal and rectangular distributions 
with various scales), in order to estimate the expanded com-
bined uncertainty, a t-distribution with an effective number of 
degrees of freedom veff  obtained from the Welch-Satterthwaite 
formula [8] was applied. Similarly to section 3.2.3, in both cases 
kx = t95(νeff ) = 2 was obtained.

3.2.5. Monte Carlo Method. Where combined uncertainty is 
affected by several quantities with various distributions, and 
analytical methods are troublesome, the application of the prob-
abilistic Monte Carlo Method in order to determine the PDF 
for the output quantity [22] is also allowed. In this study, it 
was applied using a tool developed by the National Institute 
of Standards and Technology [23]. Assumptions identical to 
those in section 3.2.4 were adopted as well as the number of 
realisations of the output quantity: 1,000,000.

In this case, the value of factor kx indicated dependence on 
the value of SD, and for smax it was 2.1, while for smin it was 
1.9. The results are presented in Table 2.

3.2.6 Coverage factors in the case of uncertainty based on 
standard deviation for a small number of samples. When we 
assume the lack of a significant influence of the measurement 
equipment on combined uncertainty (as in the case of the re-
sults of flexural resistance of lintels – Table 1), the unresolved 
question, given such a small number of samples, remains: what 
coverage factor kx should be applied? Due to the small number 
of samples, the application of factor kx = 2 resulting from normal 
distribution is not justified.

In his study, H. Huang [24] compared three models for 
calculating the expanded uncertainty using the experimental 
standard deviation: the Student’s t model, Craig model, and 
Bayesian model. The results indicated that the Student’s t-model 
is the least precise and accurate. However, that model is very 

often applied practically. Expanded uncertainty is expressed by 
the following equation:
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MPa, the minimum value was smin = 0.84 MPa. In further 
calculations, the value of SD for the mean was taken into 
account, in accordance with formula (3), where σ = s and 
N = 5. 

For both sets, with the maximum and minimum SD, the 
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When we assume the lack of a significant influence of the 
measurement equipment on combined uncertainty (as in the 
case of the results of flexural resistance of lintels – 
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application of factor kx = 2 resulting from normal 
distribution is not justified.  

In his study, H. Huang [24] compared three models for 
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Craig model, and Bayesian model. The results indicated 
that the Student’s t-model is the least precise and accurate. 
However, that model is very often applied practically. 
Expanded uncertainty is expressed by the following 
equation: 

N
stU  95     (8) 

Where: 
t95 – value from the t-distribution for confidence level of 
95% and the number of the degrees of freedom N-1 

N – number of samples  
s – sample SD. 

 
According to H. Huang [24], when prior information on 

the SD population is not available, the Craig model is 
preferred. According to the Craig model, for N-samples 
taken from a population with a normal distribution, 
expanded uncertainty should be expressed by the following 
formula [24, 25]: 
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Where: 
Γ – Gamma function. 
 
In Table 2, section 3.2.6.a, values are provided which result 
from the application of the Student’s model, in accordance 
with equation (8), for the number of samples N = 5. In 
section 3.2.6.b, the Craig model was applied in accordance 
with equations (9) and (10), for the number of samples 
N = 5.  

The differences resulting from the application of the 
Craig and Student’s models were discussed in detail by 
H. Huang [24]. In this study, examples 3.2.6 a and b are 
treated only demonstratively.  
 

4. Numerical calculations of bearing capacity 
of thin-walled structure 

4.1. Material models 
The considerations presented in section 3 show that tests 

performed on the same material may yield, in the case of a 
small number of samples, both divergent results 
(section 3.1) and divergent information on the variability of 
results (section 3.2).  

The authors have thus asked themselves the question: 
what influence does this have on further evaluation of a 
construction product manufactured from the test material? 

Based on results selected from the population and on the 
estimated uncertainties, material models were determined, 
based on which further calculations of the load-bearing 
capacity and stability of the structural component of a 
building used as an example were made. The aim of these 
calculations was to determine to what extent the variability 
of a material model based on laboratory tests may affect the 
evaluation of the actual structure.  
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Where:
t95 –  value from the t-distribution for confidence level of 95% 

and the number of the degrees of freedom N-1
N – number of samples
s – sample SD.

According to H. Huang [24], when prior information on the 
SD population is not available, the Craig model is preferred. 
According to the Craig model, for N-samples taken from a pop-
ulation with a normal distribution, expanded uncertainty should 
be expressed by the following formula [24, 25]:
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MPa, the minimum value was smin = 0.84 MPa. In further 
calculations, the value of SD for the mean was taken into 
account, in accordance with formula (3), where σ = s and 
N = 5. 

For both sets, with the maximum and minimum SD, the 
uncertainty was estimated based on the model of 
measurement presented in equation (4).  

Two values of standard uncertainty were obtained, 
namely umax and umin. Table 2 presents values corresponding 
to them, namely Rmmax and Rmmin, which are mean values 
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the Welch-Satterthwaite formula [8] was applied. Similarly 
to section 3.2.3, in both cases kx = t95 (νeff ) = 2 was obtained. 

 
3.2.5. Monte Carlo Method. Where combined uncertainty 
is affected by several quantities with various distributions, 
and analytical methods are troublesome, the application of 
the probabilistic Monte Carlo Method in order to determine 
the PDF for the output quantity [22] is also allowed. In this 
study, it was applied using a tool developed by the National 
Institute of Standards and Technology [23]. Assumptions 
identical to those in section 3.2.4 were adopted as well as 
the number of realisations of the output quantity: 
1,000,000. 

In this case, the value of factor kx indicated dependence 
on the value of SD, and for smax it was 2.1, while for smin it 
was 1.9. The results are presented in Table 2. 

 
3.2.6 Coverage factors in the case of uncertainty based 
on standard deviation for a small number of samples. 
When we assume the lack of a significant influence of the 
measurement equipment on combined uncertainty (as in the 
case of the results of flexural resistance of lintels – 
Table 1), the unresolved question, given such a small 
number of samples, remains: what coverage factor kx 
should be applied? Due to the small number of samples, the 
application of factor kx = 2 resulting from normal 
distribution is not justified.  

In his study, H. Huang [24] compared three models for 
calculating the expanded uncertainty using the 
experimental standard deviation: the Student’s t model, 
Craig model, and Bayesian model. The results indicated 
that the Student’s t-model is the least precise and accurate. 
However, that model is very often applied practically. 
Expanded uncertainty is expressed by the following 
equation: 

N
stU  95     (8) 

Where: 
t95 – value from the t-distribution for confidence level of 
95% and the number of the degrees of freedom N-1 

N – number of samples  
s – sample SD. 

 
According to H. Huang [24], when prior information on 

the SD population is not available, the Craig model is 
preferred. According to the Craig model, for N-samples 
taken from a population with a normal distribution, 
expanded uncertainty should be expressed by the following 
formula [24, 25]: 
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Where: 
Γ – Gamma function. 
 
In Table 2, section 3.2.6.a, values are provided which result 
from the application of the Student’s model, in accordance 
with equation (8), for the number of samples N = 5. In 
section 3.2.6.b, the Craig model was applied in accordance 
with equations (9) and (10), for the number of samples 
N = 5.  

The differences resulting from the application of the 
Craig and Student’s models were discussed in detail by 
H. Huang [24]. In this study, examples 3.2.6 a and b are 
treated only demonstratively.  
 

4. Numerical calculations of bearing capacity 
of thin-walled structure 

4.1. Material models 
The considerations presented in section 3 show that tests 

performed on the same material may yield, in the case of a 
small number of samples, both divergent results 
(section 3.1) and divergent information on the variability of 
results (section 3.2).  

The authors have thus asked themselves the question: 
what influence does this have on further evaluation of a 
construction product manufactured from the test material? 

Based on results selected from the population and on the 
estimated uncertainties, material models were determined, 
based on which further calculations of the load-bearing 
capacity and stability of the structural component of a 
building used as an example were made. The aim of these 
calculations was to determine to what extent the variability 
of a material model based on laboratory tests may affect the 
evaluation of the actual structure.  
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In Table 2, section 3.2.6.a, values are provided which re-
sult from the application of the Student’s model, in accordance 
with equation (8), for the number of samples N = 5. In section 
3.2.6.b, the Craig model was applied in accordance with equa-
tions (9) and (10), for the number of samples N = 5.

The differences resulting from the application of the Craig 
and Student’s models were discussed in detail by H. Huang 
[24]. In this study, examples 3.2.6 a and b are treated only de-
monstratively.

4. Numerical calculations of bearing capacity 
of thin-walled structure

4.1. Material models. The considerations presented in section 3 
show that tests performed on the same material may yield, in 
the case of a small number of samples, both divergent results 
(section 3.1) and divergent information on the variability of 
results (section 3.2).

The authors have thus asked themselves the question: what 
influence does this have on further evaluation of a construction 
product manufactured from the test material?

Based on results selected from the population and on the es-
timated uncertainties, material models were determined, based 
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on which further calculations of the load-bearing capacity and 
stability of the structural component of a building used as an 
example were made. The aim of these calculations was to deter-
mine to what extent the variability of a material model based on 
laboratory tests may affect the evaluation of the actual structure.

For further consideration, to create models A and B, results 
being extremely different to one another were selected from the 
population, in accordance with the following formulas:
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Table 2 
Differences in uncertainty values obtained using different methods and 
different sets of results. u max, u min / U max, U min – maximum and 

minimum obtained value of standard uncertainty/expanded uncertainty. 
kx-  coverage factor. All values except for kx, in MPa. 

Method 
described 
in point: 

Rm max 
Rm min   
(MPa) 

u max 
u min 
(MPa) 

kx U max 
U min 
(MPa) 

3.2.1 
399.6 
386.7 

0.57 2 1.2 
1.2 

3.2.2, 
3.2.3 

6.7 2 13,4 

3.2.4 391.8 
388.6 

7.1 
6.7 

2 14 
13 

3.2.5 7.10 
6.67 

2.1 
1.9 

14.9 
12.7 

3.2.6.a 
391.8 
388.6 

2.4 
0.4 

2.78 6.6 
1.1 

3.2.6.b 2.4 
0.4 

2.13 5.1 
0.8 

 
For further consideration, to create models A and B, 

results being extremely different to one another were 
selected from the population, in accordance with the 
following formulas: 

 
)()()( maxmin eUeReRA     (11) 
)()()( maxmax eUeReRB     (12) 

Where: 
Rmax(e), Rmin(e) – values of mean stresses calculated from 

five defined samples for a particular level of elongation. In 
order to calculate Rmax(e), the five highest values of stresses 
selected from the entire population were used, and to 
calculate Rmin(e), the five lowest values were used.  

Umax(e) – the maximum value of expanded uncertainty at 
a confidence level of 95% for a particular level of 
elongation, calculated in accordance with the scheme 
presented in section 3.2.4 at a coverage factor kx = 2 (the 
most often used in laboratories).  

It was assumed that the laboratory had no knowledge of 
the material submitted for testing, and the coefficients 
required for computational evaluation of bearing capacity 
(including the elasticity module) were only obtained based 
on tests, therefore the Young’s modulus (E) was calculated 
from curves RA(e) and RB(e). 

The thus obtained material models, whose values are 
presented in Table 3, are characterised by the following: at 
a confidence level of 95% within the entire population, no 
value of stress lower than RA(e) and higher than RB(e) for a 
particular strain e may occur, even if the uncertainty of the 
result is taken into account.  

For numerical computations using Ansys software, an 
elastoplastic multilinear material model with isotropic 
hardening was adopted [28, 29], which presented in 
coordinates σtrue – εln based on the following formula: 
 

εln = ∫ dl
l

l
l0

= ln ( l
l0
) = ln (l0+∆ll0

) = ln (1 + ∆l
l0
) = ln⁡(1 + εeng)  (13) 

 
Table 3 

Values of stresses adopted for the material models applied in further 
calculations, based on the values of RA(e) and RB(e) calculated in 

accordance with equations 11 and 12 

Strain e, (%) Stress, RA (MPa) Stress, RB (MPa) 
0.02 41.1 73.8 
0.06 106.5 159.0 
0.1 170.7 240.1 

0.14 234.6 312.1 
0.18 284.4 380.0 
0.5 344.0 384.9 
0.8 342.8 382.1 
2 361.4 391.2 
6 356.4 398.6 

10 360.2 400.3 
15 373.0 407.7 
20 373.8 408.9 
25 363.8 403.8 

Rm 374.0 410.2 
E- Young's 
modulus 

162.0 207.8 

 
 

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑒𝑒𝑒𝑒(1 + 𝜀𝜀𝑡𝑡𝑒𝑒𝑒𝑒)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 
Where: 
εln – relative logarithmic strain, mm/mm 
σtrue – true stress, MPa 
σeng =R – engineering stress (test result), MPa 
εeng = e – engineering strain (test result), mm/mm 
Δl – increase in the sample length, mm 
l0 – initial sample length, mm. 
 
Unlike the data listed in Table 3, the strains are expressed 
in m/m. Such preparation of data is necessary for their 
proper implementation into the Engineering Data Sources 
module of the Ansys software. Graphical presentation of 
material models A and B is provided in Fig. 2. 
 

4.2 Test item 
A comparison of the influence of the adopted material 

models on the  was performed based on thin-walled 
structures used in the construction sector.  A good example 
of such structures are profiled, circular arc-shaped steel 
sheets, used as roof covering for civil structures. 

 This type of structure was selected because they are 
particularly sensitive to changes in strength parameters of 
the material, as under certain forming conditions (e.g. large 
spans exceeding 20 m), the structure moves within a non-
elastic range, and the loss of load-bearing capacity results 
from the emergence of local yield hinges.   

Thin-walled profiled steel sheets are manufactured 
through the process of cold rolling, which allows one to 
obtain a single curved profile with characteristic corrugated 
web surfaces (Fig. 3).  
 

 (11)
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the material, as under certain forming conditions (e.g. large 
spans exceeding 20 m), the structure moves within a non-
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from the emergence of local yield hinges.   

Thin-walled profiled steel sheets are manufactured 
through the process of cold rolling, which allows one to 
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Where:
Rmax(e), Rmin(e) – values of mean stresses calculated from five 

defined samples for a particular level of elongation. In order 
to calculate Rmax(e), the five highest values of stresses se-
lected from the entire population were used, and to calculate 
Rmin(e), the five lowest values were used.

Umax(e) – the maximum value of expanded uncertainty at a con-
fidence level of 95% for a particular level of elongation, 
calculated in accordance with the scheme presented in sec-
tion 3.2.4 at a coverage factor kx = 2 (the most often used 
in laboratories).

It was assumed that the laboratory had no knowledge of 
the material submitted for testing, and the coefficients required 
for computational evaluation of bearing capacity (including the 
elasticity module) were only obtained based on tests, therefore 
the Young’s modulus (E) was calculated from curves RA(e) and 
RB(e).

The thus obtained material models, whose values are pre-
sented in Table 3, are characterised by the following: at a con-
fidence level of 95% within the entire population, no value of 
stress lower than RA(e) and higher than RB(e) for a particular 
strain e may occur, even if the uncertainty of the result is taken 
into account.

For numerical computations using Ansys software, an elas-
toplastic multilinear material model with isotropic hardening 
was adopted [28, 29], which presented in coordinates σtrue – εln 
based on the following formula:
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Where:
εln – relative logarithmic strain, mm/mm
σtrue – true stress, MPa
σeng = R – engineering stress (test result), MPa
εeng = e – engineering strain (test result), mm/mm
Δl – increase in the sample length, mm
l0 – initial sample length, mm.

Unlike the data listed in Table 3, the strains are expressed 
in m/m. Such preparation of data is necessary for their proper 
implementation into the Engineering Data Sources module of 
the Ansys software. Graphical presentation of material models 
A and B is provided in Fig. 2.

Table 3 
Values of stresses adopted for the material models applied in further 

calculations, based on the values of RA(e) and RB(e) calculated  
in accordance with equations 11 and 12

Strain e, (%) Stress, RA (MPa) Stress, RB (MPa)

0.02 041.1 073.8

0.06 106.5 159.0

0.10 170.7 240.1

0.14 234.6 312.1

0.18 284.4 380.0

0.50 344.0 384.9

0.80 342.8 382.1

2.00 361.4 391.2

6.00 356.4 398.6

10.00 360.2 400.3

15.00 373.0 407.7

20.00 373.8 408.9

25.00 363.8 403.8

Rm 374.0 410.2

E-Young’s modulus 162.0 207.8

Fig. 2. Stress – strain characteristics of the material model (a) model 
A; (b) model B. Multilinear isotropic hardening
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4.2. Test item. A comparison of the influence of the adopted 
material models on the was performed based on thin-walled 
structures used in the construction sector. A good example of 
such structures are profiled, circular arc-shaped steel sheets, 
used as roof covering for civil structures.

This type of structure was selected because they are particu-
larly sensitive to changes in strength parameters of the material, 
as under certain forming conditions (e.g. large spans exceeding 
20 m), the structure moves within a non-elastic range, and the 
loss of load-bearing capacity results from the emergence of 
local yield hinges.

Thin-walled profiled steel sheets are manufactured through 
the process of cold rolling, which allows one to obtain a single 
curved profile with characteristic corrugated web surfaces 
(Fig. 3).

bend radius of 9 m; span of 12 m; elevation of 2.3 m. The model 
comprises a single segment with corrugated and wavy surfaces, 
as presented in Fig. 3. Corrugations and waves on the profile 
surface were adopted based on the measurements of the geom-
etry of the actual component [26]. In order to represent phys-
ical conditions of the structure’s behaviour, the influence of the 
adjacent arc segments was modelled by appropriate boundary 
conditions (“remote point” [28] sets which allow a segment 
to be shifted in the direction of the force (direction along the 
Y and Z axes of the global co-ordinate system, Fig. 4)). The 
other degrees of freedom are blocked. Support is effected on 
the arc ends by “remote displacement” type supports, Fig. 4, in 
which displacements are blocked in three dimensions: dX, dY, 
dZ, rotations: MY, MZ.. Rotations of MZ supports in the direction 
perpendicular to the plane of the arc are released.

The load was represented using a set of concentrated forces, 
which is equivalent to the surface area loading, e.g. snow load 
(Fig. 5). In calculations, the set of forces was replaced by 
coupled kinematic inputs with gradual displacement up to the 
loosing of stability Kinematic impuls provides the convergence 
of nonlinear solutions.

Fig. 3. Profile surface after rolling

Individual profiles are joined together by kneading the free 
edges in order to form a continuous trapezoid surface. The thus 
formed arc-shaped surface supported on the extreme edges is 
a self-supporting component with no supporting substructure.

The corrugating on the middle surfaces of the profile (Fig. 3) 
change its flexular rigidity as compared to a profile with straight 
walls, and increase the tendency towards the formation of local 
instabilities.

The issue of load-bearing capacity and rigidity of cold-
rolled profiles has been addressed in studies and experiments 
[26, 27]. Based on these studies and experiments, it was con-
cluded that the load-bearing capacity and stability of profiles 
are determined by strong nonlinearities associated with the ge-
ometry of the profile and material model.

For comparative purposes, it was assumed that the cal-
culations would be performed on the same structure model 
and boundary conditions, only the material models would be 
changed.

4.3. Geometry of the model and boundary conditions. For nu-
merical computations, a model of a roof covering was adopted 
in the form of a circular arc with the following dimensions: 

Fig. 4. Method of supporting the arc model

Fig. 5. Method of load application to the model; (a) load evenly dis-
tributed, (b) equivalent load
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4.4. Selection of finite element mesh. In the model, a Shell 181 
type element [28] with linear interpolation function was used, 
which is a 4-node shell element with six degrees of freedom at 
each node (three displacements and three rotations). Parameters 
of the finite element mesh were verified by standard diagnostic 
tools within the Ansys software. The parameters and evaluation 
of the quality of the mesh are as follows: number of nodes: 
49.291; number of elements: 49.603; parameter element quality: 
0.829; parameter aspect ratio: 1.262

Parameter element quality concerns the quality of the finite 
element mesh. This parameter falls within the range between 0 
and 1, where the value of 0 for the surface (2D) is defined as 
an element of insufficient quality, and the value of 1 denotes 
a very good mesh.

The parameter Aspect Ratio in the surface arrangement (2D) 
is defined as the ratio of the longest side to the shortest side 
of the finite element. The mesh has the best parameters when 
the Aspect Ratio coefficient achieves the value of 1.0. Detailed 
rules for the determination of these parameters are presented 
in paper [28].

It was assumed that the finite element mesh had sufficiently 
good quality and could be adopted for further calculations.

4.5. Computation results. Fig. 6 presents computation results 
for the two analysed material models. Full lines present the 
maximum deformation of the model as a function of force 
(scale: load – total deformation), broken lines present the 
maximum von Mises stress as a function of force (scale: load 
– equivalent stress).

The loss of stability of model A (point A1) occurred at a load 
of 14.04 kN and deflection of 68.19 mm. The loss of stability of 
model B (point B1) occurred at a load of 17.63 kN and deflec-
tion of 56.03 mm. At boundary values of stress and deflection, 

the difference between the obtained results is 20% in relation 
to the stress and 18% in relation to the deflection. The stresses 
get into the prebuckling state [29] at the following values, 
respectively: model A (point AI), deflection of 23 mm, stress 
of 176 MPa, and model B (point BI), deflection of 21.3 mm, 
stress of 226 MPa. Having referred the boundary values of the 
load and deflection obtained in model A (point A1) to model 
B (point B2), it was concluded that at a load of 14.04 kN in 
model B, deflection of 36.73 mm was obtained, which is ap-
proximately 55% of the deflection of model A. At the moment 
when model A loses stability due to the exhaustion of load-
bearing capacity (Fig. 7), the directional displacement vectors 
(Fig. 8) show non-uniform displacements, particularly in the 
lateral areas of the arc.

This is due to the emergence of a local yield hinge, and the 
structure’s transition into the stage of failure.

Fig. 6. Results of computations of maximum displacements and 
stresses

Fig. 7. Map of stresses for model B. Local loss of stability

Fig. 8. Deflections of model A (a) map of displacements, (b) displace-
ment vectors
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At the same level of load (14.04 kN), in model B (Fig. 9) 
the displacement vectors are symmetrically distributed on both 
sides of the arc. This means that at this level of load, no signs 
of the occurrence of local instabilities become apparent.

It is also worth noting that at the moment when model A en-
tered the stage of failure (Fig. 6, point A II), model B, at the 
same level of load (Fig. 6, point B II), shows the reserve load-
bearing capacity (section B II and B III).

Having analysed an example of a canopy roof of a warehouse 
building with dimensions as those presented in section 4.3, it 
can be concluded based on [30] that permissible deflection 
should not exceed L/250, where L is the span of the covering 
roof. In the case under discussion L = 12.000 mm, which yields 
the criterial value of 48 mm. In the analysed models, the per-
missible load at the deflection of 48 mm is 11.5 kN for model 
A, and 16.3 kN for model B. When calculated per a unit of 
the roof surface area, and having deducted the dead load, the 
permissible surface area loadings due to snow are, respectively, 
A = 1.47 kN/m2 A = 2.14 kN/m2. Having further adopted the 
load on the cylindrical roof of a building protected from wind 
in the 4th snow zone in the first option of load [31], the per-
missible load of 1.54 kN/m2 is obtained. In the case of model 
A, the serviceability limit state is not satisfied, and in the case 
of model B, it is satisfied with a reserve of almost 40%. The 
load-bearing capacity limit state is satisfied in both cases.

Presented different evaluation of the product, results only 
from the use of different input parameters related to the mate-
rial (test results) and does not include FEM model uncertainty 
(different results arising from different geometry, boundary 
conditions, loads etc.)

5. Discussion

Laboratory testing results are affected by numerous factors which 
may result in both the value and the variability assigned to it 
being significantly different in different laboratories. In the other 
words – both: value and its variability are burdened with uncer-

tainty (consisting of parameter and model uncertainties). Addi-
tionally, the performance of laboratory tests on a small number 
of samples (3÷5) leads to differences between results and their 
dispersions, resulting from the random selection of samples from 
the population, which was shown while comparing standard devi-
ations for five-sample sets taken from the same population. The 
randomly selected set containing a small number of samples may 
have characteristics which differ significantly (the expectation 
value, variance) in relation to the population.

During laboratory tests, random factors emerge which af-
fect test repeatability and reproducibility (including, inter alia: 
the operator, type of equipment, environmental conditions, 
mounting of the sample, and many others), and systematic 
factors which result from the accuracy of the testing equip-
ment used. All these factors contribute to the uncertainty which 
characterises variability of the result. As regards tests (e.g. me-
chanical) in which a sample is destroyed, the fact that, in the 
variability of results, it is difficult to isolate the proportion of 
heterogeneity of test items, also plays a significant role. For all 
of those reasons, a laboratory performing a test on an unknown 
material usually obtains very rough information on the tested 
characteristics and its variability. At the same time, due to the 
lack of uniform methods for the estimation of uncertainties 
laboratories may obtain different information on variability in 
relation to the same set of results.

In the case of tensile tests according to EN ISO 6892‒1 
[20], considered as input data for calculations, the dominant 
components of uncertainty were due to the measuring equip-
ment. Therefore, the uncertainties estimated using appropriate 
methods, with the same assumptions adopted in relation to the 
equipment, did not differ significantly. However, in the case 
of tests according to EN 846‒9 [15], discussed in section 2, 
the dominant component was the random dispersion of results. 
In addition, these tests are performed in accordance with the 
standard on as few as three samples. In such a case, knowl-
edge of variability which can be assigned to a test result is 
very rudimentary. A typical approach of laboratories involved 
in testing unknown products using a small number of samples 
is to estimate the components of uncertainties resulting from 
random effects by taking into account the current SD obtained 
in the test. However, a question should be asked here: is such 
an approach correct? The data presented in Table 1 suggest that 
for each product, the uncertainty of a test in the same laboratory 
will be different because sample SD also contains a component 
associated with variability of the tested product. In addition, 
differences may appear which result from the method for de-
termination of the coverage factor. For example, kx = t95 for 
N = 3, i.e. for ν = 2 degrees of freedom, is 4.3, while the factor 
in the Craig model, i.e. kx = k ¡c4

 for N = 3, would be 2.26. With 
the same SD, this will produce a difference of almost 100% in 
estimated uncertainty.

This paper demonstrates, based on an example, that the vari-
ability of laboratory testing results (in this case, tensile test) 
may have a very significant effect on the final evaluation of 
a construction product. For the applied material models A and 
B, extremely different results were adopted and maximum un-
certainties were taken into account. This may arouse suspicion 

Fig. 9. Deflections of model B (a) map of displacements, (b) displace-
ment vectors
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that the probability of obtaining such great differences is actu-
ally low. On the other hand, however, great simplifications were 
applied: neither the uncertainty associated with elongation nor 
the variance related to reproducibility were taken into account 
(data obtained under repeatability conditions were used). The 
results obtained in two different laboratories could increase the 
differences between models A and B even more.

The assumed discrepancies in results of tests on the same 
material appeared to be great enough so that the calculations 
performed using them indicated a contradictory classification 
of the same structural component in a civil structure. In this 
case, it was a covering roof in the form of a sector of a circular 
arc made of thin-walled profiled cold rolled sheets. As regards 
data for material model A, the serviceability limit state was ex-
ceeded, while for the same conditions (geometry, supports and 
the method of load application) yet with material model B ap-
plied, the serviceability limit state is satisfied with a reserve of 
almost 40%. The inconsistency of this evaluation brings about 
far-reaching practical consequences. In the first case (model A), 
the covering roof design should be rejected or forwarded for 
correction. In the second case (model B), the design is correct; 
moreover, one can be tempted to perform dimensional optimi-
sation e.g. by thinning the profile. When designing only based 
on data concerning materials A or B (without knowing their 
mutual relationships), each designer can be certain of the cor-
rectness of their decision. However, one needs to bear in mind 
the reasons for drawing such conclusions, particularly in the 
context of variability of parameters which are of significance 
in the final evaluation.

There are aspects due to which the issue of taking the vari-
ability of laboratory tests results into account in the products 
evaluation should become the subject of considerably more 
thorough analyses. Moreover these analyses should be per-
formed at the global level and not only at the level of a single 
laboratory. These aspects are the lack of uniform principles of 
test results uncertainty estimation, and the lack of uniform and 
rational principles -while taking this uncertainty into account in 
the final evaluations of products and structures. Such principles 
should be adapted to specific tests and specific products.

Even though Eurocodes related to designing a structure [32] 
recommend that variability of properties of materials should be 
taken into account during the design process, they are however 
recognised as one of the huge number of variables, and little 
attention is paid to this issue. Designers who work based on 
Eurocodes apply simplifications which involve adopting tab-
ular values for parameters of the materials. These values have 
solid foundations in the form of dozens of performed tests; 
however, these are numbers devoid of readily available and 
actually used information concerning possible variability. It is 
hard to believe that the adoption of tabular values based on the 
type (composition) of a material declared by the manufacturer 
is burdened with a smaller uncertainty than laboratory tests on 
the submitted material.

Given the lack of possibility for an analysis of variability of 
a test result which would be reliable and take all aspects into ac-
count, another question arises here: is such an analysis actually 
necessary? In the authors’ opinion, transferring the principles 

for estimation of measurement uncertainty onto the actions per-
formed by a testing laboratory is unnecessary and creates the 
wrong impression of having precise knowledge of the test result 
and PDF assigned to it. The variability of the test results in 
the discussed cases is a resultant of the properties of the tested 
product and the actual uncertainty which can be assigned to 
the test. What is more, it can be erroneously evaluated where 
the number of samples is little. Arrangements which involve 
imposing on a product conditions concerning not only the tested 
quantity but also its dispersion, and taking into account, in the 
estimation of uncertainties, only the components associated 
with the testing equipment, would be much more reasonable.

6. Conclusions

Properly estimated uncertainty of a test result should, at a con-
fidence level of 95%, includes a real value, and should be re-
lated to the aspects associated with both the repeatability and 
reproducibility of tests. In most cases of testing construction 
products, this is not the case. In the absence of the possibility 
of reliable analysis, simplified methods are adopted, not satis-
fying these conditions. Laboratories performing tests on con-
struction products evaluate them based on a small number of 
samples, most often 3÷5. Therefore, this is an evaluation based 
on poorly known characteristics, which may be burdened with 
a significant error.

Variability at the level of laboratory tests results may, as has 
been demonstrated in this paper, have a significant effect on the 
evaluation of a product or a structure. In extreme cases, this 
may lead to taking inappropriate decisions on either acceptance 
or rejection of products, technical implementations or designs 
directed for implementation.

Despite numerous normative documents and publications on 
uncertainty, methods for its estimation and taking into account 
in evaluations, this issue is still imprecise in terms of testing 
and assessment of construction products. There is a need for 
development of specific and uniform guidelines concerning in-
dividual products and tests. In the authors’ opinion, these guide-
lines should be supported by numerous interlaboratory tests.
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