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zation of positive and nonpositive electrical circuits by state-feedbacks is analyzed.
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trical circuits in Section 5. Concluding remarks are given in 
Section 6.

The following notation will be used: ℜ – the set of real 
numbers, ℜn×m – the set of n£m real matrices, ℜ+

n×m – the set 
of n£m real matrices with nonnegative entries and ℜ+

n = ℜ+
n×1, 

Mn – the set of n£n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – the n£n identity matrix.

2. Preliminaries

Consider the linear continuous-time electrical circuit described 
by the state equation

 x ̇ (t) = Ax(t) + Bu(t), (1a)

 y(t) = Cx(t) + Du(t), (1b)

where x(t) 2 ℜn, u(t) 2 ℜm, y(t) 2 ℜp are the state, input and 
output vectors and A 2 ℜn×n, B 2 ℜn×m, C 2 ℜp×n, D 2 ℜp×m.

It is well-known [3] that any standard linear electrical circuit 
composed of resistors, coils, capacitors and voltage (current) 
sources can be described by the equation (1). Usually as the 
state variables x1(t), …, xn(t) (the components of the vector 
x(t)) the currents in the coils and voltages on the capacitors 
are chosen.

Definition 1. [3] The electrical circuit (1) is called (internally) 
positive if x(t) 2 ℜ+

n, for any initial condition x(0) 2 ℜ+
n and 

every u(t) 2 ℜ+
m, t 2 [0, +1).

Theorem 1. [3] The electrical circuit (1) is positive if and 
only if

 A 2 Mn, B 2 ℜ+
n×m, C 2 ℜ+

p×n, D 2 ℜ+
p×m. (2)

Theorem 2. [3] The linear electrical circuit composed of resis-
tors, coils and voltage sources is positive for any values of the 

1. Introduction

A dynamical system is called positive if its trajectory starting 
from any nonnegative initial state remains forever in the pos-
itive orthant for all nonnegative inputs. An overview of state 
of the art in positive theory is given in the monographs [1, 2]. 
Variety of models having positive behavior can be found in en-
gineering, especially in electrical circuits [3], economics, social 
sciences, biology and medicine, etc. [1, 2].

The positive electrical circuits have been analyzed in [4‒11]. 
The constructability and observability of standard and positive 
electrical circuits has been addressed in [5], the decoupling 
zeros in [6] and minimal-phase positive electrical circuits in 
[7]. A new class of normal positive linear electrical circuits 
has been introduced in [8]. Positive fractional linear electrical 
circuits have been investigated in [10] and positive unstable 
electrical circuits in [11]. Infinite eigenvalue assignment by out-
put-feedback for singular systems has been analyzed in [12]. 
Zeroing of state variables in descriptor electrical circuits has 
been addressed in [13]. Controller synthesis for positive linear 
systems with bounded controls has been investigated in [14]. 
Stability of continuous-time and discrete-time linear systems 
with inverse state matrices has been analyzed in [15] and pos-
itive stable minimal realization of fractional linear systems in 
[16]. Superstability and superstabilization of dynamical systems 
have been considered in [17‒19].

In this paper the superstability and superstabilization of 
positive linear electrical circuits by the state-feedbacks will be 
addressed.

The paper is organized as follows. In Section 2 the pre-
liminaries concerning the positive linear electrical circuits 
are recalled. The superstability of positive electrical circuits 
is introduced in Section 3. The superstabilization of standard 
and positive electrical circuits by state-feedbacks is analyzed 
in Section 4 and the superstable positive and nonpositive elec-
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resistances, inductances and source voltages if the number of 
coils is less or equal to the number of its linearly independent 
meshes and the direction of the mesh currents are consistent 
with the directions of the mesh source voltages.

Theorem 3. [3] The linear electrical circuit composed of resis-
tors, capacitors and voltage sources is not positive for all values 
of its resistances, capacitances and source voltages if each its 
branch contains resistor, capacitor and voltage source.

Theorem 4. [3] The R, L, C, e electrical circuits are not posi-
tive for any values of its resistances, inductances, capacitances 
and source voltages if at least one its branch contains coil and 
capacitor.

Definition 2. The positive electrical circuit (1) for u(t) = 0 is 
called asymptotically stable if

 lim
t!1

x(t) = 0 for all x(0) 2 ℜ+
n. (3)

Theorem 5. [3] The positive electrical circuit (1) is asymptot-
ically stable if all coefficients of the characteristic polynomial

 det[Ins ¡ A] = sn + an–1sn–1 + … + a1s + a0 (4)

are positive, i.e. ak > 0 for k = 0, 1, …, n ¡ 1.

3. Superstability of positive electrical circuits

Consider the positive electrical circuit for u(t) = 0 described by

 x ̇ (t) = Ax(t), (5a)

where x(t) 2 ℜ+
n and

 A = 

2 
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Definition 3. The positive electrical circuit (5) (or 

equivalently the matrix A) is called superstable if 
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The set of superstable matrices nMA∈  will be denoted 

by nS . 

To show the specific properties of the superstable systems 
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From Figure 1 it follows that if the coefficient a does not 

satisfy the condition (6) then the first component )(1 tx  of 

)(tx  has overshoots over 1 with the amplitudes increasing 

with the value of a. 

 

Fig. 1. State variable )(1 tx  of the system (7) with different values 
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From Figure 2 it follows that if the coefficient a does not 

satisfy the condition (6) then the first component )(1 tx  of 

)(tx  has overshoots over 1 with the amplitudes increasing 

with the value of a. In many practical (technological) 

processes such overshoots (peak effects) are not 

acceptable. 
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Fig. 1. State variable x1(t) of the system (7) with different values of a

Example 2. Consider the positive system (5) with the matrix
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a. In many practical (technological) processes such overshoots 
(peak effects) are not acceptable.

Theorem 6. The state variables ui(t), i = 1, …, n (the com-
ponents of the state vector x(t)) of positive superstable linear 
electrical circuit satisfy the condition

 max
i

xi(t) = max
i

xi0e–σ(A)t  for  i = 1, …, n, (11)

where σ(A) is defined by (6).

Proof. From Gershgorin theorem and (6) it follows that the state 
variables ui(t), i = 1, …, n of positive electrical circuits have 
not overshoots. See also [17‒19]. □

4. Superstabilization of standard and positive 
electrical circuits by state-feedbacks

Firstly we shall consider nonpositive linear electrical circuits.

Example 3. Consider the electrical circuit shown in Fig. 3 with 
given resistance R, inductance L, capacitance C and source 
voltage e.

Using the Kirchhoff’s laws we may write the equations

 e = L di
dt

 + u,  i = L u
R

 + C du
dt

, (12)

which can be written in the form

 d
dt

u
i  = A u

i  + Be, (13a)

where

 A = 
– 1

RC
  1

C
– 1

L
 0

, B = 
0
1
L

. (13b)

From (13b) it follows that the electrical circuit is not positive 
since A 2/ M2. Applying the state-feedback

 e = [k1 k2]
u
i  (14)

to the electrical circuit we obtain

 

AC = A + BK = 
– 1

RC
  1

C
– 1

L
 0

 + 
0
1
L

[k1 k2]  =

AC = A + BK = 
– 1

RC
 1

C
k1 ¡ 1

L
 k2

L

.

 (15)

From (15) it follows that for k1 ¸ 1 and k2 < 0 the closed-
loop system is positive and asymptotically stable but in general 
case is not superstable since the matrix A does not satisfy the 
condition (6). The electrical circuit is superstable if and only if 
R < 1 and k2 + 1 > k1.

Example 4. Consider the electrical circuit shown in Fig. 4 with 
given resistance R, inductance L, capacitance C and source 
voltage e. Note that the electrical circuit has been obtained from 
the electrical circuit in Fig. 3 by interchange the coil with the 
capacitor.

Fig. 2. State variable x1(t) of the system (9) with different values of a

Fig. 3. Electrical circuit of Example 3.

Fig. 4. Electrical circuit of Example 4

Using the Kirchhoff’s laws we may write the equations

 e = u + L di
dt

,  C du
dt

 = i + e ¡ u
R

, (16)

which can be written in the form

 d
dt

u
i  = A u

i  + Be, (17a)
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where

 A = 
– 1

L
 0

– 1
RC

  1
C

, B = 
1
L
1

RC

. (17b)

From (17b) it follows that the electrical circuit has the same 
matrix A as the one in Fig. 3 but different matrix B and it is not 
positive but asymptotically stable.

Applying the state-feedback

 e = 
k11 –k12

k21 –k22

u
i

 (18)

to the electrical circuit we obtain
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L
 0

– 1
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  1
C

 + 
1
L
1

RC

k11 –k12

k21 –k22
 =
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1
L
(k11 ¡ 1) k12

L
k21 ¡ 1

RC
 k22

RC

.

 (19)

From (19) it follows that the closed-loop electrical circuit 
is positive if k12 > 0, k21 > 1 and superstable if and only if 
1 ¡ k11 > k12 and 1 ¡ k22 > k21.

Example 5. Consider the electrical circuit shown in Fig. 5 with 
given resistance R, inductances L1, L2 and source voltages e1, e2.

From (21b) it follows that the electrical circuit is not positive 
and unstable since off-diagonal entries of A are negative and 
det A = 0.

Applying the state-feedback

 e = 
k11 –k12

k21 –k22

i1
i2

 (22)

to the electrical circuit we obtain
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L1
 – R
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 – R
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0 1
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.

 (23)

From (23) it follows that the electrical circuit is positive and 
superstable if and only if k11 < R, k22 < R and 2R > ki1 + ki2 
for i = 1, 2.

Theorem 4. There exists a gain matrix K such that

 AC = A + BK 2 Mn (24)

only if to each row with at least one off-diagonal negative entry 
of A the corresponding row of B is nonzero.

Proof. Let the i-th row of A has at least one off-diagonal neg-
ative entry and the corresponding i-th row of B is zero. Then 
from (24) it follows that by choice of K we are not able to 
eliminate the negative entry of A. □

Theorem 5. By suitable choice of the matrix K 2 ℜm×n it is pos-
sible to modify not more than q = rank B rows of the matrix A.

Proof. By Kronecker-Capelli theorem the equation 

 AC ¡ A = BK (25)

has a solution K if and only if

 rank[AC ¡ A, B] = rankB. (26)

Therefore, the maximal number of rows of the matrix A which 
can be modified by suitable choice of K is q = rank B. □

5. Superstable positive and nonpositive 
electrical circuits

In this section nonpositive and positive superstable electrical 
circuits will be analyzed.

Fig. 5. Electrical circuit of Example 5

Using the Kirchhoff’s laws we may write the equations
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From (19) it follows that the closed-loop electrical circuit 
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From (21b) it follows that the electrical circuit is not 

positive and unstable since off-diagonal entries of A are 

negative and 0det =A . 

Applying the state-feedback 
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to the electrical circuit we obtain 
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 (23) 

From (23) it follows that the electrical circuit is positive 

and superstable if and only if Rk <11 , Rk <22  and 

212 ii kkR +>  for 2,1=i . 

Theorem 4. There exists a gain matrix K such that 

nC MBKAA ∈+=                         (24) 

only if to each row with at least one off-diagonal negative 

entry of A the corresponding row of B is nonzero. 

Proof. Let the i-th row of A has at least one off-

diagonal negative entry and the corresponding i-th row of 

B is zero. Then from (24) it follows that by choice of K 

we are not able to eliminate the negative entry of A. □ 

, (20)

which can be written in the form

 d
dt

i1
i2

 = A i1
i2

 + B e1
e2

, (21a)

where

 A = 
– R

L1
 – R

L1

– R
L2

 – R
L2

,  B = 
1
L1

 0

0 1
L2

. (21b)
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Using the Kirchhoff’s laws we may write the equations

 
e = R3(i1 + i3) + L1

di1
dt

 + R1i1,

e = R3(i1 + i2) + L2
di2
dt

 + R2i2,
 (27)

which can be written in the form

 d
dt

i1
i2

 = A i1
i2

 + B3e, (28a)

where

 A = 
– R1 + R3

L1
 – R3

L1

– R3
L2

 – R2 + R3
L2

,  B = 
1
L1
1
L2

. (28b)

From (28b) it follows that the electrical circuit is not positive 
but superstable since off-diagonal entries of A are negative and 
the condition (6) is satisfied.

Using the state-feedback

 e = [k1 k2]
i1
i2

 (29)

we may modify the dynamics of the electrical circuit since the 
matrix

AC = A + BK = 
– R1 + R3

L1
 – R3

L1

– R3
L2

 – R2 + R3
L2

 +

AC + 
1
L1
1
L2

[k1 k2]  = 
k1 ¡ (R1 + R3)

L1
 k2 ¡ R3

L1
k1 ¡ R3

L2
 k2 ¡ (R2 + R3)

L2

 (30)

is a superstable Metzler matrix for ki > R3 and Ri + 2R3 >  
> k1 + k2 for i = 1, 2.

Example 7. Consider the electrical circuit shown in Fig. 7 with 
given resistances R1, R2, R3 capacitances C1, C2 and source 
voltage e.

Fig. 6. Electrical circuit of Example 6 Fig. 7. Electrical circuit of Example 7

Example 6. Consider the electrical circuit shown in Fig. 6 
with given resistances R1, R2, R3, inductances L1, L2 and source 
voltage e.

Using the Kirchhoff’s laws we may write the equations

 
e = R1C1

du1

dt
 + u1 + R3(C1

du1

dt
 + C2

du2

dt ),

e = + R3(C1
du1

dt
 + C2

du2

dt ) + u2 + R2C2
du2

dt
,
 (31)

which can be written in the form

 

= 
(R1 + R3)C1 R3C2

 R3C1 –(R2 + R3)C2

d
dt

u1

u2
 =

= 
–1 –0
–0 –1

u1

u2
 + 

1
1 e.

 (32)

Premultiplying (32) by the inverse matrix

 

 = 
(R1 + R3)C1 R3C2

 R3C1 –(R2 + R3)C2

–1

 =

 = 
1
∆

(R2 + R3)C2 –R3C2

 –R3C1 –(R1 + R3)C1
,

 = ∆ = [R1(R2 + R3) + R2R3]C1C2

 (33)

we obtain

 
d
dt

u1

u2
 = A

u1

u2
 + Be , (34a)

where

 

A = 
1
∆

– (R2 + R3)C2 R3C2

 R3C1 –– (R1 + R3)C1
,

B = 
1
∆

R2C2

R1C1
.

 (34b)

From (34b) it follows that the electrical circuit is positive since 
A ½ M2 and B has positive entries.
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Applying the state-feedback

 e = [k1 k2]
u
u2

, (35)

to the electrical circuit we obtain

 

AC = A + BK = 
1
∆

–(R2 + R3)C2 R3C2

 R3C1 ––(R1 + R3)C1
 +

AC + 
1
∆

R2C2

R1C1
[k1  k2]  =

AC = 
1
∆

–[(1 ¡ k1)R2 + R3]C2 [R3 + k2R2]C2

 [R3 + k1R1]C1 –[(1 ¡ k2)R1 + R3]C1
.

 (36)

From (36) it follows that the electrical circuit is positive for 
k1 > – R3/R1

, k2 > – R3/R2
 and superstable for 1 ¡ k1 ¡ k2 > 0.

6. Concluding remarks

The concept (notion) of superstability of positive linear elec-
trical circuits has been introduced. The specific properties of 
superstable linear electrical circuits have been characterized. 
The superstabilization of positive and nonpositive electrical 
circuits by state-feedbacks has been analyzed.

The considerations can be extended to the descriptor linear 
electrical circuits.
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