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Measurements of hydrogen solubility in various nitrobenzene-aniline mixtures were conducted in an 

autoclave reactor with a stirrer and control of temperature. The solubility of hydrogen was measured 

at 7 different values of temperature (30 °C, 40 °C, 50 °C, 90 °C, 130 °C, 170 °C, 210 °C, 

respectively), 3 values of stirrer rotation speed (1200 rpm, 1600 rpm, 2000 rpm, respectively) and  

a range of pressure of 20 ‒ 30 bar. Moreover, pure aniline, pure nitrobenzene and their mixtures with 

different concentrations were used. In the next step, values of Henry’s constant were calculated. 

Based on experimental data a dependence of Henry’s constant on temperature for pure aniline and 

pure nitrobenzene was proposed. Additionally, for each temperature correlations between Henry’s 

constant and aniline’s concentration in mixture of nitrobenzene-aniline were found. 
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1. INTRODUCTION 

The annual world production of aniline amounts to 3.8 million tones and increases from year to year 

(Kahl et al., 2011). Originally, aniline was produced in the process of reduction of nitrobenzene by 

cheap reagents, for instance, sulphuric and nitric acid in the presence of an iron catalyst (Morrison and 

Boyd, 2002). This process generated large quantities of waste reagents and was finally replaced by 

catalytic hydrogenation of nitrobenzene (Machado, 2007). The amount of hydrogen dissolved in the 

liquid mixture directly affects and limits this process. Three-phase-hydrogenation processes seem to be 

a promising way of enhancing the space-time yield (Ramachardan and Chaudhari, 1983; Tatterson, 

1991), especially in microreactors such as microfall film reactors (Yeong et al., 2003), therefore, it is of 

high interest to know the solubility and also the solution rate of hydrogen in nitrobenzene/aniline 

mixtures. With thermodynamic solubility and kinetic solution rate data, it would be possible to build up 

a computer-aided model of a nitrobenzene hydrogenation reactor. However, there is a lack of 

experimental data concerning the solubility of hydrogen in mixtures of nitrobenzene/aniline. Therefore, 

the aim of this work is to measure hydrogen solubility in nitrobenzene/aniline mixtures under different 

process conditions (influence of temperature, mixing intensity and liquid phase composition). The 

experimental data obtained is essential for nitrobenzene hydrogenation with a catalyst in further 

microreactors’ investigation. 
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2. EXPERIMENTAL SETUP 

The experiments were carried out in an autoclave reactor with a stirrer. The autoclave was filled with a 

mixture of nitrobenzene and aniline to half of its volume (85 ml) and sealed up (Fig. 1). Before the first 

experiment, on each day and after every following one, the reactor was purged with nitrogen for half an 

hour when the inlet and outlet valves were open and the stirrer was slowly rotating. The experiments 

were conducted for five mixtures: 100% nitrobenzene volume content, 75% nitrobenzene + 25% 

aniline, 50% nitrobenzene + 50% aniline, 25% nitrobenzene + 75% aniline and 100% aniline, 

respectively. Each mixture was investigated at 7 temperatures: 30 °C, 40 °C, 50 °C, 90 °C, 130 °C, 

170 °C and 210 °C, respectively. For 25% nitrobenzene + 75% aniline mixture and 100% aniline the 

results for 210 °C were omitted. This temperature is higher than the boiling point (184 °C) of aniline 

and under atmospheric pressure at the beginning of the experiments these liquids were boiling, which 

led to incorrect results. To perform the experiments, the inlet and outlet gas nozzles were tightly closed 

and hydrogen was dosed with the mass flow controller into the autoclave reactor. Gas pressure in the 

pipe before the inlet valve was recorded. When the pipe filled up with sufficient amount of hydrogen, 

its flow was switched off. Next the inlet valve to the autoclave was opened. The moment the pressure 

inside the autoclave had the desired value, the inlet valve was quickly closed and the stirrer was set on 

the desired speed of rotation. The first value of pressure (for zero time) was written down. For each 

temperature the experiments were carried out at three stirrer rotation speeds: 1200 rpm, 1600 rpm and 

2000 rpm, respectively (for pure nitrobenzene only under 1200 and 1600 rpm). Finally, each 

experiment was replicated three times for each stirrer rotation speed, filling the reactor with such an 

amount of hydrogen that the initial pressure at time zero was in the range of 20 ‒ 30 bar. The pressure 

of gas in reactor was measured. Hydrogen absorption by the liquid was accompanied by a pressure 

decrease until a steady-state has been reached. Based on the final value of gas pressure, the solubility of 

hydrogen in the mixture was determined. 

 

Fig. 1. Experimental set-up: a) flow scheme , b) image of stirred autoclave 

3. METHODOLOGY 

Pressure drop, p, observed in the course of experiments (a difference between the initial pressure and 

that at the moment of its stabilization) is a sum of hydrogen pressure pH2 and the vapour pressure of 

liquid pL. The values of pL were calculated according to the Antoine’s equation for pure nitrobenzene 

and pure aniline. In the case of nitrobenzene/aniline mixtures, vapour pressure was calculated from the 
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Raoult law. In this way, the pressure drop observed as a result of hydrogen absorption Δp was found 

and used to count the number of moles of absorbed hydrogen. Under the experimental conditions the 

compressibility factor equals 1 and for the number of moles of absorbed gas the ideal gas law is 

applicable: 

 
RT

Vp
n G
  (1) 

The amount of absorbed hydrogen per liquid volume L [mol/m3] was found from the equation: 

 
LV

n
L   (2) 

In the next step the Henry’ constant H [bar m3/mol] was determined as: 

 
L

p
H H 2  (3) 

In Eq. (3) hydrogen pressure pH2 is exactly what has been measured at each measurement point. For 

aniline Henry’s constant was described as HAN, for pure nitrobenzene as HNB and for mixture as HM, 

respectively. Values L are dependent on pressure, while Henry’s constant H calculated from Eq. (3) is 

independent of pressure within the range of pressure used. 

4. RESULTS AND DISCCUSION 

In all experiments the changes of pressure in time were measured. As an example, the pressure drops 

are shown in Fig. 2 at 1200 rpm, 1600 rpm and 2000 rpm, respectively for 50% nitrobenzene + 50% 

aniline mixture at 130 ℃. The pressure at the start of the experiment was similar for this mixture at all 

three stirrer rotation speeds. It can be deduced that the duration time of experiment was shorter for 

higher stirrer rotation speeds and in all cases the steady-states conditions were achieved. 

 

Fig. 2. Pressure drop for 50 % volumetric concentration of aniline at 130℃ 

Based on the steady-state conditions in all experiments, the values of Δp were determined. Using  

Eq. (2) the amount of absorbed hydrogen was calculated and presented in Fig. 3. As can be seen in Fig. 

3, an increase in the amount of hydrogen in nitrobenzene/aniline mixtures was observed with the 

increasing temperature. Similar results for hydrogen were found for other organic substances. Brunner 
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(1985) investigated solubility of hydrogen in n-hexane, n-octane, toluene, acetonitrile, 1,4-dioxane, 

N,N-dimethylformamide, n-decane, tetrahydrofuran, 1- methylpyrrolidone-2, acetone at 298.15 K, 

323.15 K and 373.15 K, respectively, and partially at pressures up to 14 MPa. He found that the 

solubility of hydrogen increases with the increasing temperature. 

 

 

Fig. 3. Amount of absorbed hydrogen per liquid volume in nitrobenzene/aniline mixtures  

at 1200, 1600 and 2000 rpm 

D’Angelo and Francesconi (2001) investigated solubility of hydrogen in liquid alcohols: methanol, 

ethanol, 1-propanol and 1-butanol within the range of temperatures between 298.15 K and 525.15 K 

and at pressures between 3.6 MPa and 10 MPa. They concluded that the solubility of hydrogen in all 

studied alcohols increased with increasing temperature and pressure. An exemplary influence of the 

stirrer rotation speed on solubility of hydrogen is shown in Figs. 4 ‒ 5. L is practically independent of 

the stirrer rotation speed, when error bars of experimental data are in the limit of experimental scatters. 

In order to present results as pressure, independent H values are calculated. For pure liquids, the 

Henry’s constants were calculated based on the results of experiments and Eq. (3). The average values 

of these constants were calculated for the experiment temperatures and for three stirrer rotation speeds. 

The H values are presented in Fig. 6. 
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Fig. 4. Amount of absorbed hydrogen per liquid volume in nitrobenzene/aniline mixtures at 50 °C 

                

Fig. 5. Amount of absorbed hydrogen per liquid volume in nitrobenzene/aniline mixtures at 170 °C 

 

Fig. 6. Henry’s constants for pure nitrobenzene and aniline 
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In the next step, the dependences of Henry’s constants in function of temperature for pure nitrobenzene 

(HNB) and pure aniline (HAN) were determined: 

 
261006.40053.02268.1log TTHNB  

 (4) 

 
25100108.04105.2log TTH AN  
 (5) 

The form of correlations (4) and (5) is widely cited based on the publications of Barret (1966) and 

Danckwerts (1970), who investigated the influence of temperature on gas solubility in liquids. 

To compare the experimental values of Henry’s constants with those calculated from Eqs. (4, 5), parity 

plots were presented in Fig. 7 for nitrobenzene and in Fig. 8 for aniline, respectively. As can be seen 

Eq. (4) is accurate with an error of 10%, while Eq. (5) with an error of 16%. 

 

Fig. 7. Parity plot of Eq. (4) 

 

Fig. 8. Parity plot of Eq. (5) 

Finally, for temperature in the range of 40 °C ‒ 170 °C, the values of the Henry’s constant for 

nitrobenzene/aniline mixtures are presented in Fig. 9. As can be seen, HM slightly decreases with 

increase of aniline concentration, which is in agreement with data in Fig. 6. 
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Fig. 9. Henry’s constant values for aniline/nitrobenzene mixtures 

5. CONCLUSIONS 

The measurements of hydrogen absorption in nitrobenzene/aniline mixtures were carried out in an 

autoclave reactor equipped with a stirrer for a wide range of temperature, concentration of aniline and 

stirrer rotation speed. It was found that the amount of absorbed hydrogen in these mixtures decreases 

with decreasing temperature in the range of 30 °C ‒ 210 °C, and under pressure between 20 and 30 bar. 

Similar effect for other organic liquids is reported in literature. Based on the results of experiments, the 

Henry’s constants as a function of temperature for pure nitrobenzene and aniline were experimentally 

determined and adequate correlations were proposed. Finally, values of the Henry’s constant for 

nitrobenzene/aniline mixtures at different temperatures were presented. 

The data determined represent an important extension of thermodynamic solubility for such a basic 

reaction mixture system of nitrobenzene, aniline and hydrogen. As the next step, it should further be 

extended by including water as reaction product in the system. The data obtained can be implemented 

to establish a better computational model of a three-phase hydrogenation reactor. 

SYMBOLS 

H Henry’s constant, bar·m3/mol 

L amount of hydrogen absorbed per liquid volume, mol/m3 

n number of mole of absorbed hydrogen 

p pressure, Pa 

R gas constant, J/(mol·K) 

T temperature, K 

V volume, m3 

Δp pressure drop, Pa 

Subscripts 

AN aniline 

G gas 

H2 hydrogen 

NB nitrobenzene 
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L liquid 

M mixture 
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