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Abstract

A new soft-fault diagnosis approach for analoguitswith parameter tolerance is proposed in thigep The
approach uses the fuzzy nonlinear programming (FN&dhcept to diagnose an analog circuit under test
quantitatively. Node-voltage incremental equatioss,constraints of FNLP equation, are bbitsed on tt
sensitivity analysis. Airough evaluating the parameters deviations froensiblution of the FNLP equation
enables us to state whether the actual parameaterwithin tolerance ranges or some components aarkyf
Examples illustrate the proposed approach and #isasffectiveness.
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|. Introduction

Since the 1970’s, with the rapid development ottele industry, testing and diagnosis
play an important role for the development of thduistry. It is estimated that testing can
account for up to 30% of the total manufacturingtdd] in 1993. In [2], it is reported that
95% of the test cost in mixed-signal circuits ispemded in testing the analog parts.
Therefore, the research on the diagnosis of analageuit has become one of hot topics.
Many methods have been proposed for fault diagnosisalogue circuits [BL6]. Among all
those methods, linear programming is one of theefei®nce [5] uses a linear programming
technique to isolate the elements most likely tdfdadty under the limited definition of an
error parameter for every network element. Refexej®} utilizes thel; norm to isolate
possible faulty elements and the linear programnaim@ solving tool. In [7], a new method
based on linear programming is described for catmg the ranges of values in the diagnosis
equations. Two related algorithms-f employ mini-max linear programming techniques to
generate DC and AC tests to detect structuraldaRliéference [10] extends the method in [6]
to nonlinear circuits. In reference [11], throudkecking the existence of a feasible solution
of linear programming equation, a soft-fault isdtez in a linear and nonlinear circuit. During
the diagnosis process in [11], each element’s pat@nthanging range should be changed in
order to decide whether the element is faulty, Wiake the time spent in diagnosing a fault
very long. The method is a qualitative method. Refee [12]Jcombines a fuzzy identification
methodology with some ideas from linear programmtimgory. In reference [13], a node-
voltage sensitivity sequence dictionary is estaklisto detect any fault of any component
using one fault characteristic code. Reference §ivids an approach of combined sensitivity
analysis and fuzzy analysis to diagnose a soft fiaulinear analog circuits. However, the
definition of fault set and membership functioropgen to suspicion. In [158 new dictionary
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approach using the slope of voltage increment in tvodes as fault character for the
diagnosis of both soft-fault and hard-fault is asluced. Based on basic features calculated
from a circuit under the test's time domain respaiesa voltage step, reference [16] gives a
testing process for analog circuit using artificialural network.

Although many methods using single linear prograngr]jb-15] for fault diagnosis have
been developed, those methods are mostly focuséldeoqualitative diagnosis of the circuit.
In other words, all those methods in-1%] are to locate the position of the faulty eletmean
the circuit and they are unable to estimate thamater perturbation of the faulty element.
How to diagnose a circuit quantitatively is stillsabject in the field of analog circuit
diagnosis.

In this paper, an approach of soft-fault diagnasiproposed using the fuzzy nonlinear
programming (FNLP) concept [£19]. The work of both identification of faulty elemts
and evaluation of their parameters deviations aréopmed together here. The objective of
this FNLP equation is to find the minimum valueeaich parameter from zero which satisfies
all those constraints and the constraints equatoasctually the voltage increment equations
in all test nodes and the changing range of earhastt.

The paper is organized as follows. Section 2 pteséme composition of constraint
equations based on node-voltage sensitivity arslysi fault diagnosis. The diagnosis
methodology based on FNLP is provided in Sectiom Eection 4, experimental results are
given to show the effectiveness of the proposedattaind a comparison with other methods.
Conclusions are summarized in Section 5.

2. Node-voltage sensitivity analysis

In this section, the fundamental theory of noddage sensitivity analysis to compose the
constraint equations in our diagnosis approaclssudsed.

A circuit under test (CUT) witm elements will be represented by the node equatiatis
the node-voltage vectcar:[q, 8, ﬁ]T, wherem is the number of nodes accessible for
measurement.

2.1. The definition of node-voltage sensitivity

In [13], the partial derivative of a node voltag&éhwespect to a component parameter is
called the node-voltage sensitivity, which is dexloas:

o _0Oe . :
s :W,(|:1,2’...,n;1:1’2.'.. m) 1)

whereg is the node voltage of nogendY; isi-th component’s parameter. Generalfyare
G, R, C, L or the control parameters for dependent sources.

2.2. Node-voltage increment equations for DC circuits

Suppose that the admittance of the element cormhéateodesk andqg has been perturbed
from Yiq to Yiq + AYkq This causes the node-voltage perturbations faoe + Ae. In [11], it
is shown that the deviation of the¢h node voltagdeg is given by:

AY,,
de==(5 - 2 )y (8 8 @
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where,z, Zq (j = 1,IIm) are elements of the node impedance matrix and:
0=2,— Zq~ Zpt Zpe
If AY,, - 0, from (2), it can be led to:
de,

o, =—(zc-2,)(g- 8). (3)
Likewise, it is achieved that:
% o (2,-2.)(e- 4
K (ij qu)(‘? e), )(

whereK is the gain of the controlled source (VC@&$;) connected to noddsandq, with
controlling variablevs between nodesands.

Hence, the variatiomdg caused by perturbation from the nominal values lbftlee
parameters is approximately given by:

Ne =) SAY+)Y SA K 5)
ny Nk

where the summation includes all elements in thauiti
Therefore, the Eq. (6) can be obtained:

u =24 R, (6)

whereu; represents the voltage incremeng-th measured node arglis a variation ofi-th
element parameter whereasis a constant sensitivity coefficient from thth element tg-th
measured node.
2.3. Node-voltage increment equations for AC circuits

In linear AC circuits, the quantitiag and the AC sensitivity coefficients are generally

complex. Thus, Eg. (6) will be decomposed into paots (real part and imaginary part) so
that all coefficients and quantities are real.

Re(u;)=> Re{q )p.Im(u;) =X Im(g ) p. )
i=1 i=1
Performing decomposition of (7) for each measurémede, the equation groups to any

measurement node are obtained as follows:

>
|=nl (J =12... ,m) , 8
2.

where:u; =Re(Ae ) ,u, =Img(lg) , &, =Re(g),a, =Img(q) .
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3. Fault detection
In this section, the building of a FNLP equationddagnosis of the CUT is discussed.
3.1. Diagnosis equation

Because the perturbation of node-voltage in anyniede from its nominal value is a linear
function of those error parameters, the diagngstoblem can be considered as finding the
result of an underdetermined system with linearatiqus on the condition that all the
solution will have the minimum number of error paeders different from zero.

So, diagnostic equations can be formulated accgrdin (6), expressing node-voltage
perturbationsy; in terms of parameter variatiors. However, because the unrestricted
variablep is allowed to take on positive or negative valuiesiust be substituted by using the
substitutionp. = n° — R, wherep’, p~are both non-negative. Intuitively if the variatgeis
positive thenp’is positive andgy is zero, while if the variablg is negative thep’ is zero
andp’ is positive. Ifp is zero, themp', p” obviously are both zero.

So,

n n

u=>ap-23p.(j=12-m), 9)

where p" 20, p” 20.
Suppose there aketest nodes in CUT, an equation set can be buitt éK0).

ul:zahp*—z ap
i=1 i=1
u2=;azn —Zl P 10)

N b:[AE—A]{Ei}, (11)
where:
- Az[ai}:xk?
- b=[ul,---,L[<]T;
_ p+:|:pl+,...,p:T;
_ P_I[pl_,---,p,:]T.

Furthermore, a key question is to find a feasibl@tson to the above formulated problem.
In reference [11], the linear-programming with phasof the simplex method concept is used
to answer the question. But in [11], the methoduiesg the analysis of two circuits which
differ in excitations one from another. For ideication of a single faulty element in CUT,
the tolerance limit of every element must be chdrigagurn and the diagnosis equation must
be reformulated as well. When there are multi-auitthe CUT, the method in [11] becomes
even more complicated because it needs to selestlf-element set from all candidate
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elements, which is inconvenient for a large circdit the same time, the method just
identifies the faulty elements qualitatively anchicat determine their parameter variations. In
this paper, in order to overcome the questions imeed above, the concept of FNLP is
introduced to locate the faulty elements and idgtiieir perturbed values.

How to formulate the diagnosis problem as a stahdaathematical programming is not
always obvious. It is quite evident that unconsiedi optimization formulation is not suitable
since there is always a set of performance constraand constraints on parameter size
limitations. A single objective optimization formulation is vergstrictive because only one
objective is optimized at a time, and it has todeeided which objective to optimize. The
nearest mathematical programming formulation todilagnosis problem is the following:

f,(p)=p'
f,(p)=pr
Minimize : : (12a)
f2n—l( p) = p;
f(P)= P,
A:- A P=
Subject to [ A] b (12b)
min < PS I:r)nax’

+

P
whereP =
p-

objective functions to be minimize{dﬁ,\i— A] P= b are constraints to be satisfield; is the

vector of element parameters, aRg, < P< P are bounding conditions on the element
parameters.

The object functiorfi(p) represents the parameter variations of each elemeCUT. In a
non-faulty circuit with tolerance influence, alkeetent parameter perturbations are small and
they are below their tolerance range. From thendefn of node-voltage sensitivity analysis
in Section 2, the voltage value in tested nodes @ethent parameter perturbation are
satisfying the constrained function. So the Eq) ¢&h be built.

For our purposes, the diagnosis of an analog tioansists in assigning values to a Bet
of parameters so that the circuit meets objectiwbfe satisfying a set of performance
specifications.

}, A, b, P andP™ are defined as in equation (11). In Eq. (ifZp) are 2

3.2. Fuzzy objectives

In an industrial environment, during modeling thagmosis problem as in (12), we force
the tester to state his problem in precise mathiealderms rather than in terms of the real
world which are often imprecise by nature.

In fact, objectives are often better expresseceat-world terms than in precise numbers.
Testers often use terms like minimize, small, viarge, substantially higher thaatc, to
state their diagnosed objectives. These terms adwezy meaning and are difficult to express
precisely by numbers. Fuzzy set theory makes isiptesto quantify and manipulate such
human statemeni&9].
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In the attempt to minimize a performance functig{p), testers often stop the search
procedure wheti(p) attains acceptable values, even before the stiginmam is reached.
Additional searching may be very time-consuminghwib significant improvement in the
objective function. For this reason, we associdth aach objective a functid(p). In (12), a
fuzzy set that formulates the fuzzy meaning of mige (or maximizejand what precisely the
tester wants to achieve.

For each fuzzy objectivi(p), we define a membership functign, which associates with
each valudi(p) of the objective function a grade of memberspipreflecting the degree of
acceptability of that particular performance vallfeD;, is the interval of possible values of
fi(p), 4, will be defined as follows:

’ufi : Dfi - [O’]]

f.(p) - 4 (p) 13)

Hy is a real number in [0, 1] reflecting the degreefudfillment of the fuzzy objective
associated with the objective functidn x;, (p) =1 means that the objective functifnis

fully satisfied, while,ufi (p) =0means thatf, is not satisfied at all; this will occur whéip)

takes an unacceptable value. An intermediate valillereflect the acceptability of that
particular performance value. It is clear thatdtwser 1/, (p) Is to 1the better the solution.

Let suppose that:
- U, — the maximum value of theth element’s parameter;

- L —the minimum value of theth element’s parameter;
- d =U, - L : the changing range of theh element’s parameter.

For elements in CUT, the worst faults are open simatt. If an element in CUT is open,
parameter variationg’ is +co. And if an element in CUT is shorted, parameteragimnsp’

is Y, whereY, isi-th element’s nominal parameter. And, in the dalton process100y, is

used to represent the “open” state of the elenfeof.to thei-th element in CUT, if the
parameter of the element increases, the paramer&tions pf is defined in the range

[0,100¢] . which means that the maximum vallk to p" is defined ag00¥, ; if the
parameter of the element decreases, the paranatiationsp- will be in the range[O,Yi]
and the maximum value; to p- is equal to the element’'s nominal parameter. Themum

L; value of tha-th element, to botbi+ andp-, are actually defined as 0.
So, to every element in the CUT, a fuzzy memberfimgtion [20] could be defined as
# (p)-

1 O<sp <L
U - <p<U
up)=1= LS (14)
0 p=U,

Obviously, whenp =U,, x(p)=0and whenp. =L, x(p)=1. An example of a
membership function, for the fuzzy objective to mirze fi(p), is shown in Fig. 1.
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Fig.1. Membership function for the fuzzy objectivénimize.
3.3. Building of FNLP equation

After the objectives are fuzzyfied and after theresponding membership functions are
defined, the diagnosis problem in (12) becomes:

Maximize {,Llfl,ﬂfz,"',/»lfM}

_[Ai-AP=b
Subject to (15)
I:)min < PS I:r)nax

Therefore, to any solution of the formula (9), st hoped that £ (p) achieves the

maximum value or elements’ parameter perturbatiares being minimum. So another
variable A is introduced:

Maximize A

Subjectto A < Ui(; & J16

For this purpose, a FNLP equation, tending to satiee constraints, namely (9), with the
minimum number differing from zero, is constructed.
The FNLP equation can be formally stated as follows

Maximum A (17a)
Subject & i - Al X=b
1< Ui ~ p|+ ,
d
A< Ui -B '
di
p|+|:p_:O(i:1’2’...,n), 7d)

where:
- A=[q T

’
nxm
T .
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- X =g n:]T;
_ x-:[pl—... p;]T;

Using the initial solution generated by the first-sizing procedure, the optimization
problem (17) is solved with a feasible directiogaaithm [21]. Note that the algorithm used
iIs a local one. However, this is not a real limatatof the approach since the final fuzzy
formulation obtained in (17) is independent frore tlesolution algorithm and therefore can
be solved using a more powerful nonlinear programgmalgorithm, in addition designers
often accept a local minimum.

When there are faulty elements in CUT, the nonzatoes ofX are connected across their
corresponding elements. From the output of the FRg&ation, we obtain the solving vector
X, which represents the deviation in each elemelievafter checked against their assigned
tolerance value, if the change exceeds the allotetgiance, it can be declared that the
element is faulty, otherwise it is un-faulty. So.the method, not only the faulty elements are
located but the parameter perturbed values ardifi@einquantitatively.

4. Examples of the new method for fault location and identification

In this Section, two examples for both DC and AfCuit are given to illustrate the method
for fault detection and identification of the fauklements’ deviational values developed in
Sections 2 and 3. Another example is given to stimvmethod’s efficiency compared with
other methods in reference [14]. All simulation was finished in a PC with 1.73 GHz, 512
MB and the PSPICE program is used as the circotilsitor and LINGO program is used to
solve the FNLP equation.

4.1. Diagnosis example for a DC circuit

Let us consider the linear DC circuit depicted ig. 2 where we assume that nodes 1, 2
and 3 are accessible for measurement. The nomaralmeters are shown in Fig. 2. The
tolerance of any element is 5% of its nominal vallieus, to this circuit, a DC sensitivity
coefficient matrix from each element in the CUTdset points is built a4.

As mentioned in 3.1, based on the sensitivity c¢oiefit matrix A and the measured
voltage value in test nodes, a diagnosis equatom &g. (12) can be built. Then, from the
nominal value of each element in circuit, the vabfie¢J ,L, andd, can be decided. To this

point, a FNLP equation as in Eqg. (17) can be buntthe end, from the solution of the
equation, whether the CUT is faulty and which eletg faulty are both decided.

Fig. 2. Adiar dc circuit.
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Ri, Ry R Ry Rs K
110781 0.015 0006 0022 0065 0.062
A=210247 0049 0068 -0.005 -0071 0205
310367 0073 0032 -0.008 0032 0307

The CUT is tested with bias point analysis by indgcfaults to the circuit in the
component value from the nominal value. Five casesconsidered and the method for fault
detection developed in Section 3 is applied evieng.t

Case 1The actual parameters arB; = 1.032, R, =2Q, R;=1.962, R, =4Q, Rs; = 1Q,

K = 0.48. All the parameters are within the tolerarazees.

Case 2The actual parameters are;= 1Q, R, =20, R3=2Q, Ry = 3.1, Rs = 1.0%),

K = 0.5, the parameté, slightly exceeds the tolerance range Rads in the maximum value
within its tolerance range whereas all the othemelnts are in their nominal values.

Case 3The actual parameters arB; = 1.1%, R, =2.082, Rs3= 20, R, =3.8%), Rs =

0.98, K = 0.51, the elemerR; is faulty and all the other elements are withieittiolerance
ranges.

Case 4The actual parameters ar® = 1.28), R, = 2.0&2, R; = 2.632, Ry = 4Q, Rs =
0.982, K = 0.51, the elemenf’; andR; are faulty and all the other elements are witheirt
tolerance ranges.

Case 5The actual parameters af®: = 1.282, R, = 2.082, R3 =2.632, Ry =5.28, Rs
= 0.992, K = 0.51, the elemen®, , R; andR, are faulty and all the other elements are within
their tolerance ranges.

The global optimal solution of the FNLP equatiosli®wn in Table 1.

Table 1.The solution of the linear DC circuit.

Casel Case2 Case3 Case4 Case
ARy (Q) -0.8905E-06 -0.3571E-06 0.1606 0.2732 0.2966
ARy(Q) 0.7068E-01 0.0000 0.0000 0.0000 0.000
AR;(Q) 0.9251E-01 0.0000 0.4559E-01 0.7342 0.7237
AR4(Q) 0.9074 E-01 -0.3156 0.0000 0.0000 0.7517
AR5(Q) 0.6776E-01 0.5052E-01 0.0000 0.0000 0.0000
AK 0.0000 0.0000 0.3742E-01 0.2965E-01 0.0000

Now we consider the calculated results and compiagevalue in the solution of the
equation with their tolerance ranges. The resuéisaa follows.

Casel. All the values in the solution of the equraire within elements’ tolerance ranges.
Hence, the circuit is non-faulty.

Case 2. The value @R, is heavily beyond its tolerance range meanwhieviddue ofARs
slightly exceeds its tolerance range. Considerimgginfluence of calculation error, it can be
thought thaR, in the CUT is faulty.

Case 3. The value &R; is beyond its tolerance range, which meRpsn the CUT is
faulty.

Case 4. The values &R; and AR; are heavily beyond their tolerance ranges and the
parameteAK slightly exceeds its tolerance range. As in Casecn be thought th&; and
Rz in the CUT are faulty.

Case 5. The values AR;, AR; andAR, are heavily beyond their tolerance rangesRso
Rs; andR4in the CUT are faulty.
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4.2. Diagnosis example for an AC circuit

Let us consider a low-pass filter shown in Fig.TBe nominal parameters are shown in
Fig. 3 and the tolerance of any element is 5%shdminal value. The circuit is driven by an
AC voltage sourcé&/s(t) = sin 6280 V. Below, we consider three cases and every timég/app
the method for fault detection developed in SecltibrWe assume that the output node of the
CUT is accessible for measurement.

A
— Ik
R Uty 15
hidd

Ay V| R
1k C J_ 5 @
e oot | he i
T n __|_ 2z ﬁ,- opamp1
L o s
?IZI RZ

H3§ 1.51;Q
15k _|||}_:|_
?D

15

Fig. 3. A low-pass filter.

Case 1 The actual parameters aRe = 1.005K2, R, = 1.501K2, R; = 14.998KQ, C =
0.0101uF . All the parameters are within the tolerance range

Case 20ne element is faulty and the actual parameter<ax8.02uF whereas all the

other elements are in their nominal values.
Case 30ne element is faulty and the actual parameterCax@.02uF .The remaining

parameters are as in Case 1.
In Table 2, the global optimal solution of the FNéguation is given.

Table 2.The solution of the linear AC circuit.

Casel Case? Case3
AR (Q) 0.0000 0.0000 0.0000
ARy(Q) 1.1826 0.0000 0.0000
AR3(Q) 0.0000 0.6423E+03 0.6431E+03
AC(uF) 0.0000 0.9883E-02 0.9981E-02

Having seen the calculated results from Table 2 emuhpared the values with their
tolerance ranges, the diagnosis results are assll

In Case 1, the calculated result states that aliv#lues in the solution of the equation are
within elements’ tolerance ranges. Hence, the tirsunon-faulty.

In Case 2 and Case 3, only the valuAGfis out of the tolerance range and other solutions
are within their tolerance ranges. HenCen the CUT is faulty in the two cases.

Seen from the diagnosed results shown in Tabl&e three per-set single faults in the
circuit can be diagnosed correctly by using thehoes proposed in the paper. The diagnosed
results mean that the method proposed in the pagéh effective for an AC circuit.
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4.3. Diagnosis example compared with other methods

A method using fuzzy theory to diagnose soft faidlia CUT is introduced in reference
[14], which defines a fault set and uses the mestiyerfunction to locate a faulty element.

However, in the reference [14], each fault staidefned as the faulty element is in a fixed
value, which make its fault set infinite. And, aatiag to reference [14], the twice or half of
the nominal sensitivity ratio is chosen to caloellparametek in the membership function,
which cannot show clearly whether an element’'se@uwut of its tolerance range. Therefore,
when a faulty element’s value changes heavily angbme condition, incorrect fault location
is appearing unavoidably.

In [14], the circuit shown in Fig. 4 is simulated $how the method’s effect. In order to
show the effectiveness of the method introducetthisrpaper, some simulation is done using
the two methods.

[‘]m

Fig.4. A linear resistive analog citcui

In Fig. 4, Ri= R=R;= Ry = 1Q, Rs = 0.5, Is= 1A. The tolerance limit is 10% and
submits to the Gauss distribution.

The diagnosed results using the method given ihdid this paper for soft fault in;Rire
given in Table 3. For each faulty stateRaf 20 Monte-Carlo analyses are done.

Table 3. The diagnosis results of fault inuRing method in reference [14] and this paper.

R;=0.5Q Ri=1Q Ri=2Q Ri=5Q Ri=100Q |
Number Result]] Result2 Resultl Resultp Resultl [Besy Resultl Result2 ResultlL Result2
(@)) Ry RN R; /R3 /Rs No fault Ry R,/ Ry R,/ Ry R,/
@ R RN Rs No fault R R,/ R, R/ R Ri/ R,/
3) Ry RiNRy/7 Rs Rs/ Ry R,/ R,/ Ry R,/ R,/ R4 R,/
4) Ry RN Rs No fault Ry R,/ Ry R,/ Rs R,/
®) R RN R, No fault R R,/ R R/ Ry R/
(6) Ry RN Rs No fault Rs R,/ Rs R,/ R4 R,/
(7 Ry RN Rs No fault Ry R,/ Ry R,/ Ry R,/
®) R, RiNRy/ Rs Rs/ R R/ R R/ R R/
9) Ry RN Rs No fault Ry R,/ Ry R,/ R4 R,/
(10) Ry RN Rs No fault Ry R,/ Ry R,/ R4 R,/ R,/
an R, RN Rs No fault Rs R,/ Rs R/ Ry R/
12 Ry RN Rs No fault Ry R,/ Ry R,/ R4 R,/ R,/
13) Ry RN Ry No fault Ry R,/ Rs R,/ R4 R,/
(4 R, Ri\R;/ Rs No fault Rs Ri./Ry/ Rs Ri/ R,/ Ry R/
15 Ry RiNRy/” Rs No fault Ry R/ R,/ Rs R/ R,/ R4 R/ R,/
(16) Ry RN Rs No fault Rs R,/ Rs R,/ R4 R,/
@) R, RN Rs No fault Rs Ri/Ry/ R Ri/ R,/ R R./
18) Ry RN Rs No fault Ry R,/ Ry R,/ R4 R/ R,/
19) Ry RN Rs No fault Ry R,/ Rs R,/ R4 R,/
o) Ry RiNR,/ Rs No fault Ry Ri/ R,/ Ry Ri/ R,/ Ry/ R, R,/
D';grt‘igs's 100% 75% 0% 90% 75% 75% 65%] 75% 259% 75%

Resultl and Result2 represent the diagnosis rassittg the method in [14] and this paper.

/' represents the increase of element parametegpresents the decrease of element parametemresesyis the

relation of

OR.
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From the diagnosis results shown in Table 3, coeparith the method in [14], it can be
seen that wher; is in each faulty state the method in this papakes some progress in
diagnosis.

1. WhenRi=1Q and the others element’'s parameter is changingrutieir influence of
tolerance randomly, the circuit is without faulhéfmethod in [14] is unable to determine
the real state of the circuit. To such state, tlagrmbsis ratio using the method in this
paper can attain 90%.

2. Seen from the property of the diagnosis restiissmethod in this paper is a quantitative
diagnosis and it can roughly estimate the paranpetdurbation. Meanwhile the method
in [14] is a qualitative diagnosis and it only leesithe faulty element.

3. From the compared result in the example, whenph@irameter change is minor, the
diagnosis ratio of method in [14] is better. Whée parameter change is larger, the
diagnosis ratio of method in [14] is descendingvilgaBut, to all those faults in the
CUT, the diagnosis ratio of the method proposeitiimpaper is high and steady.

4. In all misdiagnosis using the method in thisgraphe non-faulty element is diagnosed
wrongly as faulty one but the faulty element is lost. But, in all misdiagnosis using the
method given in [14], the non-faulty element isgiiased wrongly as a faulty one and the
faulty element is lost.

5. Conclusions

A new approach to locate single or multiple sofilfs in circuit is presented here. In this
paper, a standard circuit sensitivity analysis aeasible nodes with nominal parameters is
required to be performed to build the node-voltaggremental equation firstly. Then, a
diagnostic strategy for analog circuits is formethtising FNLP with limited test nodes. The
diagnosis result includes soft-fault identificatiohthe circuits and the determination of the
faulty elements.

The method in this paper, with acceptance of FNbP dvaluating the parameters
deviations, both identifies the faulty elements atedermines their parameters. From the
solution of the equation, it enables us to stateethdr the actual parameters are within
tolerance ranges or some components are faultytitpiarely.
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