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Variation of constant formulas for fractional
difference equations

PHAM THE ANH, ARTUR BABIARZ, ADAM CZORNIK, MICHAŁ NIEZABITOWSKI and STEFAN SIEGMUND

In this paper, we establish variation of constant formulas for both Caputo and Riemann-
Liouville fractional difference equations. The main technique is the Z -transform. As an appli-
cation, we prove a lower bound on the separation between two different solutions of a class of
nonlinear scalar fractional difference equations.
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1. Introduction

Recently, the theory of fractional calculus became very popular and its de-
velopment is still very fast (see e.g. [22, 25] and the references therein). In the
literature, one can find results on theoretical problems as well as practical appli-
cations. In the classical framework of differential or difference equations a pow-
erful tool for analyzing properties of dynamical systems is the so-called variation
of constant formula which expresses the solution of a nonlinear equation by the
solution of a linear approximation and an implicit term involving the nonlinearity
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(see [10]). The Laplace transform method has been utilized to derive a variation
of constant formula for linear fractional differential equations in [14].

This paper is devoted to study linear discrete-time fractional systems. In the
discrete-time framework four main types of fractional differences are consid-
ered: forward/backward Caputo and forward/backward Riemann-Liouville op-
erators (see e.g. [1, 3, 5]). For linear discrete time-invariant fractional systems
the stability problem is studied in [4, 15]. In this paper we use the Z -transform
to establish variation of constant formulas for Caputo and Riemann-Liouville
fractional difference equations in Section 2. In Section 3 we use the variation
of constant formula to show a separation result for solutions of scalar fractional
difference equations.

A reader who is familiar with fractional difference equations may very
well skip the next paragraph, in which we recall notation to keep the paper
self-contained. Denote by R the set of real numbers, by Z the set of inte-
gers, by N := Z0 the set {0,1,2, . . .} of natural numbers including 0, and by
Z¬0 := {0,−1,−2, . . .} the set of non-positive integers. For a ∈ R we denote
by Na := a+N the set {a,a+1, . . .}. By Γ : R \Z¬0 → R we denote the Euler
gamma function defined by

Γ(α) := lim
n→∞

nαn!
α(α +1) · · ·(α +n)

(α ∈ R\Z¬0). (1)

Note that (see [12])

Γ(α) =





∫ ∞

0
xα−1e−xdx if α > 0,

Γ(α +1)
α

if α < 0 and α ∈ R\Z¬0 .

(2)

For s ∈ R with s+ 1, s+ 1−α /∈ Z¬0, the falling factorial power (s)(α) is de-
fined by

(s)(α) :=
Γ(s+1)

Γ(s+1−α)
. (3)

By ⌈x⌉ := min{k ∈ Z : k  x} we denote the least integer greater or equal to x
and by ⌊x⌋ := max{k ∈Z : k¬ x} the greatest integer less or equal to x. Binomial

coefficients
(

r

m

)
can be defined for any r,m ∈ C as described in [12, Section

5.5, formula (5.90)]. For r ∈ R and m ∈ Z the binomial coefficient satisfies [12,
Section 5.1, formula (5.1)]

(
r

m

)
=





r(r−1) · · ·(r−m+1)
m!

if m ∈ Z1 ,

1 if m = 0,
0 if m ∈ Z¬−1 .
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For a ∈ R, ν ∈ R0 and a function x : Na → R
d , the ν-th delta fractional sum

∆−ν
a x : Na+ν → Rd of x is defined as

(∆−ν
a x)(t) :=

1
Γ(ν)

t−ν

∑
k=a

(t − k−1)(ν−1)x(k) (t ∈ Na+ν).

We write ∆−νx instead of ∆−ν
0 x.

The Caputo forward difference C∆α
a x : Na+1−α → R

d of x of order α is de-

fined as the composition C∆α
a := ∆

−(1−α)
a ◦∆ of the (1−α)-th delta fractional

sum with the classical difference operator t 7→ ∆x(t) := x(t +1)− x(t), i.e.

(C∆α
a x)(t) := (∆

−(1−α)
a ∆x)(t) (t ∈ Na+1−α).

The Riemann-Liouville forward difference R-L∆
α
a x : Na+1−α → Rd of x of order

α is defined as R-L∆
α
a := ∆◦∆

−(1−α)
a , i.e.

(R-L∆
α
a x)(t) := (∆∆

−(1−α)
a x)(t) (t ∈ Na+1−α ).

Similarly, as for the fractional sum, if a = 0 we simply write C∆αx and R-L∆
αx.

Let α ∈ (0,1). Consider a linear fractional difference equation of the form

(∆αx)(n+1−α) = Ax(n)+ f (n) (n ∈ N), (4)

where x : N→ Rd , ∆α is either the Caputo C∆α or Riemann-Liouville R-L∆
α for-

ward difference operator of order α , f : N → Rd and A ∈ Rd×d . For an initial
value x0 ∈ Rd , (4) has a unique solution x : N → Rd which satisfies the initial
condition x(0) = x0. We denote x by ϕC(·,x0) or ϕR-L(·,x0), respectively. If f ≡ 0,
(4) is called homogeneous, and its solutions can be expressed with discrete-time
Mittag-Leffler functions. In the literature, different types of discrete-time Mittag-
Leffler functions are defined [17,21,24]. In [17], for β ∈C, two functions E(α,β )
and E(α,β ) are defined by

E(α,β )(A,n) =
∞

∑
k=0

Ak

(
n− k+ kα +β −1

n− k

)
(n ∈ Z), (5)

and

E(α,β )(A,z) =
∞

∑
k=0

Ak (z+(k−1)(α −1))(kα)(z+ k(α −1))(β−1)

Γ(αk+β )
(z ∈ C).

These are two different functions, however,

E(α,1)(A,n) = E(α,1)(A,n+1−α) (n ∈ N),
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since for β = 1, by setting z = n−1+α ,

(z+(k−1)(α −1)(kα)(z+ k(α −1))(β−1)

Γ(αk+β )

=
(z+(k−1)(α −1))(kα)

Γ(αk+1)

=
Γ(z+ kα − k−α +2)

Γ(z− k−α +2)Γ(αk+1)

=
Γ(n+ kα − k+1)

Γ(n− k+1)Γ(αk+1)
,

and(
n− k+ kα +β −1

n− k

)
=

Γ(n− k+ kα +1)
Γ(n− k+1)Γ(kα +β )

=
Γ(n− k+ kα +1)

Γ(n− k+1)Γ(kα +1)
.

Similarly, E(α,α)(A,n) = E(α,α)(A,n+ 1 −α) for n ∈ N, since for β = α , by
setting z = n−1+α ,

(z+(k−1)(α −1))(kα)(z+ k(α −1))(α−1)

Γ(αk+α)

=
Γ(z+ kα − k−α +2)

Γ(z− k−α +2)
Γ(z+ kα − k+1)

Γ(z+ kα − k−α +2)
1

Γ(αk+α)

=
Γ(n− k+ kα +α)

Γ(n− k+1)Γ(αk+α)

=

(
n− k+ kα +α −1

n− k

)
.

The next remark provides formulas for solutions of homogeneous Caputo and
Riemann-Liouville equations in terms of discrete-time Mittag-Leffler functions.

Remark 1 (a) The solution of the linear homogeneous Caputo difference equa-
tion

(C∆αx)(n+1−α) = Ax(n), x(0) = x0 ∈ R
d ,

is given by
ϕC(n,x0) = E(α)(A,n)x0 (n ∈ N), (6)

with the discrete-time Mittag-Leffler function

E(α)(A,n) := E(α,1)(A,n) =
∞

∑
k=0

Ak

(
n− k+ kα

n− k

)
(n ∈ N). (7)

See e.g. [2].
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(b) The solution of the linear homogeneous Riemann-Liouville difference
equation

(R-L∆
αx)(n+1−α) = Ax(n), x(0) = x0 ∈ R

d,

is given by

ϕR-L(n,x0) = E(α,α)(A,n)x0 (n ∈ N), (8)

with the discrete-time Mittag-Leffler function

E(α,α)(A,n) =
∞

∑
k=0

Ak

(
n− k+(k+1)α −1

n− k

)
(n ∈ N). (9)

Instead of giving a direct proof, we refer to our main Theorem 1 which implies
(6) and (8) for the special case f ≡ 0.

Note that the sums in the right-hand sides of (5), (7) and (9) for n ∈ Z are

taken over only finitely many summands, since
(

r

m

)
= 0 if r ∈R and m ∈Z¬−1,

therefore

ϕC(n,x0) =
n

∑
k=0

Ak

(
n− k+ kα

n− k

)
x0 =

n

∑
k=0

Ak (−1)n−k

(
−kα −1

n− k

)
x0

and

ϕR-L(n,x0) =
n

∑
k=0

Ak

(
n− k+(k+1)α −1

n− k

)
x0 =

n

∑
k=0

Ak(−1)n−k

(
−kα −α

n− k

)
x0.

In the last step we used the following identity for binomial coefficients [12, p.
174] (

r

k

)
= (−1)k

(
k− r−1

k

)
(r ∈ R,k ∈ Z). (10)

2. Variation of constant formula

The next theorem presents variation of constant formulas for Caputo and
Riemann-Liouville fractional difference equations.

Theorem 1 (a) The solution of the linear Caputo difference equation

(C∆αx)(n+1−α) = Ax(n)+ f (n) (n ∈ N),
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with initial condition x(0) = x0 ∈ R
d , is given by

ϕC(n,x0) = E(α)(A,n)x0+
n−1

∑
k=0

E(α,α)(A,n− k−1) f (k) (n ∈ N). (11)

(b) The solution of the linear Riemann-Liouville difference equation

(R-L∆
αx)(n+1−α) = Ax(n)+ f (n) (n ∈ N),

with initial condition x(0) = x0 ∈ Rd , is given by

ϕR-L(n,x0) = E(α,α)(A,n)x0+
n−1

∑
k=0

E(α,α)(A,n− k−1) f (k) (n ∈ N). (12)

In order to prepare the proof of Theorem 1, we summarize some results about
the Z -transform of a sequence x : N→R, which is defined by

Z [x](z) =
∞

∑
i=0

x(i)z−i (z ∈ C, |z|> R),

for R = limsupi→∞ |x(i)|1/i, see e.g. [10, Chapter 6] and [13]. The Z -transform
of Rd or Rd×d valued sequences is defined component-wise.

The next lemma is devoted to the Z -transform of discrete-time Mittag-
Leffler functions and fractional differences.

Lemma 6 Let A ∈ R
d×d , x : N→R. Then

(i) Z
[
E(α,β )(A, ·)

]
(z) =

(
z

z−1

)β (
I − 1

z

(
z

z−1

)α

A

)−1

,

(ii) Z
[
E(α,β )(A, ·−1)

]
(z) =

1
z

(
z

z−1

)β (
I − 1

z

(
z

z−1

)α

A

)−1

,

(iii) Z
[
(C∆αx)(·+1−α)

]
= z

(
z

z−1

)−α [
Z [x](z)− z

z−1
x(0)

]
,

(iv) Z
[
(R-L∆

αx)(·+1−α)
]
= z

(
z

z−1

)−α

Z [x](z)− zx(0).
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Proof. (i) The proof is similar to [20, Proposition 2]. By the definition of the
Z -transform, we have

Z
[
E(α,β )(A, ·)

]
(z) =

∞

∑
n=0

E(α,β )(A,n)
1
zn

=
∞

∑
n=0

∞

∑
k=0

Ak(−1)n−k

(
−kα −β

n− k

)
1
zn

=
∞

∑
k=0

Ak
∞

∑
n=0

(−1)n−k

(
−kα −β

n− k

)
1
zn
.

With s = n− k, we get

Z
[
E(α,β )(A, ·)

]
(z) =

∞

∑
k=0

Ak
∞

∑
s=0

(−1)s

(
−kα −β

s

)
1

zs+k

=
∞

∑
k=0

(
1
z

A

)k ∞

∑
s=0

(−1)s

(
−kα −β

s

)
1
zs

=
∞

∑
k=0

(
1
z

A

)k(
1− 1

z

)−kα−β

=
∞

∑
k=0

(
1
z

A

)k(
z

z−1

)kα+β

.

Hence, we obtain

Z
[
E(α,β )(A, ·)

]
(z) =

(
z

z−1

)β (
I − 1

z

(
z

z−1

)α

A

)−1

.

(ii) By the definition of the Z -transform, we have

Z
[
E(α,β )(A, ·−1)

]
(z) =

∞

∑
n=0

E(α,β )(A,n−1)
1
zn

=
∞

∑
n=0

∞

∑
k=0

Ak(−1)n−1−k

(
−kα −β
n−1− k

)
1
zn

=
∞

∑
k=0

Ak
∞

∑
n=0

(−1)n−1−k

(
−kα −β
n−1− k

)
1
zn
.
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With s = n−1− k, we get

Z
[
E(α,β )(A, ·−1)

]
(z) =

∞

∑
k=0

Ak
∞

∑
s=0

(−1)s

(
−kα −β

s

)
1

zs+k+1

=
1
z

∞

∑
k=0

(
1
z

A

)k ∞

∑
s=0

(−1)s

(
−kα −β

s

)
1
zs

=
1
z

∞

∑
k=0

(
1
z

A

)k(
1− 1

z

)−kα−β

=
1
z

∞

∑
k=0

(
1
z

A

)k(
z

z−1

)kα+β

.

Hence, we obtain

Z
[
E(α,β )(A, ·−1)

]
(z) =

1
z

(
z

z−1

)β (
I − 1

z

(
z

z−1

)α

A

)−1

.

(iii) This is [18, Corollary 9].
(iv) This is [19, Proposition 8].

Proof. [Proof of Theorem 1](a) Applying the Z -transform to equation (4) with
the Caputo forward difference operator, we get

z

(
z

z−1

)−α [
Z
[
ϕC(·,x0)

]
(z)− z

z−1
x0

]

= AZ
[
ϕC(·,x0)

]
(z)+Z [ f ](z).

Using Lemma 6(i), we obtain

Z
[
ϕC(·,x0)

]
(z) = Z

[
E(α)(A, ·)(z)x0

]

+

(
z

(
z

z−1

)−α

I −A

)−1

Z [ f ](z).

For notational clarity, we write Z −1[z 7→ w(z)] := Z −1[w] for applying the in-
verse of the Z -transform to a function w(·), and get

ϕC(n,x0) = E(α)(A,n)x0

+Z
−1



z 7→
(

z

(
z

z−1

)−α

I −A

)−1

Z [ f ](z)



(n) (n ∈ N).
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Using

Z
−1


z 7→

(
z

(
z

z−1

)−α

I −A

)−1

(n)

= Z
−1

[
z 7→ 1

z

(
z

z−1

)α(
I − 1

z

(
z

z−1

)α

A

)−1
]
(n) (n ∈ N),

and the abbreviation g(·) := E(α,α)(A, ·−1), we have from Lemma 6(ii),

Z [g](z) = Z
[
E(α,α)(A, ·−1)

]
(z) =

1
z

(
z

z−1

)α(
I − 1

z

(
z

z−1

)α

A

)−1

.

Hence, we get

ϕC(n,x0) = E(α)(A,n)x0+Z
−1 [z 7→ Z [g](z)Z [ f ](z)](n)

= E(α)(A,n)x0+(g∗ f )(n)

= E(α)(A,n)x0+
n

∑
k=0

g(n− k) f (k)

= E(α)(A,n)x0+
n

∑
k=0

E(α,α)(A,n− k−1) f (k) (n ∈ N).

By definition of the discrete-time Mittag-Leffler function and since
(

r

m

)
= 0 if

r ∈ R and m ∈ Z¬−1, we have E(α,α)(A,−1) = 0, and therefore

ϕC(n,x0) = E(α)(A,n)x0+
n−1

∑
k=0

E(α,α)(A,n− k−1) f (k) (n ∈ N).

(b) Applying the Z -transform to equation (4) with the Riemann-Liouville
forward difference operator, we get

z

(
z

z−1

)−α

Z
[
ϕR-L(·,x0)

]
(z)− zx0

= AZ
[
ϕR-L(·,x0)

]
(z)+Z [ f ](z).
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Using Lemma 6(i), we obtain

Z
[
ϕR-L(·,x0)

]
(z) = Z

[
E(α,α)(A, ·)(z)x0

]

+

(
z

(
z

z−1

)−α

I −A

)−1

Z [ f ](z).

Applying the inverse of the Z -transform yields

ϕR-L(n,x0) = E(α,α)(A,n)x0

+Z
−1


z 7→

(
z

(
z

z−1

)−α

I −A

)−1

Z [ f ](z)


(n) (n ∈ N).

Using

Z
−1


z 7→

(
z

(
z

z−1

)−α

I −A

)−1



= Z
−1

[
z 7→ 1

z

(
z

z−1

)α(
I − 1

z

(
z

z−1

)α

A

)−1
]

and the abbreviation g(·) := E(α,α)(A, ·−1), we have from Lemma 6(ii),

Z [g](z) = Z
[
E(α,α)(A, ·−1)

]
(z) =

1
z

(
z

z−1

)α(
I − 1

z

(
z

z−1

)α

A

)−1

.

Hence, we get

ϕR-L(n,x0) = E(α,α)(A,n)x0+Z
−1 [z 7→ Z [g](z)Z [ f ](z)](n)

= E(α,α)(A,n)x0+(g∗ f )(n)

= E(α,α)(A,n)x0+
n

∑
k=0

g(n− k) f (k)

= E(α,α)(A,n)x0+
n

∑
k=0

E(α,α)(A,n− k−1) f (k) (n ∈ N).

By definition of the discrete-time Mittag-Leffler function, E(α,α)(A,−1)= 0, and
therefore

ϕR-L(n,x0) = E(α,α)(A,n)x0+
n−1

∑
k=0

Eα,α(A,n− k−1) f (k) (n ∈ N).
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Theorem 1 can be applied to a nonlinear equation yielding an implicit so-
lution representation by the variation of constant formula. Let x : N → Rd be a
solution of the nonlinear fractional difference equation

(∆αx)(n+1−α) = Ax(n)+g(x(n)) (n ∈ N),

where ∆α is either the Caputo C∆α or Riemann-Liouville R-L∆
α forward differ-

ence operator of order α , f : Rd → Rd and A ∈ Rd×d . Then x is also a solution
of the (nonautonomous) linear fractional difference equation (4) with

f : N→ R
d , n 7→ g(x(n)).

By Theorem 1, x satisfies the implicit equation

x(n) = E(α,β )(A,n)x0+
n−1

∑
k=0

E(α,α)(A,n− k−1)g(x(k)) (n ∈ N) (13)

with β = 1 or β = α , respectively.

3. Scalar solution separation

Consider scalar nonlinear fractional difference equations of the form

(∆αx)(n+1−α) = λx(n)+ f (x(n)) (n ∈ N), (14)

where x : N → R, ∆α is either the Caputo C∆α or Riemann-Liouville R-L∆
α for-

ward difference operator of a real order α ∈ (0,1), λ > 0, and f : R → R is
Lipschitz continuous, i.e. there is a constant L > 0 such that

| f (x)− f (y)| ¬ L|x− y| (x,y ∈ R). (15)

Solutions of initial value problems (14), x(0) ∈ R, exist on N (see e.g. [26, Sec-
tion 3]).

The next theorem presents a lower bound on the separation between two so-
lutions.

Theorem 2 Consider equation (14) and assume that f satisfies (15) with
L ∈ [0,λ ).

(a) Caputo difference equations: solutions of

(C∆αx)(n+1−α) = λx(n)+ f (x(n)) (16)



628 P.T. ANH, A. BABIARZ, A. CZORNIK, M. NIEZABITOWSKI, S. SIEGMUND

satisfy the estimate

|ϕC(n,x)−ϕC(n,y)| E(α)(λ −L,n)|x− y| (x,y ∈ R,n ∈ N).

(b) Riemann-Liouville difference equation: solutions of

(R-L∆
αx)(n+1−α) = λx(n)+ f (x(n)) (17)

satisfy the estimate

|ϕR-L(n,x)−ϕR-L(n,y)|  E(α,α)(λ −L,n)|x− y| (x,y ∈ R,n ∈ N).

In the proof of the above theorem we will use the following lemma on mono-
tonicity with respect to the initial conditions of scalar equations.

Lemma 7 Consider equation (14) and assume that f satisfies (15) with
L ∈ [0,λ ).

(a) If x ¬ y, then ϕC(n,x) ¬ ϕC(n,y) for n ∈ N.

(b) If x ¬ y, then ϕR-L(n,x) ¬ ϕR-L(n,y) for n ∈ N.

Proof. Define h(x) := Lx+ f (x). Then equation (14) can be rewritten as

(∆αx)(n+1−α) = (λ −L)x(n)+h(x(n)) (n ∈ N). (18)

Moreover, for x ¬ y

h(y)−h(x) = Ly+ f (y)− (Lx+ f (x))

= f (y)− f (x)+L(y− x)

 −L(y− x)+L(y− x)

= 0,

i.e., h is monotonically increasing.
(a) By Theorem 1(a) and (13), for x,y ∈ R,

ϕC(n,y)−ϕC(n,x)

= E(α)(λ −L,n)(y− x)

+
n−1

∑
k=0

E(α,α)(λ −L,n− k−1)(h(ϕC(k,y))−h(ϕC(k,x))) (n ∈ N). (19)
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By (10) we have for α > 0, β  0

(
n− k+ kα +β −1

n− k

)

= (−1)n−k

(−(kα +β )

n− k

)

= (−1)n−k (−(kα +β ))(−(kα +β +1)) · · ·(−(kα +β +n− k−1))
1 ·2 · · ·(n− k)

=
(kα +β )(kα +β +1) · · ·(kα +β +n− k−1)

1 ·2 · · ·(n− k)
> 0.

Substituting into the above inequality β = 0 and β = 1 and taking into account
that λ −L > 0, we have E(α)(λ −L,n)> 0 and E(α,α)(λ −L,n)> 0 for all n∈N,
respectively. Hence, x ¬ y implies ϕC(n,x) ¬ ϕC(n,y) for n ∈ N.

(b) By Theorem 1(b) and (13), for x,y ∈ R,

ϕR-L(n,y)−ϕR-L(n,x)

= E(α,α)(λ −L,n)(y− x)

+
n−1

∑
k=0

E(α,α)(λ −L,n− k−1)(h(ϕR-L(k,y))−h(ϕR-L(k,x))) (n ∈ N). (20)

Since λ −L> 0, we have E(α,α)(λ −L,n)> 0 for all n ∈N. Hence, x¬ y implies
ϕR-L(n,x) ¬ ϕR-L(n,y) for n ∈ N.

We are now in a position to prove Theorem 2.

Proof. [Proof of Theorem 2]Assume that x < y and L ∈ [0,λ ).
By Lemma 7, equations (19) and (20), and the fact that h is monotonically

increasing, we get

ϕC(n,y)−ϕC(n,x)  E(α)(λ −L,n)(y− x) (n ∈ N),

and

ϕR-L(n,y)−ϕR-L(n,x)  E(αα)(λ −L,n)(y− x) (n ∈ N),

respectively.
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As an application of Theorem 2 to equations (14) with trivial solution, we get
that the Lyapunov exponent of non-zero solutions is nonnegative.

Corollary 4 Consider equation (14) with λ > 0 and assume that f satisfies (15)
with L ∈ [0,λ ). Then for x0 ∈ R\{0} the nontrivial solutions of the Caputo and
Riemann-Liouville difference equations (16) and (17) satisfy

limsup
n→∞

1
n

ln |ϕC(n,x0)| 
{

λ −L if λ −L > 1,

0 if 0 < λ −L ¬ 1,
(21)

and

limsup
n→∞

1
n

ln |ϕR-L(n,x0)| 
{

λ −L if λ −L > 1,

0 if 0 < λ −L ¬ 1,
(22)

respectively.

Proof. Recall from [5, p. 656] and [12, pp. 165], that for all α > 0,β > 0,
(

n− k+ kα +β −1
n− k

)

= (−1)n−k

(
−(kα +β )

n− k

)

= (−1)n−k (−(kα +β ))(−(kα +β +1)) · · ·(−(kα +β +n− k−1))
1 ·2 · · ·(n− k)

=
(kα +β )(kα +β +1) · · ·(kα +β +n− k−1)

1 ·2 · · ·(n− k)
.

Hence for β = 1, we have
(

n− k+ kα
n− k

)
 1.

Choosing x = x0,y = 0, from Theorem 2,

|ϕC(n,x0)|  |Eα(λ −L,n)||x0|



n

∑
k=0

(λ −L)k|x0|.

It remains to verify, that

lim
n→∞

1
n

ln
n

∑
k=n0

qn =

{
q if q > 1,

0 if 0 < q ¬ 1.
(23)
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From the last two inequalities we obtain (21).

For the Riemann-Liouville case, with n0 :=
⌈

1−α

α

⌉
, we have kα +α  1

for all k  n0. As a consequence, for n > n0,
(

n− k+ kα +α −1
n− k

)
< 1 (k ∈ {0,1, . . .n0 −1}),

and (
n− k+ kα +α −1

n− k

)
 1 (k ∈ {n0,n0 +1, . . .n}).

Therefore

|ϕR-L(n,x0)|  |Eα,α(λ −L,n)||x0|



n

∑
k=n0

(λ −L)k|x0|.

Combining the last inequality with (23), we obtain (22).

4. Conclusions

We used the Z -transform to establish variation of constant formulas for Ca-
puto and Riemann-Liouville fractional difference equations. Using this formula
we provided a lower bound for the norm of differences between two different
solutions of a scalar Caputo or Riemann-Liouville time-varying linear equation.
In particular, this result implies that the classical Lyapunov exponent is not an
appropriate tool for stability analysis of fractional equations.
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