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Abstract. A new class of positive fractional 2D hybrid linear systems is introduced. The solution of the hybrid system is derived. The

classical Cayley-Hamilton theorem is extended for fractional 2D hybrid systems. Necessary and sufficient conditions for the positivity are

established.
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1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models. A variety

of models having positive linear systems behaviour can be

found in engineering, management science, economics, social

sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not on

linear spaces. Therefore, the theory of positive systems is

more complicated and less advanced. An overview of state

of the art in positive systems theory is given in the mono-

graphs [1, 2]. Recent developments in positive discrete-time

and continuous-time systems without and with delays was

considered in [1, 2–9].

The reachability, controllability and minimum energy con-

trol of positive linear discrete-time systems with delays have

been considered in [10].

The relative controllability of stationary hybrid systems

has been investigated in [11] and the observability of linear

differential-algebraic systems with delays has been considered

in [12].

The positive 2D hybrid linear systems have been investi-

gated in [13].

The main purpose of this paper is to introduce a class

of fractional 2D hybrid systems. A solution to the hybrid

system will be derived. The classical Cayley-Hamilton the-

orem will be extended for fractional hybrid systems. Neces-

sary and sufficient conditions for the positivity will be estab-

lished.

To the best knowledge of the author the positive fractional

2D hybrid linear systems have not been considered yet.

2. Equations of the fractional 2D hybrid systems

and their solutions

Let <n×m be the set of n×m real matrices with entries from

the real number < and Z+ be the set of nonnegative integers.

The n × m identity matrix will be denoted by In.

Consider a hybrid fractional 2D system described by the

equations

dαx1(t, i)

dtα
= A11x1(t, i) + A12x2(t, i) + B1u(t, i),

t ∈ <+ = [0, +∞]

(1a)

∆βx2(t, i + 1) = A21x1(t, i) + A22x2(t, i) + B2u(t, i),

i ∈ Z+

(1b)

y(t, i) = C1x1(t, i) + C2x2(t, i) + Du(t, i) (1c)

where α (0 < α < 1) is the order of fractional deriva-

tive, β (0 < β < 1) is the order of fractional difference,

x1(t, i) ∈ <n1 , x2(t, i) ∈ <n2 , u(t, i) ∈ <m, y(t, i) ∈ <p

and A11, A12, A21, A22, B1, B2, C1, C2, D are real matrices

with appropriate dimensions.

Boundary conditions for (1a) and (1b) have the form

x1(0, i) = x1(i),

i ∈ Z+ and x2(t, 0) = x2(i), t ∈ <+

(2)

Note that fractional 2D hybrid system (1) has a similar

structure as the Roesser model [2, 13, 14].

The Caputo definition of the fractional derivative [14]

dαx(t)

dtα
=

1

Γ(n − α)

t
∫

0

x(n)(τ)

(t − τ)α−n+1
dτ

(

x(n)(τ) =
dnx(τ)

dτn

)

n − 1 < α < n ∈ N = {1, 2, ...}

(3)
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where

Γ(x) =

∞
∫

0

e−ttx−1dt (4)

is the gamma function will be used.

The fractional difference of the order β of xi will be de-

fined by

∆βxi =

i
∑

k=0

(−1)k

(

β

k

)

xi−k,

0 < β < 1, i ∈ Z+

(5)

where

(

β

k

)

=







1 for k = 0
β(β − 1)...(β − k + 1)

k!
for k = 1, 2, ...

. (6)

Using (5) we may write the equation (1b) in the form

x2(t, i + 1) = A21x1(t, i) + A22x2(t, i)

+

i+1
∑

k=1

ckx2(t, i − k + 1) + B2u(t, i), i ∈ Z+

(7)

where

ck = ck(β) = (−1)k−1

(

β

k

)

, k = 1, 2, ... . (8)

Remark. From (6) and (8) it follows that coefficients ck

strongly decrease when k increases. Therefore, in practical

problems it is assumed that i is bounded by a natural number

L and
i+1
∑

k=1

ckx2(t, i − k + 1) =
L+1
∑

k=1

ckx2(t, i − k + 1).

Theorem 1. Solutions to the equations (1a) and (7) with

given boundary conditions (2) have the forms

[

x1(t, i)

x2(t, i)

]

=

=

∞
∑

p=0

i
∑

q=0

Tp,i−qB10

Γ[(p + 1)α]

t
∫

0

(t − τ)(p+1)α−1u(τ, q)dτ

+

∞
∑

p=0

i
∑

q=0

Tp,i−q−1B01

Γ(αp − 1)

t
∫

0

(t − τ)αp−1u(τ, q)dτ

+

∞
∑

p=0

i
∑

q=0

Tp,i−q

Γ(αp + 1)
(t − τ)pα

[

x1(0, q)

0

]

+

∞
∑

p=0

Tp,i

Γ(αp)

t
∫

0

(t − τ)pα

[

0

x2(t, 0)

]

dτ

(9)

where

Tpq =























































































In
1
+n2

for p = q = 0

[

A11 A12

0 0

]

for p = 1, q = 0

[

0 0

A21 A22 + In2
c1

]

for p = 0, q = 1

T10Tp−1,q + T01Tp,q−1 for p ≥ 0, q ≥ 0, p + q > 1

0 for p < 0, or/and q < 0
(10a)

and

Toq = T
q
01 +

[

0 0

0 In2
cq

]

, q = 2, 3, ... . (10b)

Proof. The solutions will be derived using the Laplace

transform (L) with respect to t and the Z transform (Z) with

respect to i.

Taking into account that

L

[

dαx1(t, i)

dtα

]

= sαX1(s, i) − sα−1x1(0, i)

ZL

[

dαx1(t, i)

dtα

]

= Z
[

sαX1(s, i) − sα−1x1(0, i)
]

= sαX1(s, z) − sα−1X1(0, z)

ZL [x2(t, i − k + 1)] = z1−kX2(s, z) (k ≥ 1)

(11)

where

L [x(t, i)] =

∞
∫

0

x(t, i)e−stdt,

Z [x(t, i)] =

∞
∑

i=0

x(t, i)z−i

(12)

from (1a) and (7) we obtain

sαX1(s, z) − sα−1X1(0, z) = A11X1(s, z)

+A12X2(s, z) + B1U(s, z)

zX2(s, z) − zX2(s, 0) = A21X1(s, z) + A22X2(s, z)

+

i+1
∑

k=1

ckz1−kX2(s, z) + B2U(s, z)

(13)

where U(s, z) = ZL [u(i, t)].
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From (13) we have
[

X1(s, z)

X2(s, z)

]

=

=





In1
− A11s

−α −A12s
−α

−A21z
−1 In1

− A22z
−1 −

i+1
∑

k=1

In2
ckz−k





−1

{[

B1s
−α

B2z
−1

]

U(s, z) +

[

s−1X1(0, z)

X2(s, 0)

]}

.

(14)

Let




In1
− A11s

−α −A12s
−α

−A21z
−1 In1

− A22z
−1 −

i+1
∑

k=1

In2
ckz−k





−1

=

=

∞
∑

p=0

∞
∑

q=0

Tpqs
−αpz−q.

(15)

From definition of inverse matrix and (15) we have





In1
− A11s

−α −A12s
−α

−A21z
−1 In1

− A22z
−1 −

i+1
∑

k=1

In2
ckz−k





−1

(

∞
∑

p=0

∞
∑

q=0

Tpqs
−αpz−q

)

=

(

∞
∑

p=0

∞
∑

q=0

Tpqs
−αpz−q

)





In1
− A11s

−α −A12s
−α

−A21z
−1 In1

− A22z
−1 −

i+1
∑

k=1

In2
ckz−k





−1

= In1+n2
.

(16)

Comparison of the coefficients at the same powers of s

and z of the equality (16) yields (10).

Substituting (15) into (14) we obtain
[

X1(s, z)

X2(s, z)

]

=

∞
∑

p=0

∞
∑

q=0

Tpqs
−αpz−q

{[

B1s
−α

B2z
−1

]

U(s, z) +

[

s−1X1(0, z)

X2(s, 0)

]}

=

=

∞
∑

p=0

∞
∑

q=0

(

Tpqs
−α(p+1)z−qB10 + Tpqs

−αpz−(q+1)B01

)

U(s, z) +

∞
∑

p=0

∞
∑

q=0

(

Tpqs
−(αp+1)z−q

[

X1(0, z)

0

]

+ Tpqs
−αpz−q

[

0

X2(s, 0)

])

(17)

where

B10 =

[

B1

0

]

, B01 =

[

0

B2

]

.

Applying the inverse transforms to (17) and taking into

account that

L [tα] =
Γ(α + 1)

sα+1
(18)

we obtain (9). �

3. Extension of the Cayley-Hamilton theorem

for the fractional 2D hybrid systems

Taking into account Remark we may write

det





In1
− A11s

−α −A12s
−α

−A21z
−1 In1

− A22z
−1 −

i+1
∑

k=1

In2
ckz−k





=

N1
∑

k=0

N2
∑

l=0

aN1−k,N2−ls
−αkz−l

(19)

for the same natural numbers N1, N2.

Theorem 2. Let (19) be the characteristic polynomial of the

fractional 2D hybrid system. Then the matrices Tpq defined

by (10) satisfy the equation

N1
∑

k=0

N2
∑

l=0

aklTkl = 0. (20)

Proof. From the definition of inverse matrix and (19), (15)

we have

Adj





In1
− A11s

−α −A12s
−α

−A21z
−1 In1

− A22z
−1 −

i+1
∑

k=1

In2
ckz−k





=

(

N1
∑

k=0

N2
∑

l=0

aN1−k,N2−ls
−αkz−l

)(

∞
∑

k=0

∞
∑

l=0

Tpqs
−αpz−q

)

(21)

where Adj M denotes the adjoint matrix of M .

Comparison of the coefficients at the same powers

s−αN1z−N2 of the equality (21) yields (20) since the degrees

of the left-hand side are less than αN1 and N2.

Theorem 2 is an extension of the well-known classical

Cayley-Hamilton theorem for the fractional 2D hybrid sys-

tems.

4. Positive fractional 2D hybrid systems

Let <n×m
+ be the set of n×m real matrices with nonnegative

entries <n
+ = <n×1

+ .

Definition 1. The fractional 2D hybrid system (1) is called (in-

ternally) positive if and only if x1(t, i) ∈ <n1

+ , x2(t, i) ∈ <n2

+ ,

t ≥ 0, i ∈ Z+ for any boundary conditions
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x1(0, i) = x1(i) ∈ <n1

+ ,

i ∈ Z+ and x2(t, 0) = x2(i) ∈ <n2

+ , t ≥ 0
(22)

and all inputs u(t, i) ∈ <m
+ , t ≥ 0, i ∈ Z+.

Lemma 1. If 0 < β < 1 then

ck = ck(β) > 0 for k = 1, 2, ... (23)

Proof. The hypothesis is true for k = 1 since from (8) and

(6) we have c1 =

(

β

1

)

= β. Assuming that the hypothesis

is true for k ≥ 1 we shall show that it is also true for k + 1.

From (8) and (6) we obtain

ck+1 = (−1)k

(

β

k + 1

)

= (−1)k−1 β(β − 1)...(β − k + 1)(k − β)

k! (k + 1)

= (−1)k−1

(

β

k

)

k − β

k + 1
= ck

k − β

k + 1
> 0

since ck > 0 for k ≥ 1.

Lemma 2. If 0 < β < 1 and A21 ∈ <n2×n1

+ , A22 ∈ <n2×n2

+

then

T0q ∈ <
(n1+n2)×(n1+n2)
+ for q = 2, 3, ... (24)

Proof. From (10b) and Lemma 1 we have

T0q =

[

0 0

A21 A22 + In2
c1

]q

+

[

0 0

0 In2
cq

]

∈ <
(n1+n2)×(n1+n2)
+ for q = 2, 3, ...

since ck > 0 for k = 1, 2, ....

Let Mn be the set of n×n Metzler matrices (real matrices

with nonnegative off-diagonal entries).

Theorem 3. The fractional 2D hybrid system (1) is (in-

ternally) positive if and only if

A11 ∈ Mn1
, A12 ∈ <n1×n2

+ , A21 ∈ <n2×n1

+ ,

A22 ∈ <n2×n1

+ , B1 ∈ <n1×m
+ , B2 ∈ <n2×m

+ ,

C1 ∈ <p×n1

+ , C2 ∈ <p×n2

+ , D ∈ <p×m
+ .

(25)

Proof. From (1a) for and (22) we have [14]

dαx1(t, 0)

dtα
= A11x1(t, 0) + A12x2(t) + B1u(t, 0) (26)

and
x1(t, 0) = Φ0(t)x1(0)

+

t
∫

0

Φ(t − τ)[A12x2(τ) + B1u(τ, 0)]dτ
(27)

where

Φ0(t) =

∞
∑

k=0

Ak
11t

kα

Γ(kα + 1)
(28a)

and

Φ(t) =

∞
∑

k=0

Ak
11t

(k+1)α−1

Γ[(k + 1)α]
(28b)

In [14] was shown that Φ0(t) ∈ <n1×n1

+ and Φ(t) ∈

<n1×n1

+ for t ≥ 0 if and only if A11 is a Metzler matrix.

From (7) for i = 0 we obtain

x2(t, 1) = A21x1(t, 0)+(A22+In2
c1)x2(t)+B2u(t, 0) (29)

and after substitution of (27) into (29)

x2(t, 1) = A21Φ0(t)x1(0) + A21

t
∫

0

Φ(t − τ)

[A12x2(τ) + B1u(τ, 0)]dτ

+(A22 + In2
c1)x2(t) + B2u(t, 0).

(30)

From (30) for (22) it follows that x2(t, 1) ∈ <n2

+ if

and only if A11 ∈ Mn1
, A21 ∈ <n2×n1

+ , A22 ∈ <n2×n2

+ ,

B1 ∈ <n1×m
+ , B2 ∈ <n2×m

+ and u(t, 0) ∈ <m
+ , t ≥ 0.

Likewise from (1a) for we obtain

dαx1(t, 1)

dtα
= A11x1(t, 1) + A12x2(t, 1) + B1u(t, 1) (31)

and

x1(t, 1) = Φ0(t)x1(0, 1)

+

t
∫

0

Φ(t − τ)[A12x2(τ, 1) + B1u(τ, 1)]dτ.
(32)

From (32) it follows that x1(t, 1) ∈ <n1

+ , t ≥ 0 if and

only if A11 ∈ Mn1
since x1(0, 1) ∈ <n1

+ and x2(t, 1) ∈ <n2

+ ,

t ≥ 0.

Continuing this procedure it can be shown that the frac-

tional 2D hybrid system is positive if and only if the conditions

(25) are met.

5. Concluding remarks

A new class of fractional 2D hybrid positive linear systems

has been introduced. Necessary and sufficient conditions for

the positivity of the hybrid 2D linear systems has been es-

tablished. The classical Cayley-Hamilton theorem has been

extended for the hybrid systems. Following [14] the sufficient

conditions for the reachability and controllability [15, 16] can

be extended for the fractional 2D positive hybrid systems.

An open problem is extension of the considerations for 2D

hybrid systems described by models with structure similar to

the Kurek model [2, 17, 18].
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