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Abstract. A new class of positive hybrid linear systems is introduced. The solution of the hybrid system is derived and necessary and

sufficient condition for the positvity of the class of hybrid systems are established. The classical Cayley-Hamilton theorem is extended for

the hybrid systems. The reachability of the hybrid system is considered and sufficient conditions for the reachability are established. The

considerations are illustrated by a numerical example.

1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models. A variety

of models having positive linear systems behaviour can be

found in engineering, management science, economics, social

sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not on lin-

ear spaces. Therefore, the theory of positive systems is more

complicated and less advanced. An overview of state of the art

in positive systems theory is given in the monographs [1,2].

Recent developments in positive systems theory and some new

results are given in [3]. The realization problem for positive

discrete-time and continuous-time systems without and with

delays was considered in [1,2,4,5–9].

The reachability, controllability and minimum energy con-

trol of positive linear discrete-time systems with delays have

been considered in [10].

The relative controllability of stationary hybrid systems

has been investigated in [11] and the observability of linear

differential-algebraic systems with delays has been considered

in [12].

The main purpose of this paper is to introduce a class of

positive 2D hybrid systems. A solution to the hybrid system

will be derived and necessary and sufficient condition for the

positivity will be established. The classical Cayley-Hamilton

theorem will be extended for hybrid systems and sufficient

conditions for the reachability will be established.

To the best knowledge of the author the positive hybrid

systems has not been considered yet.

2. Equations of the hybrid systems and their

solutions

Let Rn×m be the set of n × m matrices with entries

form the field of real number R and Z+ be the set of non-

negative integers. The n × n identity matrix will be denoted

by In.

Consider a hybrid system described by the equations

ẋ1(t, i) = A11x1(t, i) + A12x2(t, i) + B1u(t, i),

t ∈ R+ = [0, +∞]
(1a)

x2(t, i + 1) = A21x1(t, i) + A22x2(t, i) + B2u(t, i),

i ∈ Z+

(1b)

y(t, i) = C1x1(t, i) + C2x2(t, i) + Du(t, i) (1c)

where ẋ1(t, i) = ∂x1(t,i)
∂t

, x1(t, i) ∈ Rn1 ,

x2(t, i) ∈ Rn2 , u(t, i) ∈ Rm, y(t, i) ∈ Rp and

A11, A12, A21, A22, B1, B2, C1, C2, D are real matrices with

appropriate dimensions.

Boundary conditions for (1a) and (1b) have the form

x1(0, i) = x1(i), i ∈ Z+ and x2(t, 0) = x2(t), t ∈ R+ (2)

Note that the hybrid system (1) has a similar structure as

the Roesser model [2,13,14].

Theorem 1. Solutions to the Eqs. (1a) and (1b) with given

boundary conditions (2) have the forms

x1(t, i) =






























Φ(t)x1(0) + Ptx2(t) + Qtu(t, 0) for i = 0

Φ(t)x1(i) +

i−1
∑

k=0

Pt(A21Pt + A22)
i−k−1

[A21Φ(t)x1(k) + (A21Qt + B2)u(t, k)]

+Pt(A21Pt + A22)
ix2(t) + Qtu(t, i) for i = 1, 2, ...

(3a)
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x2(t, i) =
i−1
∑

k=0

(A21Pt + A22)
i−k−1

[A21Φ(t)x1(k) + (A21Qt + B2)u(t, k)]

+(A21Pt + A22)
ix2(t) for i = 1, 2, ...

(3b)

where Φ(t) = eA11t and the operators Pt and Qt are defined

by:

Ptx =

t
∫

0

Φ(t − τ)A12x(τ)dτ ,

Qtx =

t
∫

0

Φ(t − τ)B1x(τ)dτ

(4)

Proof. The proof will be accomplished by induction with re-

spect to i.

From (1a) we have

x1(t, i) = Φ(t)x1(i) + Ptx2(t, i) + Qtu(t, i) (5)

From (1b) for i = 0 we have

x2(t, 1) = A21x1(t, 0) + A22x2(t) + B2u(t, 0) (6)

and from (5) for i = 0

x1(t, 0) = Φ(t)x1(0) + Ptx2(t) + Qtu(t, 0) (7)

Substitution of (7) into (6) yields

x2(t, 1) = A21Φ(t)x1(0)+

+(A21Pt + A22)x2(t) + (A21Qt + B2)u(t, 0)
(8)

The same result we obtain from (3b) for i = 1.

Likewise substituting (8) into the equation (obtained from (5)

for i = 1)

x1(t, 1) = Φ(t)x1(1) + Ptx2(t, 1) + Qtu(t, 1)

we obtain

x1(t, 1) = PtA21Φ(t)x1(0) + Φ(t)x1(1)+

+Pt(A21Pt + A22)x2(t) + Pt(A21Qt + B2)u(t, 0)+

+Qtu(t, 1)

The same result we obtain from (3a) for i = 1. Therefore,

the hypothesis is true for i = 1. Assuming that the hypothesis

is true for i = k we shall show that it is also true for i = k+1.

Using (3a) and (3b) for i = k > 1 we may write

A21x1(t, k) + A22x2(t, k) + B2u(t, k)

= A21{Φ(t)x1(k) +

k−1
∑

j=0

Pt(A21Pt + A22)
k−j−1

[A21Φ(t)x1(j) + (A21Qt + B2)u(t, j)]

+Pt(A21Pt + A22)
kx2(t) + Qtu(t, k)}

+A22{

k−1
∑

j=0

(A21Pt + A22)
k−j−1[A21Φ(t)x1(j)

+(A21Qt + B2)u(t, j) + (A21Pt + A22)
kx2(t)]} + B2u(t, k)

=

k
∑

j=0

(A21Pt + A22)
k−j

[A21Φ(t)x1(j) + (A21Qt + B2)u(t, j)]

+(A21Pt + A22)
k+1x2(t) = x2(t, k + 1)

Likewise using (5), (3b) and (3a) for i = k > 1 we obtain

Φ(t)x1(k + 1) + Ptx2(t, k + 1) + Qtu(t, k + 1) =

Φ(t)x1(k + 1) + Pt{

k
∑

j=0

(A21Pt + A22)
k−j

[A21Φ(t)x1(j) + (A21Qt + B2)u(t, j)]

+(A21Pt + A22)
k+1x2(t)} + Qtu(t, k + 1)

= Φ(t)x1(k + 1) +
k

∑

j=0

Pt(A21Pt + A22)
k−j [A21Φ(t)x1(j)

+(A21Qt + B2)u(t, j)] + Pt(A21Pt + A22)
k+1x2(t)

+Qtu(t, k + 1) = x1(t, k + 1)

This completes the proof. �

3. Positive hybrid systems

Let Rn×m
+ be the set of n×m real matrices with nonnegative

entries and Rn
+ = Rn×1

+ .

Definition 1. The hybrid system (1) is called internally pos-

itive if x1(t, i) ∈ Rn1

+ , x2(t, i) ∈ Rn2

+ , and y(t, i) ∈ R
p
+,

t ∈ R+, i ∈ Z+ for arbitrary boundary conditions x1(i) ∈
Rn1

+ , i ∈ Z+, x2(t) ∈ Rn2

+ , t ∈ R+ and inputs u(t, i) ∈ Rm
+ ,

t ∈ R+, i ∈ Z+.

Let Mn be the set of n×n Metzler matrices (real matrices

with nonnegative off-diagonal entries).

Theorem 2. The hybrid system (1) is internally positive if

and only if

A11 ∈ Mn1
, A12 ∈ Rn1×n2

+ , A21 ∈ Rn2×n1

+ , A22 ∈ Rn2×n2

+ ,

B1 ∈ Rn1×m
+ , B2 ∈ Rn2×m

+ ,

C1 ∈ R
p×n1

+ , C2 ∈ R
p×n2

+ , D ∈ R
p×m
+

(9)
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Proof. Sufficiency. It is well-known [1] that Φ(t) = eA11t ∈
Rn1×n1

+ if and only if A11 is the Metzler matrix. Thus, from

(3), (4) and (1c) it follows that if the condition (9) is satisfied,

then x1(t, i) ∈ Rn1

+ , x2(t, i) ∈ Rn2

+ , and y(t, i) ∈ R
p
+ for

all x1(i) ∈ Rn1

+ , x2(t) ∈ Rn2

+ and u(t, i) ∈ Rm
+ , t ∈ R+,

i ∈ Z+.

Necessity. Let u(t, 0) = 0, x2(t) = 0, t ∈ R+ and x1(0) = ei

(the ith column of the identity matrix In1
). From (1a) for

i = 0, t ∈ R+ and (7) we have ẋ1(t, 0) = A11Φ(t)ei ≥ 0 and

the trajectory does not leave the orthant Rn1

+ only if ẋ1(0, 0) =
A11e1 ∈ Rn1

+ , what implies aij ≥ 0 for i 6= j and A11 has to

be a Metzler matrix, i.e. A11 ∈ Mn1
. For the same reasons for

x1(0) = 0, x2(0) = 0, ẋ1(0, 0) = B1u(0, 0) ∈ Rn1

+ , what im-

plies B1 ∈ Rn1xm
+ since u(0, 0) ∈ Rm

+ may be arbitrary. Simi-

larly, for x1(0) = 0, u(0, 0) = 0, ẋ1(0, 0) = A12x2(0) ∈ Rn1

+

what implies A12 ∈ Rn1xn2

+ since x2(0, 0) may be arbi-

trary. From (1c) for x2(0) = 0, u(0, 0) = 0 we have

y(0, 0) = C1x1(0) ∈ R
p
+, what implies C1 ∈ R

pxn1

+ , since

x1(0) ∈ Rn1

+ may be arbitrary.

The proof for A21, A22, B2, C2 and D is similar. �

Definition 2. The hybrid system (1) is called externally pos-

itive if y(t, i) ∈ R
p
+ for all inputs u(t, i) ∈ Rm

+ , t ∈ R+,

i ∈ Z+ and zero boundary conditions (2).

From comparison of Definition 1 and 2 it follows that

every internally positive hybrid system (1) is also externally

positive.

The output of the system with zero boundary conditions

(2) for the input u(t, i) = δ(t), where δ(t) is the Dirac im-

pulse is called the impulse response g(t, i) of a single-input

single-output hybrid system (1). Assuming that only one in-

put is equal to δ(t) and the remaining inputs are zero we may

define the matrix of impulse responses g(t, i) ∈ Rpxm of the

hybrid system (1).

Theorem 3. The hybrid system (1) is externally positive if

and only if its matrix of impulse response is nonnegative

g(t, i) ∈ R
pxn
+ for t ∈ R+, i ∈ Z+. (10)

Proof. The necessity of the condition (10) immediately fol-

lows from Definition 2. From (1c) and (3) for x1(i) = 0,

x2(t) = 0 and u(t, i) = δ(t), t ∈ R+, i ∈ Z+ we have

g(t, i) =

(C1Pt + C2)(A21Pt + A22)
i−1(A21Φ(t)B1 + B2δ(t))

+Φ(t)B1 + Dδ(t), t ∈ R+, i ∈ Z+

(11)

since Qtδ(t) =
t
∫

0

Φ(t − τ)B1δ(τ)dτ = Φ(t)B1

and Pt =











(eA11t − In1
)A−1

11 A12 if detA11 6= 0
t
∫

0

eA11τA12dτ if detA11 = 0

From (1c), (3) and (11) it follows

y(t, i) = C1x1(t, i) + C2x2(t, i) + Du(t, i) =

=

i−1
∑

k=0

g(t, i − k)u(t, k)
(12)

If the condition (10) is satisfied, then from (12) we have

y(t, i) ∈ R
p
+ for all u(t, i) ∈ Rm

+ , t ∈ R+, i ∈ Z+. This

completes the proof. �

4. Extension of the Cayley-Hamilton theorem

for hybrid systems

The equations (1a) and (1b) for B1 = 0 and B2 = 0 take the

form

ẋ1(t, i) = A11x1(t, i) + A12x2(t, i)

x2(t, i + 1) = A21x1(t, i) + A22x2(t, i)
t ∈ R+, i ∈ Z+

(13)

Using the Laplace transform with respect to t and Z trans-

form will respect to i for (13) and eliminating from the equa-

tions x2(s, z), we obtain

[In1
s − A11 − A12[In2

z − A22]
−1A21]x1(s, z) = 0 (14)

Let d(z) = det[In2
z − A22] be the characteristic polyno-

mial of the matrix A22 and B(z) = Adj[In2
z − A22] be the

adjoint matrix. Then we have

[In1
s − A11 − A12[In2

z − A22]
−1A21]

−1

= [d−1(z)[(In1
s − A11)d(z) − A12B(z)A21]]

−1

= d(z)[(In1
s − A11)d(z) − A12B(z)A21]

−1

(15)

and

H(s, z) = d(s, z)





∞
∑

i=0

∞
∑

j=0

Φijs
−(i+1)z−(j+1)



 (16)

H(s, z) = Adj[(In1
s − A11)d(z) − A12B(z)A21]

=

N−1
∑

k=0

M−1
∑

l=0

Hkls
kzl

(17)

d(s, z) = det[(In1
s − A11)d(z) − A12B(z)A21]

=

N
∑

k=0

M
∑

l=0

akls
kzl, (aNM = 1)

(18)

[(In1
s − A11)d(z) − A12B(z)A21]

−1

=

∞
∑

i=0

∞
∑

j=0

Φijs
−(i+1)z−(j+1) (19)

Knowing the coefficient matrices Hkl, k = 0, 1, ..., N−1;

l = 0, 1, ..., M − 1 of (17) and the coefficients akl, k =
0, 1, ..., N ; l = 0, 1, ..., M of (18), we may find the matrices

Φij , for i = 0, 1, ..., M ; j = 0, 1, ..., N , as follows.

Bull. Pol. Ac.: Tech. 55(4) 2007 353



T. Kaczorek

Comparison of coefficients at the same powers of s and z

of the equality (16) yields HN−1,M−1 = Φ00, HN−1,M−2 =
Φ01 + aN,M−1Φ00, HN−2,M−1 = Φ10 + aN−1,MΦ00...

Φ00 = HN−1,M−1,

Φ01 = HN−1,M−2 − aN,M−1Φ00,

Φ10 = HN−2,M−1 − aN−1,MΦ00...

(20)

Theorem 4. The matrices Φij , defined by (19) satisfy the

following equations

N
∑

k=0

M
∑

l=0

aklΦk+v,l+w = 0

for v, w = −1, 0, 1, ... (v + w 6= −2)

(21)

where akl are the coefficient of the polynomial (18).

Proof. Note that the adjoint matrix (17) is a polynomial ma-

trix in s and z with nonnegative powers. Comparison of the

matrix coefficients at the powers s−(v+1) and z−(w+1) of the

equality (16) yields (21).

The equation (21) is an extension of the classical Cayley-

Hamilton theorem for the hybrid system (13). In particular

case from (21) for v = w = 0, we obtain

N
∑

k=0

M
∑

l=0

aklΦk,l = 0 (22)

Example 1. Consider the system (13) with the matrices

A11 =

[

−1 0

0 −2

]

, A12 =

[

0

1

]

,

A21 =
[

0 1
]

, A22 = [1]

(23)

In this case we have

d(s, z) = det[(In1
s − A11)d(z) − A12B(z)A21]

= det

[

(s + 1)(z − 1) 0

0 (s + 2)(z − 1) − 1

]

= (sz − s + z − 1)(sz − s + 2z − 3)

= s2z2 − 2s2z + 3sz2 + s2 + 2z2 − 7sz + 4s − 5z + 3
(24)

H(s, z) = Adj[(In1
s − A11)d(z) − A12B(z)A21]

=

[

sz − s + 2z − 3 0

0 sz − s + z − 1

]

=

[

1 0

0 1

]

sz +

[

−1 0

0 −1

]

s +

[

2 0

0 1

]

z

+

[

−3 0

0 −1

]

(25)

Using (20) we obtain

Φ00 = H11 =

[

1 0

0 1

]

,

Φ10 = H01 − a12Φ00 =

[

2 0

0 1

]

− 3

[

1 0

0 1

]

=

[

−1 0

0 −2

]

,

Φ01 = H10 − a21Φ00 =

[

−1 0

0 −1

]

+ 2

[

1 0

0 1

]

=

[

1 0

0 1

]

,

Φ11 = H00 − a12Φ01 − a21Φ10 − a11Φ00

=

[

−3 0

0 −1

]

− 3

[

1 0

0 1

]

+ 2

[

−1 0

0 −2

]

+7

[

1 0

0 1

]

=

[

−1 0

0 −1

]

,

Φ21 = −a12Φ11 − Φ01 = −3

[

−1 0

0 −1

]

−

[

1 0

0 1

]

=

[

2 0

0 2

]

,

Φ12 = −a21Φ11 − Φ10 = 2

[

−1 0

0 −1

]

−

[

−1 0

0 −2

]

=

[

−1 0

0 0

]

,

Φ20 = −a12Φ10 − a02Φ00 = −3

[

−1 0

0 −2

]

− 2

[

1 0

0 1

]

=

[

1 0

0 4

]

,

Φ02 = −a21Φ01 − a20Φ00 = 2

[

1 0

0 1

]

−

[

1 0

0 1

]

=

[

1 0

0 1

]

,

Φ22 = −a12Φ12 − a21Φ21 − a20Φ20 − a02Φ02 − a10Φ10

−a11Φ11 − a01Φ01 − a00Φ00

= −3

[

−1 0

0 0

]

+ 2

[

2 0

0 2

]

−

[

1 0

0 4

]

− 2

[

1 0

0 1

]

+7

[

−1 0

0 −1

]

− 4

[

−1 0

0 −2

]

+ 5

[

1 0

0 1

]

−3

[

1 0

0 1

]

=

[

3 0

0 1

]

.
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From (22) we have

2
∑

k=0

2
∑

l=0

aklΦk,l = 3Φ00−5Φ01 + 4Φ10 − 7Φ11

+2Φ02 + Φ20 + 3Φ12 − 2Φ21 + Φ22

= 3

[

1 0

0 1

]

− 5

[

1 0

0 1

]

+ 4

[

−1 0

0 −2

]

−7

[

−1 0

0 −1

]

+ 2

[

1 0

0 1

]

+

[

1 0

0 4

]

+3

[

−1 0

0 0

]

− 2

[

2 0

0 2

]

+

[

3 0

0 1

]

=

[

0 0

0 0

]

.

5. Reachability of the hybrid systems

Consider the hybrid system (1) with zero boundary conditions

(ZBC) (2).

Definition 3. A state

xf =

[

x1f

x2f

]

∈ Rn1+n2

+ (26)

of the positive hybrid system (1) with ZBC is called reachable

in time tf if there exists an input u(t, i) ∈ Rm
+ for t ∈ [0, tf ],

i ∈ Z+ such that

[

x1(tf , 0)

x2(tf , 2)

]

=

[

x1f

x2f

]

. (27)

If every state xf ∈ Rn1+n2

+ is reachable then the system

(1) is called reachable.

A matrix is called monomial if its every row and its ev-

ery column contain only one positive entry and the remaining

entries are zero.

Let us assume that

A1) the matrix

Rf =

t
∫

0

Φ(τ)B1B
T
1 ΦT (τ)dτ (28)

is monomial,

A2) the vector

x̂2f = x2f − A21

tf
∫

0

Φ(tf − τ)A12

[A21

τ
∫

0

Φ(τ − τ1)B1u(τ1, 0)dτ1 + B2u(τ, 0)dτ ]

−A22[A21x1f + B2u(tf , 0)]

(29)

has nonnegative components, x̂2f ∈ Rn2

+ ,

where

u(t, 0) = BT
1 Φ(tf − t)R−1

f x1f , t ∈ [0, tf ]. (30)

Theorem 5. The state (26) satisfying the condition x̂2f ∈ Rn2

+

of the positive hybrid system (1) with ZBC is reachable in

time tf if the assumption A1) is met,

rank[P (tf ) + B2, x̂2f ] = rank[P (tf ) + B2] (31)

and the equation

x̂2f = (P (tf ) + B2)u1, P (tf ) = A21

tf
∫

0

Φ(t)B1dt (32)

has a nonnegative solution u1 ∈ Rm
+ .

Remark 1. If the matrix P (tf ) + B2 is square then it should

be monomial.

Proof. If the matrix (28) is monomial then R−1
f ∈ Rn1×n1

+

and the input (30) steers the state of the subsystem (1a) from

ZBC to the desired final state x1f . Using (5) for i = 0 and

(30), (28) and Φ(t) = eA11t we obtain

x1(tf , 0) =

tf
∫

0

Φ(tf − τ)B1u(τ, 0)dτ

=

tf
∫

0

eA11(tf−τ)B1B
T
1 eAT

11
(tf−τ)dτR−1

f x1f

=

tf
∫

0

eA11τB1B
T
1 eAT

11
τdτR−1

f x1f = x1f

From (1b) for i = 0 and t = tf , we have

x2(tf , 1) = A21x1f + B2u(tf , 0) (33)

since x2(tf , 0) = x2(tf ) = 0 and x1(tf , 0) = x1f .

Using (30) for t = tf and (33) we may find x2(tf , 1).
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From (5) for i = 1, t = tf and x1(1) = 0 and using (4) we

obtain

x1(tf , 1) =

tf
∫

0

Φ(tf − τ)A12x2(τ, 1)dτ

+

tf
∫

0

Φ(tf − τ)B1u(τ, 1)dτ

=

tf
∫

0

Φ(tf − τ)A12[A21x1(τ, 0) + B2u(τ, 0)]dτ

+

tf
∫

0

Φ(tf − τ)B1u(τ, 1)dτ

= x̄1(tf , 1) +

tf
∫

0

Φ(tf − τ)B1u(τ, 1)dτ

(34)

where

x̄1(tf , 1) =

tf
∫

0

Φ(tf − τ)A12[A21x1(τ, 0) + B2u(τ, 0)]dτ

=

tf
∫

0

Φ(tf − τ)A12

[A21

τ
∫

0

Φ(τ − τ1)B1u(τ1, 0)dτ1 + B2u(τ, 0)]dτ

(35)

is known for given (30).

Let

u(t, 1) = u1 for t ∈ [0, tf ]. (36)

Then from (1b) for i = 1, t = tf and (34) we obtain

x2(tf , 2) = A21x1(tf , 1) + A22x2(tf , 1) + B2u(tf , 1)

= A21x̄1(tf , 1) + A22x2(tf , 1)

+(A21

tf
∫

0

Φ(τ)dτB1 + B2)u1

and the Eq. (32).

If the assumptions A1) and the condition (31) are met and

Eq. (32) has a nonnegative solution, then u1 ∈ Rm
+ .

This completes the proof.

Remark 2. Let the matrix

Wf =

tf
∫

0

Φ(τ)B1dτ (37)

be monomial and u(t, 0) = u0 for t ∈ [0, tf ].
Then the input vector u0 ∈ Rm

+ can be computed from

the formula

u0 = W−1
f x1f (38)

which follows from the equality

x1f =

tf
∫

0

Φ(τ)B1u(τ, 0)dτ = Wfu0. (39)

Remark 3. Note that the reachability depends only on the

matrices Akl, Bk, k, l = 1, 2 and it is independent of the

remaining matrices of the system (1).

Example 2. Consider the hybrid system (1) with

A11 =

[

−1 0

0 −2

]

, A12 =

[

1

1

]

, A21 =
[

1 2
]

,

A22 = [2] , B1 =

[

1 0

0 1

]

, B2 =
[

1 2
]

.

(40)

Compute the input u(t, i) for t ∈ [0, tf ], i = 0, 1, tf = 1
which steers the state of the system from ZBC to the final

state

xf =

[

x1f

x2f

]

=







1

1

50







The matrices (40) satisfy the condition (9).

Taking into account that

Φ(t) = eA11t =

[

e−t 0

0 e−2t

]

(41)

and using (28) and (30), we obtain the monomial matrix

Rf =

tf
∫

0

Φ(τ)B1B
T
1 ΦT (τ)dτ

=

1
∫

0

[

e−2τ 0

0 e−4τ

]

dτ =







1 − e−2

2
0

0
1 − e−4

4







(42)
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and the input

u(t, 0) = BT
1 Φ(tf − t)R−1

f x1f

=

[

et−1 0

0 e2(t−1)

]







1 − e−2

2
0

0
1 − e−4

4







−1
[

1

1

]

=







2e−1

1 − e−2
et

4e−2

1 − e−4
e2t






, t ∈ [0, 1]

(43)

From (29), (41) and (43) we have

x̂2f = x2f − A21

tf
∫

0

Φ(tf − τ)A12

[A21

τ
∫

0

Φ(τ − τ1)B1u(τ1, 0)dτ1 + B2u(τ, 0)]dτ

−A22[A21x1f + B2u(tf , 0)]

= x2f −
[

1 2
]

1
∫

0

[

eτ−1

e2(τ−1)

]







[

1 2
]

τ
∫

0

[

eτ1−τ 0

0 e2(τ1−τ)

]







2e−1

1 − e−2
eτ1

4e−2

1 − e−4
e2τ1






dτ1

+
[

1 2
]







2e−1

1 − e−2
eτ

4e−2

1 − e−4
e2τ












dτ

− [2]







[

1 2
]

[

1

1

]

+
[

1 2
]







2e−1

1 − e−2
e1

4e−2

1 − e−4
e2













= x2f +
1

1 − e−2

(

4, 5e−2 − 7, 5
)

+
1

1 − e−4

(

5e−4 + 4e−3 − 21
)

− 6 ≈ 15

(44)

Note that the vector (44) satisfies the condition x̂2f ∈ Rn2

+ .

In this case

P (tf ) = A21

tf
∫

0

Φ(τ)B1dτ

=
[

1 2
]

[

1 − e−1 0

0 1−e−2

2

]

=
[

1 − e−1 1 − e−2
]

.

(45)

Taking into account (44) and (45) it is easy to check that

the condition (31) is met and equation (32) of the form

[

2 − e−1 3 − e−2
]

u1 = x̂2f

has many solutions, for example

u1 =

=

[

e−8+30,5e−6
−4e−5

−33,5e−4+4e−3
−14,5e−2+12,5

(2−e−1)(1−e−2)(1−e−4)

1

]

≈

[

7

1

]

.

Note that using (37) and (38), we obtain

Wf =

tf
∫

0

Φ(τ)B1dτ = (eA11tf − In1
)A−1

11 B1

=

[

e−1 − 1 0

0 e−2 − 1

][

−1 0

0 −2

]

−1 [

1 0

0 1

]

=

[

e−1 − 1 0

0 e−2 − 1

][

−1 0

0 −0, 5

]

=

[

1 − e−1 0

0 0, 5(1 − e−2)

]

and

u0 = W−1
f x1f =

[

1 − e−1 0

0 0, 5(1 − e−2)

]

−1 [

1

1

]

=

[

1
1−e−1 0

0 1
0,5(1−e−2)

][

1

1

]

=

[

1
1−e−1

1
0,5(1−e−2)

]

.

6. Concluding remarks

A new class of positive hybrid linear systems has been intro-

duced. Necessary and sufficient condition for the positivity of

the hybrid linear systems has been established. The classical

Cayley-Hamilton theorem has been extended for the hybrid

systems. The reachability of the hybrid systems has been de-

fined and sufficient conditions for the reachability have been

established. The considerations have been illustrated by nu-

merical examples.

Extension of the presented reachability conditions for suit-

able controllability and observability conditions is possible

but is not trivial [2,13].

An open problem is extension of the considerations for 2D

hybrid systems described by models with structure similar to

the Kurek model [2,15,16].
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