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Structure decomposition of normal 2D transfer matrices
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Abstract. The notion of the normal transfer matrix and the notion of the structure decomposition of normal transfer matrix for 2D general
model are introduced. Necessary and sufficient conditions for the existence of the structure decomposition of normal transfer matrix are
established. A procedure for computation of the structure decomposition is proposed and illustrated by the numerical example. It is shown that
the impulse response matrix of the normal model is independent of the polynomial part of its structure decomposition.
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1. Introduction

Lampe and Rosenwasser in [1,2] have introduced the
notions of the normal matrix and the structure decom-
position (S-Darstellung) of normal matrices. They have
shown that if the normal matrix is written in the standard
form T = N/d (d is the minimal common denominator)
then every second order nonzero minor of the polynomial
matrix N is divisible (with zero remainder) by the polyno-
mial d. They have also shown that there exists a structure
decomposition of transfer matrices if and only if the ma-
trices are normal. The influence of the state-feedback on
cyclity of linear systems and the normalization of linear
systems by state-feedbacks is considered in [3,4]. Some im-
plications of the notion of the normal matrix on electrical
circuit is discussed in [5].

The concept of the normal matrix and the structure
decomposition of normal matrices have been extended for
standard positive systems in [6].

The most popular models of two-dimensional (2D)
linear systems are the models introduced by Roesser
[7,8,9], Fornasini-Marchesini [10,11] and Kurek [12].

In this paper the notion of normal matrix and its
structure decomposition will be extended for 2D general
model. Necessary and sufficient conditions for the exis-
tence of the structure decomposition of the normal 2D
general model are be established and a procedure for
computation of the structure decomposition is given. It
is shown that the impulse response matrix of the nor-
mal model is independent of the polynomial part of its
structure decomposition.

2. Preliminaries and normal matrices

Let Rm×n be the set of m × n real matrices and Rm =
Rm×1. The set of nonnegative integers is denoted by Z+.

Consider the general 2D model [12]

xi+1,j+1 = A0xij +A1xi+1,j +A2xi,j+1

+B0uij +B1ui+1,j +B2ui,j+1 (1a)

yij = Cxij +Duij (1b)

* e-mail: kaczorek@isep.pw.edu.pl

where xij ∈ Rn, uij ∈ Rm, yij ∈ Rp are the state,
input and output vectors and Ak ∈ Rn×n, Bk ∈ Rn×m,
k = 0, 1, 2, C ∈ Rp×n, D ∈ Rp×m.

The boundary conditions for (1a) are given by

xi0 for i ∈ Z+ and x0j for j ∈ Z+. (2)

The transfer matrix of (1) has the form

T (z1, z2)

= C[Iz1z2−A0−A1z1−A2z2]−1(B0+B1z1+B2z2)+D. (3)

The matrix (3) can be written in the form

T (z1, z2) =
N(z1, z2)
d(z1, z2)

(4)

where N(z1, z2) ∈ Rp×m[z1, z2] (the set of p × m poly-
nomial matrices) and d(z1, z2) is the minimal common
denominator.

The matrix T (z1, z2) is irreducible if and only if for
any zero (z0

1 , z
0
2) of d(z1, z2) (d(z0

1 , z
0
2) = 0) we have

N(z0
1 , z

0
2) �= 0.

The matrix (4) has the standard form if and only if it
is irreducible and the polynomial

d(z1, z2) =
n1∑

i=0

n2∑
j=0

dijz
i
1z

j
2 (5)

is a monic polynomial, i.e. dn1n2 = 1.

Definition 1. The standard matrix (4) with
min(p,m) � 2 is called normal if and only if every
nonzero second order minor of the polynomial matrix
N(z1, z2) is divisible (with zero remainder) by the poly-
nomial d(z1, z2).

3. Structure decomposition

Let us assume that the polynomial matrix N(z1, z2) of
(4) can be written in the form

N(z1, z2) = P (z1, z2)Q(z1, z2) + d(z1, z2)G(z1, z2) (6)

where P (z1, z2) ∈ Rp[z1, z2], Q(z1, z2) ∈ R1×m[z1, z2],
G(z1, z2) ∈ Rp×m[z1, z2] and d(z1, z2) is the minimal
common denominator of (4).
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Substitution of (6) into (4) yields

T (z1, z2) =
P (z1, z2)Q(z1, z2)

d(z1, z2)
+G(z1, z2). (7)

Definition 2. It is said that there exists a structure
decomposition of T (z1, z2) if and only if it can be written
in the form (7).

In what follows the following row and column opera-
tions [7] will be used:
1. Multiplication of any row (column) by a nonzero real

number
2. Addition to any row (column) of any other row (col-

umn) multiplied by any polynomial p(z1, z2)
3. Interchange of any two rows (columns).

Let us assume that applying the elementary row and
column operations gives the possibility to reduce the
polynomial matrix N(z1, z2) to the form

U(z1, z2)N(z1, z2)V (z1, z2)

= i(z1, z2)
[

1 r(z1, z2)
c(z1, z2) N̄(z1, z2)

]
(8)

where U(z1, z2) ∈ Rp×p[z1, z2], V (z1, z2) ∈ Rm×m[z1, z2]
are unimodular matrices (detU(z1, z2) = α �= 0,
detV (z1, z2) = β �= 0, α, β-real numbers) of the ele-
mentary row and column operations, respectively and
i(z1, z2) ∈ R[z1, z2], r(z1, z2) ∈ R1×(m−1)[z1, z2], c(z1, z2)
∈ Rp−1[z1, z2], N̄(z1, z2) ∈ R(p−1)×(m−1)[z1, z2].

Theorem 1. Let the polynomial matrix N(z1, z2) can
be reduced to the form (8). Then there exists a structure
decomposition (7) of T (z1, z2) if and only if the matrix
(4) is normal.

P r o o f . Necessity. Let N i,j
k,l (z1, z2) be the second

order minor composed of the i-th and j-th rows and
k-th and l-th columns of the matrix N(z1, z2). If there
exists a structure decomposition (7) then (6) holds and
(Eq. 9) where pi(z1, z2), qk(z1, z2) and gik(z1, z2) are the
entries of the matrices P (z1, z2), G(z1, z2) and ni,j

k,l(z1, z2),
respectively and is a polynomial.

From (9), shown at the bottom of the page, it fol-
lows that the minor N i,j

k,l (z1, z2) is divisible by d(z1, z2).
Therefore, by definition 1 the matrix (4) is normal.

Sufficiency. If the matrix (4) is normal and (8) holds then
every nonzero second order minor of the matrix (8) is
divisible by d(z1, z2) since by the Benet-Cauchy theorem
[2] every second order minor of U(z1, z2)N(z1, z2)V (z1, z2)
is the sum of products of second order minors of the
matrices U(z1, z2), N(z1, z2) and V (z1, z2). Hence we
have
i(z1, z2)

[
N̄(z1, z2) − c(z1, z2)r(z1, z2)

]
= d(z1, z2)N̂(z1, z2) (10)

for some N̂(z1, z2) ∈ R(p−1)×(m−1)[z1, z2].
Defining

P (z1, z2) = U−1(z1, z2)i(z1, z2)
[

1
c(z1, z2)

]

Q(z1, z2) = [ 1 r(z1, z2) ]V −1(z1, z2)

G(z1, z2) = U−1(z1, z2)
[
0 0
0 d(z1, z2)N̂(z1, z2)

] (11)

from (8), (10) and (11) we obtain

N(z1, z2)

= U−1(z1, z2)i(z1, z2)
[

1 r(z1, z2)
c(z1, z2) N̄(z1, z2)

]
V −1(z1, z2) =

= U−1(z1, z2)
{
i(z1, z2)

[
1

c(z1, z2)

]
[ 1 r(z1, z2) ]

+
[
0 0
0 d(z1, z2)N̂(z1, z2)

]}
V −1(z1, z2) =

= P (z1, z2)Q(z1, z2) + d(z1, z2)G(z1, z2).

Therefore, there exists the composition (7) of the matrix
T (z1, z2). �

Theorem 2. If there exists a structure decomposition
of the inverse matrix

[Iz1z2 − A0 − A1z1 − A2z2]−1

=
P̄ (z1, z2)Q̄(z1, z2)

d(z1, z2)
+ Ḡ(z1, z2) (12)

then there exists also the structure decomposition (7)
of the transfer matrix (3) and the matrices of structure
decompositions are related by

P (z1, z2) = CP̄ (z1, z2), Q(z1, z2)

= Q̄(z1, z2)(B0 +B1z1 +B2z2)

G(z1, z2) = CḠ(z1, z2)(B0 +B1z1 +B2z2) +D.

(13)

P r o o f . Substitution of (12) into (3) yields

T (z1, z2)

= C

[
P̄ (z1, z2)Q̄(z1, z2)

d(z1, z2)
+ Ḡ(z1, z2)

]
(B0 + B1z1 +B2z2)

+D =

=
P (z1, z2)Q(z1, z2)

d(z1, z2)
+G(z1, z2)

where P (z1, z2), Q(z1, z2) and G(z1, z2) are defined
by (13).

N i,j
k,l (z1, z2) =

∣∣∣∣ pi(z1, z2)qk(z1, z2) + d(z1, z2)gik(z1, z2) pi(z1, z2)ql(z1, z2) + d(z1, z2)gil(z1, z2)
pj(z1, z2)qk(z1, z2) + d(z1, z2)gjk(z1, z2) pj(z1, z2)ql(z1, z2) + d(z1, z2)gjl(z1, z2)

∣∣∣∣ =
= d(z1, z2)n

ij
kl(z1, z2) for i, j = 1, . . . , p, k, l = 1, . . . ,m (9)
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If the assumptions of theorem 1 are satisfied then the
structure decomposition (7) of T (z1, z2) can be found by
the use of the following procedure.

Procedure
Step 1 Using the elementary row and column opera-

tions reduce the polynomial matrix N(z1, z2) to
the form (8) and find the unimodular matrices
U(z1, z2), V (z1, z2) and i(z1, z2), r(z1, z2), c(z1, z2)
and N̄(z1, z2).

Step 2 Using (10) find the polynomial matrix N̂(z1, z2).
Step 3 Using (11) find the matrices P (z1, z2), Q(z1, z2)

and G(z1, z2).
Step 4 Using (7) find the desired structure decomposition.

Remark 1. The structure decomposition (7) of
T (z1, z2) can be also found by the following two steps
procedure:
Step 1 Find the structure decomposition (12) of the ma-

trix [Iz1z2 − A0 − A1z1 − A2z2]−1

Step 2 Using (13) find the desired decomposition (7)

Remark 2. From (6) and (11) it follows that if
i(z1, z2) = 1 and there exists a structure decomposition
(7) of (4) then

rankN(z0
1 , z

0
2) = 1 (14)

for every pair (z0
1 , z

0
2) satifynig d(z0

1 , z
0
2) = 0.

The condition (14) is the necessary condition for the
existence of the structure decomposition (7) of (4).

Example 1. Consider the model (1) with

A0 =


 0 0 0
0 1 0
0 0 1


 , A1 =


 1 0 0
0 0 −1
0 0 0


 ,

A2 =


 0 −1 0
0 1 0
0 0 0


 , B0 =


 1 0 0
0 1 0
0 0 1


 , B1 = B2 = 0,

C =
[
1 0 0
0 1 0

]
, D = 0 (15)

In this case the transfer matrix (3) has the form Eqs. 16,
17, 18, shown at the bottom of the page.

The matrix (16) is normal since the nonzero second
order minors

M1 =
∣∣∣∣ (z1z2 − z2 − 1)(z1z2 − 1) −z2(z1z2 − 1)

0 z1(z2 − 1)(z1z2 − 1)

∣∣∣∣ ,
M2 =

∣∣∣∣ (z1z2 − z2 − 1)(z1z2 − 1) z1z2

0 −z2
1(z2 − 1)

∣∣∣∣
are divisible by the polynomial (18).

The condition (14) is satisfied since for z1 = 0, z2 = 1
and z1 = z2 = 1 the matrix (17) has rank equal to 1.

Using the procedure we obtain.
Step 1. In this case

U(z1, z2) =
[
1 0
0 1

]
,

V (z1, z2) =


 1 0 0

−1 1 0
2 − z1z2 0 1


 (19)

since 19a, shown at the bottom of the page.
Hence

i(z1, z2) = 1, r(z1, z2) = [ z2 (1 − z1z2) z1z2 ] ,

c(z1, z2) = z1 (z2 − 1)
(
z2

1z2 − z1z2 − 2z1 + 1
)

N̄(z1, z2) = [ z1 (z2 − 1) (z1z2 − 1) z2
1 (1 − z2) ] .

Step 2. Using (10) and (19) we obtain

N̄(z1, z2) − c(z1, z2)r(z1, z2) = N̂(z1, z2)d(z1, z2)

where

N̂(z1, z2) = [ 1 − z1z2 −z1 ] . (20)

Step 3. Using (11), (18), (19) and (20) we obtain (20a),
shown at the top of the next page.

Step 4. The desired structure decomposition of (16)
has the form (21), shown at the top of the next page.

T (z1, z2) = C[Iz1z2 − A0 − A1z1 − A2z2]−1B0

=
[
1 0 0
0 1 0

] 
 z1z2 − z1 z2 0

0 z1z2 − z2 − 1 z1

0 0 z1z2 − 1




−1 
 1 0 0
0 1 0
0 0 1


 =

N(z1, z2)
d(z1, z2)

(16)

where

N(z1, z2) =
[
(z1z2 − z2 − 1)(z1z2 − 1) −z2(z1z2 − 1) z1z2

0 z1(z2 − 1)(z1z2 − 1) −z2
1(z2 − 1)

]
(17)

d(z1, z2) = z1(z2 − 1)(z1z2 − z2 − 1)(z1z2 − 1). (18)

U(z1, z2)N(z1, z2)V (z1, z2) =
[

1 z2 (1 − z1z2) z1z2

z1 (z2 − 1)
(
z2

1z2 − z1z2 − 2z1 + 1
)

z1 (z2 − 1) (z1z2 − 1) z2
1 (1 − z2)

]
. (19a)
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P (z1, z2) = U−1(z1, z2)i(z1, z2)
[

1
c(z1, z2)

]
=

[
1

z1 (z2 − 1)
(
z2

1z2 − z1z2 − 2z1 + 1
)

]

Q(z1, z2) = [ 1 r(z1, z2) ]V −1(z1, z2) = [ z2
1z

2
2 − z1z

2
2 − 2z1z2 + z2 − 1 −z1z

2
2 + z2 z1z2 ]

G(z1, z2) = U−1(z1, z2)
[
0 0
0 d(z1, z2)N̂(z1, z2)

]
=

=
[
0 0 0
0 z1 (1 − z2) (z1z2 − z2 − 1) (1 − z1z2)

2
z2

1 (1 − z2) (z1z2 − z2 − 1) (z1z2 − 1)

]
.

(20a)

T (z1, z2) =
1

z1 (z2 − 1) (z1z2 − z2 − 1) (z1z2 − 1)

[
1

z1 (z2 − 1)
(
z2

1z2 − z1z2 − 2z1 + 1
) ]

[ z2
1z

2
2 − z1z

2
2 − 2z1z2 + z2 − 1 −z1z

2
2 + z2 z1z2 ]

+
[
0 0 0
0 z1 (1 − z2) (z1z2 − z2 − 1) (1 − z1z2)

2
z2

1 (1 − z2) (z1z2 − z2 − 1) (z1z2 − 1)

]
.

(21)

4. Impulse response matrix

It is well known [7] that the impulse response matrix gij

is the orginal of the transfer matrix T (z1, z2), i.e.

gij = Z−1 [T (z1, z2)] (22)

where Z−1 is the 2D Z-transform inverse operator.
Let us consider the general 2D model (1) with D = 0.

The model (1) is called normal if there exists the structure
decomposition (7) of its transfer matrix.

Theorem 3. The impulse response matrix gij of the
normal model (1) with D = 0 is independent of the
polynomial matrix G(z1, z2) of the structure decomposi-
tion (7).

P r o o f . From (22) and the definition of 2D Z-
transform we have

T (z1, z2) =
∞∑

i=1

∞∑
j=0

gijz
−i
1 z−j

2 (23)

If D = 0 then the transfer matrix T (z1, z2) of the normal
model (1) is strictly proper. Note that the expansion of
the first term of (7), i.e.

P (z1, z2)Q(z1, z2)
d(z1, z2)

(24)

can only give a series with nonpositive powers in z1 and
z2. Therefore, the impulse response matrix is independent
of G(z1, z2).

Example 2. (Continuation of example 1). The transfer
matrix of the model (1) with (15) has the form (16)
and it is strictly proper. It is easy to check that the
impulse response matrix of the model is independent of
the polynomial matrix (24a).

5. Concluding remarks

The notion of the normal transfer matrix and the no-
tion of the structure decomposition of the normal transfer
matrix for 2D general model have been introduced. Nec-
essary and sufficient conditions for the existence of the
structure decomposition of normal transfer matrix have
been established. A procedure for computation of the
structure decomposition has been presented and illus-
trated by numerical example. It has been shown that the
impulse response matrix of the normal general model (1)
is independent of the polynomial matrix G(z1, z2) of its
structure decomposition (7). The structure decomposi-
tion can be used for computation of minimal realization
of given transfer matrices of the 2D general model is
a similar way as it has been proposed for 1D case in [6].

An extension of these considerations for 2D positive
general model is an open problem.

References

[1] B. P. Lampe and E. N. Rosenwasser, “Algebraic properties
of irreducible transfer matrices”, Automatica i Telemekhanika 7,
31–43 (2000) (in Russian), (English translation: Automation and
Remote Control 61(7), 1091–1102 (2000)).

[2] E. N. Rosenwasser and B. P. Lampe, Algebraische Methoden
zur Theorie der Mehrgrosen-Abtastsysteme, Universitat Rostock,
2000.

[3] T. Kaczorek, “Normalization of transfer matrix of linear
systems by feedbacks”, Control and Cybernetics 31(1), 134–144
(2002).

[4] T. Kaczorek, “Influence of the state-feedback on cyclicity
of linear systems”, in Proc. of Conf. “Automation 2002”, pp. 81–93
(2002).

[5] T. Kaczorek, “Divisibility of minors of transfer matrices in
electrical circuits”, Przegląd Elektrotechniczny 11, 297–302 (2001).

G(z1, z2) =
[
0 0 0
0 z1 (1 − z2) (z1z2 − z2 − 1) (1 − z1z2)

2
z2

1 (1 − z2) (z1z2 − z2 − 1) (z1z2 − 1)

]
. (24a)

356 Bull. Pol. Ac.: Tech. 52(4) 2004



Structure decomposition of normal 2D transfer matrices

[6] T. Kaczorek, “Structure decomposition and computation of
minimal realization of normal transfer matrix of positive systems”,
Proc. of Conf. “Methods and Models in Applications and Robotics”,
30 Aug.–2-Sept. 2004, Międzyzdroje, Poland.

[7] T. Kaczorek, Two-Dimensional Linear Systems, Springer-
Verlag, New York, 1985.

[8] J. Klamka, Controllability of Dynamical Systems, Kluwer
Academic Publ., Dordrecht, 1991.

[9] R. B. Roesser, “A discrete state space model for linear
image processing”, IEEE Trans. Autom. Contr. AC-20, 1–10 (1975).

[10] E. Fornasini and G. Marchesini, “State-space realization
theory of two-dimension filters”, IEEE Trans. Autom. Contr. AC-21,
484–491 (1976).

[11] E. Fornasini and G. Marchesini, “Double indexed dynamical
systems: state space model and structural properties”, Math. Syst.
Theory 12(197), 59–72 (1978/79).

[12] J. Kurek, “The general state space model for linear image
processing”, IEEE Trans. Autom. Contr. AC-30, 600–602 (June
1985).

Bull. Pol. Ac.: Tech. 52(4) 2004 357


