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Abstract. In recent years, deep learning and especially deep neural networks (DNN) have obtained amazing performance on a variety of 
problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the convolutional neural networks (CNN) are 
most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, 
avoiding overfitting and ensuring good generalization abilities. Therefore, a number of methods have been proposed by the researchers to deal 
with these problems. In this paper, we present the results of applying different, recently developed methods to improve deep neural network 
training and operating. We decided to focus on the most popular CNN structures, namely on VGG based neural networks: VGG16, VGG11 and 
proposed by us VGG8. The tests were conducted on a real and very important problem of skin cancer detection. A publicly available dataset of 
skin lesions was used as a benchmark. We analyzed the influence of applying: dropout, batch normalization, model ensembling, and transfer 
learning. Moreover, the influence of the type of activation function was checked. In order to increase the objectivity of the results, each of the 
tested models was trained 6 times and their results were averaged. In addition, in order to mitigate the impact of the selection of learning, test 
and validation sets, k-fold validation was applied.
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simple if-else set of rules. The next generation of classifica-
tion modules utilized trainable supervised learning algorithms, 
such as support vector machine (SVM) [5] or neural network 
(NN). Although the supervised algorithms enable to achieve 
better results, they need data to train. Consequently, the data 
acquisition process is needed.

The above-described approaches involve engineering skills 
and knowledge in the domain of the solved task. For example, 
to create a skin lesion classification system, we should have 
knowledge not only on image processing but also on medical 
knowledge on traits of benign and malignant lesions [6]. De-
spite difficulties in feature extraction module preparation, these 
algorithms are still used today and have a wide range of appli-
cations [7, 8]. This family of methods involves less data for 
system training and is not computationally expensive. Thus, 
they can work on mobile devices, for instance, the face detec-
tion algorithm in a digital camera.

In recent years, more attention was focused on automatic 
feature extraction, partially because of difficulties in the prepa-
ration of feature extraction algorithms and, on the other hand, 
thanks to the development of algorithms and the increase in 
computing power, in particular, that of graphics cards. In this 
area, the leading role is played by deep neural networks (DNN), 
especially by the convolutional neural network (CNN).

Deep learning is a wide family of machine learning algo-
rithms that evolved from classical fully connected neural net-
works. Although a lot of works on deep learning have been 
done since the early eighties [9‒11], for decades this family of 
techniques did not attract broad attention, mainly because of 
significant data requirements and high computational burden 
of algorithms. In fact, the potential of deep learning algorithms 

1. Introduction

Image analysis is a branch of engineering that has been devel-
oped by the research community for decades. The first gener-
ation of classification algorithms was based on two modules: 
a fixed feature extraction module and a classification module. 
The feature extraction module consists of a set of image anal-
ysis algorithms that usually work sequentially to extract signif-
icant features. The images are processed by a set of algorithms 
that includes simple ones, such as shape and edge detection, 
image filtering, morphological operations, and brightness or 
contrast adjustment, as well as more complex algorithms, such 
as HAAR feature extractors [1], Hough transforms [2], his-
togram of oriented gradients (HOG) [3], or SIFT descriptors 
[4]. The feature extraction module is designed by hand and 
does not require any training. The reason for employing such 
algorithms in image classification is that the images are highly 
dimensional data which classification algorithms could not 
process effectively. Therefore, there is a need for reducing the 
dimension of information provided to the classification algo-
rithms. Moreover, the extracted features provide more useful 
information than raw image pixels. The extracted features 
feed the algorithm in the classification module, which typi-
cally consists of one certain classification algorithm. In early 
image analysis systems, the classification modules were built 
using such methods as fuzzy logic, rule-based system, or even 
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could be only realized in recent years, due to computationally 
effective hardware [12] and the wide availability of large data-
sets. Moreover, the appearance of libraries has facilitated the 
effective employment of deep learning models without direct 
low-level GPU programming [13‒16]. The current advent of 
deep learning research began in 2012 when the deep learning 
based system has won the ImageNet large scale visual recog-
nition challenge (ILSVRC) [17]. Deep neural networks sig-
nificantly outperformed the systems based on classical image 
classification methods that involved the preparation of features 
and the use of relatively simply classifiers, such as SVM or 
shallow networks [18]. Although the Imagenet challenge is an 
image processing problem, the great success of the deep neural 
network in that challenge triggered the research not only in 
the area of image processing but at many more fields, such as 
natural language processing (e.g. language translation [19], lan-
guage recognizing [20], speech-to-text [21] and text-to-speech 
conversions [22]), synthetic image generation [23], deep rein-
forcement learning [24], and many more.

Convolutional neural networks belonging to the deep 
learning family consist of many layers of neurons with different 
activation functions, structured in a special way (see Fig. 1). 
The word “deep” refers to a large number of layers composing 
the network. Inside the CNN, two modules can be distinguished, 
namely: feature extractor and classifier. Both the feature ex-
tractor and the classifier are trainable modules.

Training of the feature extraction module is carried out in 
such a way as to enable it to operate even on raw images, by 
appropriate adjustment of extractor weights, being the convo-
lutional filters.

Present deep learning algorithms can reach human-level or 
almost human-level performance in many tasks. Deep neural 
networks have become the preferred approach in many com-
puter vision applications. Despite this great success, deep 
learning applications still suffer from many drawbacks.

Deep neural networks need a lot of data to be trained 
properly. Moreover, network training is computationally ex-
pensive. Furthermore, the networks are described by many hy-
perparameters that should be tuned properly to achieve high 
performance. Thus, the utilization of deep learning involves 

many trials with different values of hyperparameters. These 
drawbacks are the motivation for further research in the field 
of deep learning.

A number of methods were proposed to enhance the clas-
sification abilities of deep learning algorithms. In this paper, 
the most popular methods were evaluated on the VGG based 
neural networks [25]. During the research, the influence on 
the classification performance of different neural structures, 
activation functions and methods such as batch normalization 
[26], dropout [27] and transfer learning [28] was examined. 
The dropout method increases the generalization abilities of the 
neural network by preventing the co-adaptation of neurons (the 
situation when a group of neurons acts in the same way). The 
batch normalization method comes from the idea of normalizing 
the input of a classifier. It is well known that normalization 
enhances the optimization process. Having this in mind, the 
batch normalization method normalizes not only the first layer 
input but also the subsequent layers. This technique allows us 
to use higher learning rates, moreover, it has been empirically 
shown that batch normalization prevents against neural network 
overfitting. Another important issue which was tested was the 
type of activation function used.

The influence of the most often used activation functions: 
the rectified linear Unit (ReLU) function and its modification, 
i.e. the leaky rectified linear unit (LReLU) function [29], on 
neural network performance were checked. The other exam-
ined issue was the scale in which transfer learning and model 
ensembling methods affect the results of classifiers. The results 
of the research are presented in a form of tables and figures, 
which are thoroughly discussed and summarized.

The aforementioned algorithms are usually tested on bench-
mark datasets that contain many well-balanced instances. In this 
paper, the architectures and methods are tested on a practical 
problem – skin lesion classification. This problem has proper-
ties that many researchers working on similar tasks have to deal 
with, for instance: low quantity of photos, unbalanced number 
of images in different classes, different size and quality of im-
ages, unclearly specified differences between classes, etc [30].

The remainder of this paper is organized as follows: Sec-
tion 2 describes the methods used in the research, then Sec-

Fig. 1. Basic convolutional neural network [31]
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tion 3 outlines the details of the problem of skin lesion analysis 
and dataset used. The utilized architectures and details of the 
training are described in Section 4. The achieved results are 
discussed in Section 5 and concluded in Section 6.

2. Methods

The most popular representative of the deep learning family is 
the convolutional neural network (Fig. 1). The basic convolu-
tional neural network is built from convolutional layers that per-
form convolution operations on input data. The convolutional 
layers can be interpreted as a set of neurons, and convolutional 
operations as the image filtering process. However, there are 
two differences between the classical neural layers and convolu-
tional layers. Firstly, each neuron inside the convolutional layer 
is connected to only a small fraction of adjacent neurons in the 
previous layer. This way the single neuron analyzes a small 
section of the image and detects particular features. Secondly, 
the neurons in the same group (filter) share their weights, as 
a result of which neurons in different positions detect the same 
feature. These two traits of convolutional layers are especially 
relevant for image processing applications. Due to these attri-
butes, the image detector becomes invariant to object translation 
in the image. Moreover, these attributes of convolutional layers 
drastically reduce the number of neural network weights, thus 
reducing the training time. Such an approach enables parallel 
processing when using multiprocessor devices such as graphics 
cards.

Each convolutional layer is followed by a nonlinear trans-
formation (activation function). The most popular one is 
the rectified linear unit (ReLU) described by the formula: 
y = max(0, x), where y stands for output and x for input. An 
additional layer, bearing the name of subsampling or pooling 
layer, is placed between some convolutional layers. This layer 
reduces the sizes of the images processed by successive net-
work layers. The most common operations taking place in sub-
sampling layers are MaxPooling and AveragePooling. Those 
operations aggregate the group of adjacent pixels by replacing 
them with pixels with maximal value (MaxPooling) or pixels 
being the mean of the analyzed group of pixels (Average-
Pooling). A typical convolutional neural network consists of 
many convolutional layers and pooling layers between them. 
The top of the deep neural network consists of a classical fully 
connected neural network that is fed by the output of the last 
convolutional layer. This top network is terminated by the sig-
moid neuron or softmax layer, depending on the number of 
classes in the task.

As previously mentioned, the convolutional neural networks 
have an ability to learn how to extract relevant features. The fea-
ture extraction is performed by the convolutional layers, whose 
parameters are adjusted during the training. The extracted fea-
tures are provided to the fully connected neural network classi-
fier that classifies the input images. The feature extractors have 
an ability to process the raw data, therefore preliminary image 
processing is not required. Practically, only simple operations 
are needed, such as resizing (to fit the image size to the input 

size), or normalization (to improve the neural network training). 
The feature extraction is performed by a stack of convolutional 
layers, which performs the convolution operation on the output 
of the previous layer. Each layer transforms the representation 
of layer outputs to the higher abstract level. For instance, the 
first convolutional layer detects simple features, such as colors, 
edges, corners, whereas the last layers can detect more complex 
features, such as parts of the object.

Combining convolutional layers with nonlinear layers and 
pooling operations gives a complex and efficient classifier. 
Currently used architectures utilize even hundreds of layers, 
at the same time making use of additional methods enhancing 
the learning process and accuracy. Nevertheless, the network 
presented in Fig. 1 is a backbone of many modern architectures.

The rise of deep learning research caused the development 
of dedicated methods for deep neural networks, the most pop-
ular of which are: dropout, batch normalization, and model 
ensembling. Each method improves neural network training 
and performance in a different way, mainly by changing the 
structure and/or method of training. Many papers report the 
useful impact of these methods on the improvement of gener-
alization abilities of deep neural networks, verified on popular 
benchmark tasks.

2.1. Dropout. Dropout is a technique that improves the per-
formance of neural networks in a wide variety of application 
domains, including object classification, natural language pro-
cessing, analysis of scientific data [27].

A method to improve generalization abilities of a deep 
neural network consists in combining the outputs of many 
trained networks (model ensembling). However, this method 
is computationally expensive. Dropout overcomes this problem 
by providing a way of approximately combining many neural 
networks into one model. The method involves temporarily re-
moving some of the neurons during the training. The group of 
neurons to be removed is chosen randomly. The probability 
of retaining a neuron is a tunable hyperparameter called the 
dropout rate. The neurons are drawn and removed each time 
when a batch of samples is provided to the network. In practice, 
the neuron is removed by multiplying its output by zero. The 
dropout operation can be interpreted as a sampling of many 
thinned networks from the neural network. The total number of 
possible sampled thinned networks from the original network 
equals 2n, where n is the number of neurons in the original 
network. Training of such a network can be seen as training of 
a collection of thinned networks with extensive weight sharing. 
After the training, the parameters of the neural network are 
multiplied by the value of the dropout rate.

The neural network that uses the dropout mechanism can 
be trained using the backpropagation and stochastic gradient 
descent algorithms without major modifications. In this case, 
partial derivatives of connections of the dropped neuron are set 
to zero. The classical methods, such as momentum or L2 regu-
larization, work well with the dropout mechanism and improve 
network training. The dropout method improves the quality of 
detected features by preventing their co-adaptation. This is en-
forced by the attributes of the dropout method – each neuron 
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has to learn to cooperate with a randomly chosen sample of 
other units. Therefore, the trained neurons become more inde-
pendent and create useful features on their own, without relying 
on other neurons.

Although dropout provides decent generalization results, the 
training of the neural network with dropout mechanism lasts 
2‒3 times longer than without it. The reason for longer training 
is that adjusting parameters is a very noisy process, due to dif-
ferent random architectures that are drawn each time when the 
batch is provided to the network [27].

The authors of [27] reported that the neural network with 
the dropout mechanism provided superior results, compared to 
the network without the dropout mechanism. The mechanism 
was tested on diverse classification tasks, including speech rec-
ognition, natural language processing, and image analysis. The 
experiments showed the effectiveness of the dropout method. 
It allowed decreasing the test error in the MNIST classification 
task from 1.60% (neural network without dropout) to 1.35% 
(with dropout). Both networks were equipped with logistic ac-
tivation functions. The use of the ReLU activation function and 
the constraint on the maximum norm of weight vector has led 
to further improvement in accuracy, i.e. further error decrease 
to 0.95%. The dropout method was tested on CIFAR-10 and 
CIFAR-100 benchmarks, showing great test error decrease. For 
CIFAR-10, the dropout method decreased the test error from 
14.98% (previous state of the art) to 14.32% by adding dropout 
to fully connected layers. Applying the dropout method to all 
layers, including convolutional layers, decreased the test error 
to 12.61%. Huge improvement in CIFAR-100 classification 
task was also reported, where applying dropout to the neural 
network decreased the test error by 6.28 percentage points. Un-
fortunately, the dropout mechanism does not work well on all 
types of architectures. For instance, applying dropout to ResNet 
identity blocks resulted in the failure of training [32]. On the 
other hand, the positive influence of dropout on ResNet was 
reported in [33] when inserted between the convolutional layers.

An ability to prevent overfitting, along with the effective-
ness and simplicity of the method, were proved in a wide va-
riety of application domains. The dropout method was used in 
numerous states of art classification models in the Imagenet 
classification task [18, 25].

2.2. Batch normalization. The batch normalization method 
solves the problem of changing the distribution of inputs of 
hidden layers. This problem is of especially high importance in 
very deep networks with many layers. Changing the distribution 
in one layer causes further changes in subsequent layers. This 
phenomenon slows down the training of such a network and 
makes it more difficult. In order to reduce the effect of this 
phenomenon, the networks should be trained with low learning 
rates. Moreover, proper weight initialization is required to ob-
tain satisfactory results. To address this issue, the authors of 
[26] proposed the batch normalization method. This method is 
based on the well-known fact that whitening of classifier inputs 
improves the optimization process during the training. It will 
also be profitable to normalize the inputs of all hidden layers in 
the network. This method could accelerate the training process 

of the neural network. However, simple normalization of inputs 
to every layer does not work in practice, due to the canceling 
effect of backpropagation and normalization terms. Hence, the 
normalization should be made visible to the algorithm, which 
means that the gradient of loss function needs to backpropagate 
through normalization terms. Moreover, the method introduces 
two extra learnable parameters per neuron, which scale and shift 
the normalized neuron input values. This mechanism allows 
recovering the input values from before the normalization if it is 
beneficial for the training process. In the case of convolutional 
layers, the pair of parameters is assigned per one feature map.

The employment of batch normalization caused an increase 
in classification accuracy on the Imagenet benchmark dataset. 
For instance, adding batch normalization layers to the Inception 
network caused an increase in classification accuracy of the test 
set from 72.2% to 74.8% [26]. Moreover, the network required 
10 times less training steps than the network without batch 
normalization. The method also works well on Google LeNet 
architecture, where the employment of batch normalization de-
creased the error from 29.0% to 26.8% in the Imagenet chal-
lenge [34]. The batch normalization method was successfully 
applied to many modern network structures, including ResNet 
[35], DenseNet [36], and Wide ResNet [33].

Although it would seem reasonable to combine dropout and 
batch normalization techniques, this combination usually leads 
to conflict in the network structure. The conflict is visible in the 
deep architecture test stage. Batch normalization operates on an 
average and a variance of the train set statistics, while dropout 
introduces a shift in the variance of layer inputs during the test 
stage by multiplying the weights by the dropout rate value. 
Hence, batch normalization fails to make use of its potential 
because of changed distribution of layer inputs.

2.3. Activation functions. Rectified linear unit is the most often 
used activation function in the deep learning area. Glorot [37] 
found that the rectified function performs much better than 
traditional activation functions. The neural networks equipped 
with ReLU functions achieved better classification accuracies 
than the networks equipped with a hyperbolic tangent function 
(tanh). Moreover, the authors of [18] stated that the usage of 
ReLU accelerates the training of the neural network by four 
times, compared with the neural network employing the tanh 
function. This is caused by the simplicity of ReLU and spe-
cial attributes of this function. The function is not saturating, 
moreover, it has a piece-wise constant gradient. That fact allows 
preventing the well-known problem of vanishing gradient. The 
employment of ReLU function accelerates the convergence of 
the optimization process when training a network with many 
layers and neurons. ReLU enables faster training, compared 
to its saturating counterparts (tanh or sigmoid function). Addi-
tionally, the ReLU function is less sensitive to improper weight 
initialization, whilst in the case of traditional saturating nonlin-
earities, it is possible to initialize the weights in such a way as 
to have most of the functions saturated.

However, the ReLU function has still a chance for improper 
initialization, what might lead to the so-called dead neuron 
problem. The neuron is “dead” when its weight makes it stay 
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not activated by any training example, it is not possible to fur-
ther learn the weights because of zero gradient. Such a neuron 
will never fire and will never have an ability to adjust their 
parameters.

To overcome this problem, the ReLU function was slightly 
modified, hence the Leaky Rectified Linear Unit was firstly in-
troduced in [29]. The authors showed that employing the Leaky 
ReLU instead of ReLU improved the performance of acoustic 
models. The Leaky ReLU is a similar function to ReLU, but 
instead of taking zero value for arguments below zero, it replaces 
this part of the function with a linear function with a small slope, 
which is chosen before the training. Therefore, using leaky 
ReLU requires tuning an extra hyperparameter. The small slope 
in the leaky ReLU function enables the gradient to flow when the 
input is below zero, thus preventing the dead neuron problem.

Unlike the standard ReLU function, the leaky ReLU acti-
vation function has a non-zero gradient over its entire domain. 
This attribute allows the gradient to flow slowly when the 
neuron is not active. Moreover, the features of the function 
prevent the appearance of the dead neuron problem occurring in 
the ReLU function. In [38], the authors have empirically shown 
that the Leaky ReLU function achieved better test accuracy 
on benchmark datasets than its standard counterpart (ReLU). 
For CIFAR-10, the use of leaky ReLU reduced the test error 
from 12.45% to 11.20%, while for CIFAR-100 from 42.9% 
to 40.42%. Moreover, the authors also showed that the leaky 
ReLU performs better on the real-world problem of classifying 
plankton. In [39], the use of leaky ReLU improved the per-
formance (measured by the F-score) from 0.78 points (ReLU) 
to 0.85 points on the real-world problem – lung cancer clas-
sification. The slope of the function for negative arguments 
in leaky ReLU was reported to have a strong influence on the 
performance. For instance, changing the slope from 0.01 to 
0.3 caused an increase in the performance (F-score) from 0.81 
to 0.85 points. This finding suggests that studying activation 
functions is still a crucial research field.

2.4. Transfer learning. Transfer learning is a technique that 
highly improves neural network performance [28]. The method 
is especially useful for small datasets. Training the deep neural 
network on a small dataset from a scratch could be difficult, as 
too many parameters are to be found in relation to the available 
training data. Transfer learning involves training the network on 
a big dataset, Imagenet for example, that contains 1M images. 
Then the weights of the network trained in the above way might 
serve as a good starting point in training it on another classifica-
tion task. It is possible because many visual objects share sim-
ilar low-level features like edges, shapes or colors. Therefore, 
convolutional layers could be trained once on a given task and 
then trained again on the target dataset (so-called fine-tuning). 
An intuitive explanation of the transfer learning effect comes 
from the real world. For instance, a person who can play the 
guitar will learn to play the piano more easily than the person 
who does not play any instrument, because both activities 
involve knowledge and specific skills such as note reading, 
knowledge of music theory, etc. It was reported in the liter-
ature [18, 40–43] that utilization of transfer learning enables 

to achieve much better results than the networks trained from 
scratch. Moreover, transfer learning shortens the neural network 
training time. However, there is little possibility of modifica-
tion of the pretrained network, for example, it is impossible 
to change the activation function because different activation 
functions work with different sets of weights.

Transfer learning was successfully used especially in vi-
sion applications. For instance, the authors of [18] reported that 
pretraining on a huge dataset with further target task training 
caused the reduction of validation error from 18.2% to 16.6%. 
In such applications as mammographic tumor classification 
[40], pulmonary module detection [41], chest pathology detec-
tion [42], and image segmentation [43], employing the transfer 
learning method enhanced the classification accuracy.

2.5. Model ensembling. The model ensembling method in-
volves training many classifiers, then combining classifier out-
puts to produce better classification result than a single classi-
fier. The performance of models working together is better than 
that of a single model, because different neural models make 
mistakes for different testing inputs, despite similar levels of 
training error. Therefore, utilizing a number of different neural 
models may decrease the likelihood of a mistake. There is a va-
riety of approaches to model ensembling, e.g. outputs of the 
models may be simply averaged or may stand as the inputs for 
another final classifier, such as logistic regression, neural net-
work, or SVM. In practice, the application of the model ensem-
bling method is computationally expensive, because it requires 
training of many classifiers. Therefore, this is an active field of 
research on how to make use of advantages of model ensem-
bling and simultaneously keep the training time low [44, 45].

The model ensembling method is widely used in modern 
deep learning applications. Almost all high-performance Ima-
genet architectures employ the method to improve the perfor-
mance of classification models. The first Imagenet challenge 
winner group used an ensemble of 6 networks that reduced the 
validation error from 18.2% to 16.4% [18]. An ensemble of 
two VGG networks decreased the top-5 test error from 7.0% to 
6.8% [25]. An ensemble of six Google LeNet networks caused 
even bigger improvement in the top-5 test error – from 7.9% 
to 6.7% [46].

2.6. k-fold validation. In many real-world applications, huge 
datasets are not available. Hence, it is hard to split the data into 
a sufficiently relevant training set and a reliable testing one. It 
is obvious that small number of images in the test set can lead 
to statistical uncertainty around the averaged test error [47]. For 
example, if the test set contains only 50 images, one accurately 
classified image yields the accuracy increase by 2 percentage 
points. As a result, in a small dataset, statistical measures are 
heavily dependent on chosen instances in the training and test 
sets. To overcome this problem, the k-fold cross validation 
method is employed, which significantly substantiates the re-
sults, especially in the case of small dataset applications. The 
method allows using even all examples from a given dataset to 
estimate the performance of the classifier more accurately. The 
method involves splitting the dataset into k non-overlapping 
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subsets. Then, the classifier is trained k times, each time another 
subset becoming the test set, with the rest of the data used as the 
training set. The performance is computed by taking an average 
of accuracies (and another statistical measures) of k trials. The 
problem is that the method requires classifier training on each 
subset, which increases the time of training by k times [48].

3. The problem of skin lesion analysis

In order to practically test the influence of the described param-
eters and methods on the efficiency and effectiveness of a deep 
neural network-based classifier, a decision was made to tackle 
a very important real live problem of skin cancer diagnosis.

This task involves making a distinction between benign and 
malignant instances of skin lesions. Screening the skin lesion 
is a relevant task, due to the high death rate in people being 
affected by the disease. Early detection is a crucial aspect of 
curation because it increases the chance of full patient recovery 
[49]. Classification of lesions is a very challenging task because 
of similarity between malignant and benign melanomas, but 
also due to a large diversity of images of various quality, the 
existence of hair, different markers, and other obstacles hin-
dering proper feature extraction.

The classical method of skin cancer detection involves ex-
amination of a lesion by the skilled specialist. The examination 
can be conducted by an unaided eye or using a dermoscope that 
allows high-quality lesion observation in fixed lighting condi-
tions. The decision of whether the lesion is benign or malignant 
is made based on dermoscopic methods, such as the ABCD 
method, 7 point checklist, or Menzies method [50‒52]. The ap-
plication of these methods by the physician involves inspection 
of specific features. For example, to examine the lesion based 
on ABCD criterions, the physician should check the following 
traits: asymmetry (A), border (B), color (C) and differential 
structures (D) of the lesion, and, as a result, assign points which 
make the basis for final evaluation of the lesion.

The research on automated, computer-aided skin lesion clas-
sification is an active field. The classification of the skin lesion 
is a non-trivial task, due to difficulties caused by the charac-
teristic of the task. The main problem is that the rules how to 
classify skin lesion are not precisely defined. That means that 
the border between benign and malignant lesions can be fuzzy 
and can lead to a different diagnosis given by different physi-
cians. Such an inconsistency in diagnosis makes the problem 
of automatic classification much more difficult. Moreover, due 
to the privacy of patients and the characteristic of medical data, 
the datasets are more difficult to prepare. However, the growth 
in availability of the well-structured and labeled skin lesion 
datasets has been observed in recent years [53‒56].

Classical methods of automatic lesion classification in-
volve tedious and careful preparation of hand-crafted features 
which are then provided to the simple classifier, mostly SVM 
or shallow neural network, as was described in Section 1. The 
other type of methods, especially in medical applications, in-
volves extraction of features related to the method for manual 
detection of the skin lesion. In such a solution, the algorithm 

Fig. 2. An image with highlighted border feature [57]

Fig. 3. The examples of the lesion from the dataset. Benign lesion 
(left), malignant lesion (right)

detects the features described in the method used by the medical 
specialist. For instance, the authors of [57] based their system 
on the ABCD method. Fig. 2 shows an example of border fea-
ture detection according to the ABCD rule [57]. The methods 
have the higher trust of the medical society because the algo-
rithm automates the work that is done manually by them.

Unlike the classical methods, the deep learning-based 
methods do not require preliminary preparation of features. The 
work is done automatically during the neural network training. 
Decent results of skin lesion classification with deep neural 
networks have been reported [46].

The dataset used in this research was provided by the In-
ternational Society for Digital Imaging of the Skin [50]. The 
dataset is publicly available and contains about 13 000 high-
quality, labeled dermatoscopic images of skin lesion and ad-
ditional masks that indicate the position of the lesion in the 
image. The images sizes varies from 900£900 px up to even 
3000£4000 px. The dataset is highly unbalanced, it consists 
of about 12 500 benign instances and only 1100 malignant in-
stances. This disproportion between the classes makes proper 
training of classification systems more difficult. Selected ex-
amples of lesions from the database are shown in Fig. 3. In 
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many cases, making a distinction between benign and malignant 
lesions is difficult for both humans and algorithms.

4. Architectures used and training

This section presents the details of the experiments performed to 
investigate the influence of the aforementioned methods on the 
classification accuracy. A decision was made to base the tested 
architectures on a popular VGG network family, which has had 
a great impact on the research in the field of deep learning. The 
VGG networks served as a backbone for further modifications 
and improvements of deep architectures. In the present research, 
use was made of popular VGG11 and VGG16 networks, a very 
detailed description of which can be found in [25]. In order to 
check the influence of the network size on performance and on 
generalization abilities, we proposed the VGG8 architecture 

with fewer parameters than the VGG11 and VGG16 networks 
(see Table 4 for the details). The structure of these networks is 
presented in Table 1 and Table 2. A set of modifications was 
introduced with different combinations of methods described 
in Section II. In the remainder of this section, the details about 
the training process and data preparation are described.

4.1. Architectures. Different architectures based on the VGG 
family were employed and tested. The elements of the structures 
of the VGG neural networks analyzed during the research are 
presented in Table 1.

The size of the input of each network is 224£224£3, which 
corresponds to the image size of 224£224 pixels, and the last 
dimension is the color channel (RGB).

The values alongside the convolutional layers refer to 
a number of filters included in these layers, for example, 
conv-64 is the convolutional layer consisting of 64 convolu-
tional filters. Each convolutional filter has a 3£3£n kernel, 
where n stands for a number of filters in the previous layer. 
The assumed filter stride (the number of pixels with which the 
filter slides over the image) equals 1. In order to preserve the 
same output and input size of the layer, zero padding around the 
feature maps was employed. The FC layer refers to a fully-con-
nected layer (classical neural network) and the values indicate 
the numbers of neurons, for example, FC-1024 is a fully con-
nected layer with 1024 neurons. There is also a sigmoid neuron 
on the top of the network.

A number of experiments have been conducted with dif-
ferent configurations of parameters and methods described in 
Chapter II. Details of the analyzed networks, along with the 
accompanying methods, are presented in Table 2. The dropout 
method was applied after two fully-connected layers (networks: 
C, F, G) with the dropout rate set to 0.5. The batch normaliza-
tion mechanism was applied before each activation function 
(networks D, E). The influence of activation function was also 
tested. In those tests, the Leaky ReLU function was applied with 
the slope equal to 0.2. The influence of transfer learning was 
tested on the Network G, which was previously pre-trained on 
the Imagenet dataset consisting of 1M images divided into 1000 
classes (1000 images per class). During network G training, all 
weights were adjusted. The publicly available model of pre-
trained VGG16 network from Keras library was utilized [58].

4.2. Optimization algorithm. In order to train the networks, 
the mini-batch gradient descent with Nesterov momentum 
algorithm was utilized to minimize the loss function. The 

Table 2 
Tested architectures

Network A Network B Network C Network D Network E Network F Network G

Basic network VGG8 VGG8 VGG8 VGG8 VGG11 VGG16 VGG16
Activation function Leaky ReLU ReLU ReLU ReLU ReLU ReLU ReLU
Transfer learning X

Dropout X X X X

Batch normalization X X

Table 1 
Basic architectures

VGG8 VGG11 VGG16

conv-64 conv-64 conv-64
conv-64

maxpool

conv-128 conv-128 conv-128
conv-128

maxpool

conv-256 conv-256
conv-256

conv-256
conv-256
conv-256

maxpool

conv-512 conv-512
conv-512

conv-512
conv-512
conv-512

maxpool

conv-512 conv-512
conv-512

conv-512
conv-512
conv-512

maxpool

FC-1024
FC-1024

Sigmoid neuron
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momentum coefficient was set to 0.9, which is a frequently 
chosen value in many applications. The binary cross-entropy 
was chosen as the loss function for the two-class classification 
problem. The initial learning rate was set equal to 0.01 for 
networks B, C, D, and E, while the training of networks A, F, 
and G was started with the learning rate set to 0.001, as the 
optimization process was unable to converge at higher learning 
rates. During the training, the learning rate was divided by 3 
each time when the validation loss did not decrease during 4 
subsequent epochs. The early stopping method was applied to 
prevent overfitting: the training was to stop when no improve-
ment was recorded in the value of the validation loss function 
during 8 subsequent epochs.

4.3. Data preparation. The size of the input images was 
chosen as (224£224£3), which is a standard size used in many 
image recognition applications. This size is a compromise be-
tween the image quality on the one hand, (higher-size images 
can contain more details) and the computational requirements 
on the other hand. The size of 224£224£3 pixels is also used 
in the pretrained network. The original size of the images in 
the dataset is much higher, compared to the size of the neural 
network input. It is noteworthy that the lesions in the images 
cover only a small fraction of image size. Therefore, the lesions 
were extracted from the image using masks provided by the 
organization and then resized to the size of 224£224£3. The 
masks consisting of less than 10 white pixels were qualified as 
incorrect and the corresponding images were kept unchanged. 
The lesions that covered less than 20 percent of the image were 
cut out from the image. First, using the mask, the minimum 
radius of the circle covering the lesion was found. Next, the 
bounding square of this circle was found in such a way that the 
edges of the square were parallel to image edges. In order to 
have some skin left around the lesion, the size of the square was 
extended by an extra 44%. Finally, the square with the lesion 
was cut out from the image of the lesion. The images with le-
sions that covered more than 20 percent were kept unchanged. 
Then, the images in the dataset were cropped and resized to fit 
the neural network input size. Finally, the dataset was normal-
ized by subtracting the mean and setting the standard deviation 
set to one and zero, respectively.

For all experiments, a train-validation-test scheme was 
applied. In order, to obtain more substantial results, k-fold 
cross-validation with 5 folds was used. After these modifica-
tions, each fold contained 24 709 training images, which were 
divided into 12 333 benign lesions and 12 376 malignant le-
sions. The malignant lesions were generated by copying 13 
times 884 malignant instances available in the dataset (upsam-
pling). Although several the same images were in the malignant 
class, they would become different due to data augmentation 
applied online during the training. The validation set and the test 
set consisted of 200 images, equally divided into two classes. 
In each fold, the validation set and the test sets were unique, 
which means that the image used in one fold did not appear in 
other folds of the test or validation set.

The dataset was augmented by numerous modifications, 
such as rotation, width and height shift, horizontal and vertical 

flip, and zooming. The data augmentation was performed on-
line, before providing the images to the neural network input.

4.4. Model ensembling. The influence of model ensembling 
on classification results of all tested networks was examined 
as well. Each network was trained 6 times to combine their 
outputs in model ensembling. Next, two types of model en-
sembling were applied. The first type involves averaging out-
puts of 6 trained networks, in the remainder of the paper this 
method is referred to as ‘average ensembling’. The second type 
involves training a sigmoid neuron which takes outputs of 6 
networks as an input. This method is referred to as ‘logistic 
classifier ensembling’. The classifier was trained on outputs 
of the deep networks fed with 4000 images randomly chosen 
from the train set. The linear regression classifier contained 
7 parameters (6 per each input and one for bias term). The 
classifier training was conducted using the stochastic gradient 
descent optimizer.

4.5. Classification threshold tuning. In order to increase 
the classification accuracy, classification threshold tuning was 
performed following a simple pipeline. 100 threshold values 
ranging from zero to one were iterated, and the classifica-
tion accuracy was checked on the validation set. Next, the 
threshold with best classification accuracy on the validation 
set was selected. To tune the threshold, the validation set from 
all 5 folds was used, which resulted in the same threshold for 
all folds.

4.6. Software and hardware. The networks were trained using 
the Python Keras [58] library running on the top of the Theano 
[14] library. The Keras library allowed easy and fast proto-
typing of neural networks.

During the calculations, the Nvidia CUDA library was uti-
lized that allowed parallel computing on GPU. The networks 
were trained on GPU, while the data augmentation operations 
were performed by CPU.

All tests were performed on a computing unit equipped 
with: GeForce GTX 980 Ti GPU with 6 GB memory, Intel Core 
i7‒4930K processor, and 16 GB RAM memory.

5. Experimental results

A series of experiments were conducted with all previously de-
scribed architectures. All results are summarized in Table 3. The 
ROC curves of evaluated systems are presented in Figs. 4‒7. 
The influence of certain methods on averaged results of a single 
network (without model ensembling) is discussed.

5.1. Evaluation metrics. To evaluate the performance of the 
tested networks, the metrics of accuracy (ACC), specificity 
(SPC) (also known as True Negative Rate – TNR), and sen-
sitivity (SST) (also known as True Positive Rate – TPR) were 
used. The accuracy was calculated as the ratio of properly clas-
sified instances to all instances in the dataset. The sensitivity, in 
that case, means the ratio of properly classified malignant in-
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Table 3 
Tested architectures

Network Single network Model ensembling by average Model ensembling by neural network

ACC AUC SST SPC ACC AUC SST SPC ACC AUC SST SPC
A 72.12 0.808 0.754 0.688 74.10 0.822 0.774 0.708 73.60 0.823 0.738 0.734
B 70.38 0.786 0.734 0.673 72.50 0.802 0.842 0.608 73.00 0.804 0.854 0.606
C 72.87 0.804 0.775 0.683 76.50 0.821 0.786 0.744 75.50 0.821 0.822 0.688
D 73.77 0.828 0.784 0.692 76.80 0.851 0.796 0.740 76.90 0.852 0.802 0.736
E 68.83 0.765 0.752 0.625 71.20 0.779 0.816 0.608 71.30 0.781 0.766 0.660
F 67.78 0.749 0.687 0.668 65.40 0.759 0.586 0.722 66.20 0.758 0.628 0.696
G 76.67 0.858 0.801 0.732 79.40 0.882 0.868 0.720 79.60 0.883 0.878 0.714

Fig. 4. Comparison of different architectures
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Fig. 5. Influence of model ensembling on different architectures 
– networks A–C

Fig. 6. Influence of model ensembling on different architectures 
– networks D-F
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stances to their total number (1), while the specificity is the ratio 
of properly classified benign instances to their total number (2):

 Sensitivity (SST) = TP/P = TP/(TP + FN) (1)

 Specificity (SPC) = TN/N = TN/(TN + FP) (2)

where: P is the number of positive samples (malignant), N is 
the number of negative samples (benign), TP-True Positive: is 
the number of malignant instances correctly identified as ma-
lignant; FP-False Positive: is the number of benign instances 
incorrectly identified as malignant; TN-True Negative: is the 
number of benign instances correctly identified as benign; 
and finally FN-False Negative: is the number of malignant 
instances incorrectly identified as benign. Moreover, the ROC 
(Receiver Operator Characteristic) curves were prepared and 
the area under that curves were calculated, which is known 
as the AUC acronym. The ROC curve is created by changing 
the classification threshold from 0 to 1 and measuring the 
True Positive Rate (Sensitivity) and the False Positive Rate 
(1-specificity).

5.2. Transfer learning influence. The influence of transfer 
learning on classification accuracies was investigated. For this 
purpose, two the same architectures (VGG16) but differently 
initialized were used. The first network (F) was initialized 
with randomly generated weights, while the second network 
(G) – with the weights transferred from the network trained 
on the Imagenet set. The results are presented in Table 3 and 
in Fig. 4. Transfer learning yielded the accuracy improvement 
of about 10.24 percentage points, compared to the network 
trained from scratch. Moreover, network G achieved the best 
result among all tested networks, while network F, with the 
same architecture, achieved the worst result among all tested 

architectures. It shows that if we are forced to train the network 
from the scratch it is better to use the network with relatively 
small amounts of layers.

5.3. Model ensembling influence. Table 3 compares the perfor-
mance of all networks. It is noteworthy that model ensembling 
improves the performance of all evaluated architectures. The 
influence of model ensembling is depicted in the form of ROC 
curves in Figs. 5‒7. The single network ACC stands for the 
averaged accuracy of six individual neural networks. Model 
ensembling by averaging stands for combining outputs of six 
individual networks by averaging their last sigmoid neuron 
outputs. Model ensembling by logistic classifier stands for the 
accuracy obtained by sigmoid neuron fed by outputs of six 
individual networks within the tested architecture. Both model 
ensembling methods improved the performance of the evaluated 
systems. The ensembling by logistic classifier in most cases is 
slightly better then one obtained for ensembling by averaging.

5.4. Comparing different activation functions. Two the 
same architectures but with different activation functions were 
trained: with the Leaky ReLU function (network A) and with 
the ReLU function (network D). Both networks were equipped 
with the batch normalization mechanism. Although superior 
results of Leaky ReLU have been reported in the literature, in 
our experiments this function performed worse (see Table 3 
and Fig. 4). It shows that the used methods are not universal 
and cannot be successfully applied to an arbitrary problem. The 
performance of different architectures depends on attributes of 
the solved problem. Therefore, there is still room for further 
research in this field.

5.5. Depth influence. We examined how the number of layers 
influencing the classification accuracy. We tested three net-
works: C, E, and F containing 8, 11 and 16 layers, respec-
tively. The neural network with the smallest number of layers 
performed best (see Table 3 and Fig. 4). Conducted experi-
ments showed that an increase in the number of convolutional 
layers does not always lead to better performance. In the case 
of having a relatively small dataset, it is much better to start 
searching an architecture with a low number of layers, and 
eventually increase their size if needed.

5.6. Dropout vs batch normalization. Two methods were 
compared that have regularization effect: dropout and batch 
normalization. The neural network equipped with batch nor-
malization significantly outperformed the network with dropout 
(see Table 3 and Fig. 4). The performance improvement was 
even higher in the ensembled networks. The results show that 
neural networks with batch normalization are more appropriate 
for model ensembling than those equipped with dropout. The 
reason for this could be that the dropout method is, in fact, an 
approximation of ensembling of many networks. Therefore, the 
influence of standard model ensembling on networks trained 
with dropout is smaller. Moreover, the architecture (not in-
cluded in Table 3) with both dropout and batch normalization 
was evaluated. The network converged during the training, but 

Fig. 7. Influence of model ensembling on different architectures 
– network G
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in the test stage, it failed to classify images properly, which is 
also confirmed by the results obtained by other researchers.

5.7. Network size, time of learning, number of epochs to 
converge. The details of the training are outlined in Table 4. 
The time of training and the number of epochs to converge 
were calculated as an average of the training process conducted 
on 5 folds. We can notice huge improvement caused by the 
implementation of transfer learning. It reduced by about twice 
the required number of epochs as well as the time to converge. 
A slight difference is observed between the results for networks 
equipped with ReLU and Leaky ReLU activation functions. 
The networks were evaluated in different ways: without any 
mechanism, with dropout, and with batch normalization.

Table 4 
Models details

Network 
size

(MB)

Number 
of 

parameters

Number of 
epochs to 
converge

Time to 
converge

(h)

Network A 
(VGG8) 240 30659587 31.6 3.6

Network B 
(VGG8) 240 30652545 17.8 1.5

Network C 
(VGG8) 240 30652545 24.6 2.1

Network D 
(VGG8) 240 30659587 29.8 3.5

Network E 
(VGG11) 281 35971843 20.4 3.75

Network F 
(VGG16) 320 41456449 30.0 5.2

Network G
(VGG16) 320 41456449 13.4 2.4

The network without any mechanism converged fastest, but 
it achieved worst results among the three evaluated networks. 
Although it was reported in [26] that batch normalization ac-
celerates the training, in the present research the training time 
of this network was the longest.

6. Discussion

In the previous section, we have presented comprehensive re-
sults of research on the influence of the methods described in the 
article on training and performance of the convolutional neural 
networks, based on the skin moles classification benchmark.

Transfer learning significantly influences the performance of 
the classifier. In the case of analyzed testing data sets, applying of 
the transfer learning before the training, increased the classifica-
tion accuracy of about 10% compared with the networks trained 
from scratch. Moreover, it shortened the training time twice.

The model ensembling of the networks in case of each kind 
of network has improved the results. However, there is only 

a small difference between averaging the outputs of the network 
and applying an extra neural network at the top of the networks.

Unlike many other studies on the use of different activation 
functions, our studies have not confirmed the superiority of 
leaky ReLU function over the ReLU. Thus, it seems that this is 
not a universal dependence and one can expect different results 
for the different applications.

Regarding the dropout and batch normalization mechanisms, 
the batch normalized networks achieved superior performance, 
compared to the network with the dropout mechanism. As re-
ported in other researches combination of batch normalization 
and dropout mechanism leads to the deterioration of classifi-
cation performance.

The number of layers has a major impact on the classifi-
cation performance. In described in the paper case, the net-
work with the smallest number of layers performed best. The 
reason for that is a relatively small number of training samples 
comparing with parameters of the neural network to be found 
during the optimization. Therefore, in case of having a small 
dataset, it is advised to start from the architecture with a low 
number of layers and increase the numbers of layers if needed. 
Another way of having the larger set of data is applying the 
data augmentation methods. The examples of such approach 
can be found e.g [59‒61].

In order to increase the classification accuracy, classification 
threshold tuning was performed. Such method let for increasing 
the classification comparing with a fixed threshold.

7. Conclusions

In this paper, the influence of recent advances in the area of 
deep learning such as transfer learning, dropout, batch normal-
ization, threshold tuning, model ensembling, is examined for 
three different convolutional structures. The analyzed architec-
tures were tested on the very important real-world problem of 
skin cancer classification, in which the algorithm has to make 
a distinction between benign and malignant lesion.

Seven representative neural networks were evaluated in dif-
ferent settings and methods applied. In order, to obtain more 
confident results, k-fold cross-validation with 5 folds was used. 
From the same reason, all the experiments were conducted 
6 times and the results were averaged.

Certain differences in the conclusions from the conducted 
research, as compared to the results obtained by other re-
searchers, may result from the specificity of the considered 
case study. This means that some of these conclusions are not 
universal.

The authors believe that the presented and described 
methods, together with the results demonstrating their practical 
influence on the results of classification achieved by networks, 
will help other researchers in their work.
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