
363Bull. Pol. Ac.: Tech. 67(2) 2019

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 67, No. 2, 2019
DOI: 10.24425/bpas.2019.128485

Abstract. In recent years, deep learning and especially deep neural networks (DNN) have obtained amazing performance on a variety of
problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the convolutional neural networks (CNN) are
most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters,
avoiding overfitting and ensuring good generalization abilities. Therefore, a number of methods have been proposed by the researchers to deal
with these problems. In this paper, we present the results of applying different, recently developed methods to improve deep neural network
training and operating. We decided to focus on the most popular CNN structures, namely on VGG based neural networks: VGG16, VGG11 and
proposed by us VGG8. The tests were conducted on a real and very important problem of skin cancer detection. A publicly available dataset of
skin lesions was used as a benchmark. We analyzed the influence of applying: dropout, batch normalization, model ensembling, and transfer
learning. Moreover, the influence of the type of activation function was checked. In order to increase the objectivity of the results, each of the
tested models was trained 6 times and their results were averaged. In addition, in order to mitigate the impact of the selection of learning, test
and validation sets, k-fold validation was applied.

Key words: deep neural network, deep learning, image classification, batch normalization, transfer learning, dropout.

Selected technical issues of deep neural networks
for image classification purposes

M. GROCHOWSKI*, A. KWASIGROCH, and A. MIKOŁAJCZYK
Gdańsk University of Technology, Faculty of Electrical and Control Engineering, 11/12 Narutowicza St., 80-223 Gdańsk, Poland

simple if-else set of rules. The next generation of classifica-
tion modules utilized trainable supervised learning algorithms,
such as support vector machine (SVM) [5] or neural network
(NN). Although the supervised algorithms enable to achieve
better results, they need data to train. Consequently, the data
acquisition process is needed.

The above-described approaches involve engineering skills
and knowledge in the domain of the solved task. For example,
to create a skin lesion classification system, we should have
knowledge not only on image processing but also on medical
knowledge on traits of benign and malignant lesions [6]. De-
spite difficulties in feature extraction module preparation, these
algorithms are still used today and have a wide range of appli-
cations [7, 8]. This family of methods involves less data for
system training and is not computationally expensive. Thus,
they can work on mobile devices, for instance, the face detec-
tion algorithm in a digital camera.

In recent years, more attention was focused on automatic
feature extraction, partially because of difficulties in the prepa-
ration of feature extraction algorithms and, on the other hand,
thanks to the development of algorithms and the increase in
computing power, in particular, that of graphics cards. In this
area, the leading role is played by deep neural networks (DNN),
especially by the convolutional neural network (CNN).

Deep learning is a wide family of machine learning algo-
rithms that evolved from classical fully connected neural net-
works. Although a lot of works on deep learning have been
done since the early eighties [9‒11], for decades this family of
techniques did not attract broad attention, mainly because of
significant data requirements and high computational burden
of algorithms. In fact, the potential of deep learning algorithms

1. Introduction

Image analysis is a branch of engineering that has been devel-
oped by the research community for decades. The first gener-
ation of classification algorithms was based on two modules:
a fixed feature extraction module and a classification module.
The feature extraction module consists of a set of image anal-
ysis algorithms that usually work sequentially to extract signif-
icant features. The images are processed by a set of algorithms
that includes simple ones, such as shape and edge detection,
image filtering, morphological operations, and brightness or
contrast adjustment, as well as more complex algorithms, such
as HAAR feature extractors [1], Hough transforms [2], his-
togram of oriented gradients (HOG) [3], or SIFT descriptors
[4]. The feature extraction module is designed by hand and
does not require any training. The reason for employing such
algorithms in image classification is that the images are highly
dimensional data which classification algorithms could not
process effectively. Therefore, there is a need for reducing the
dimension of information provided to the classification algo-
rithms. Moreover, the extracted features provide more useful
information than raw image pixels. The extracted features
feed the algorithm in the classification module, which typi-
cally consists of one certain classification algorithm. In early
image analysis systems, the classification modules were built
using such methods as fuzzy logic, rule-based system, or even

*e-mail: michal.grochowski@pg.edu.pl

Manuscript submitted 2018-05-22, revised 2018-10-11, initially accepted
for publication 2018-10-24, published in April 2019.

364

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

could be only realized in recent years, due to computationally
effective hardware [12] and the wide availability of large data-
sets. Moreover, the appearance of libraries has facilitated the
effective employment of deep learning models without direct
low-level GPU programming [13‒16]. The current advent of
deep learning research began in 2012 when the deep learning
based system has won the ImageNet large scale visual recog-
nition challenge (ILSVRC) [17]. Deep neural networks sig-
nificantly outperformed the systems based on classical image
classification methods that involved the preparation of features
and the use of relatively simply classifiers, such as SVM or
shallow networks [18]. Although the Imagenet challenge is an
image processing problem, the great success of the deep neural
network in that challenge triggered the research not only in
the area of image processing but at many more fields, such as
natural language processing (e.g. language translation [19], lan-
guage recognizing [20], speech-to-text [21] and text-to-speech
conversions [22]), synthetic image generation [23], deep rein-
forcement learning [24], and many more.

Convolutional neural networks belonging to the deep
learning family consist of many layers of neurons with different
activation functions, structured in a special way (see Fig. 1).
The word “deep” refers to a large number of layers composing
the network. Inside the CNN, two modules can be distinguished,
namely: feature extractor and classifier. Both the feature ex-
tractor and the classifier are trainable modules.

Training of the feature extraction module is carried out in
such a way as to enable it to operate even on raw images, by
appropriate adjustment of extractor weights, being the convo-
lutional filters.

Present deep learning algorithms can reach human-level or
almost human-level performance in many tasks. Deep neural
networks have become the preferred approach in many com-
puter vision applications. Despite this great success, deep
learning applications still suffer from many drawbacks.

Deep neural networks need a lot of data to be trained
properly. Moreover, network training is computationally ex-
pensive. Furthermore, the networks are described by many hy-
perparameters that should be tuned properly to achieve high
performance. Thus, the utilization of deep learning involves

many trials with different values of hyperparameters. These
drawbacks are the motivation for further research in the field
of deep learning.

A number of methods were proposed to enhance the clas-
sification abilities of deep learning algorithms. In this paper,
the most popular methods were evaluated on the VGG based
neural networks [25]. During the research, the influence on
the classification performance of different neural structures,
activation functions and methods such as batch normalization
[26], dropout [27] and transfer learning [28] was examined.
The dropout method increases the generalization abilities of the
neural network by preventing the co-adaptation of neurons (the
situation when a group of neurons acts in the same way). The
batch normalization method comes from the idea of normalizing
the input of a classifier. It is well known that normalization
enhances the optimization process. Having this in mind, the
batch normalization method normalizes not only the first layer
input but also the subsequent layers. This technique allows us
to use higher learning rates, moreover, it has been empirically
shown that batch normalization prevents against neural network
overfitting. Another important issue which was tested was the
type of activation function used.

The influence of the most often used activation functions:
the rectified linear Unit (ReLU) function and its modification,
i.e. the leaky rectified linear unit (LReLU) function [29], on
neural network performance were checked. The other exam-
ined issue was the scale in which transfer learning and model
ensembling methods affect the results of classifiers. The results
of the research are presented in a form of tables and figures,
which are thoroughly discussed and summarized.

The aforementioned algorithms are usually tested on bench-
mark datasets that contain many well-balanced instances. In this
paper, the architectures and methods are tested on a practical
problem – skin lesion classification. This problem has proper-
ties that many researchers working on similar tasks have to deal
with, for instance: low quantity of photos, unbalanced number
of images in different classes, different size and quality of im-
ages, unclearly specified differences between classes, etc [30].

The remainder of this paper is organized as follows: Sec-
tion 2 describes the methods used in the research, then Sec-

Fig. 1. Basic convolutional neural network [31]

365

Selected technical issues of deep neural networks for image classification purposes

Bull. Pol. Ac.: Tech. 67(2) 2019

tion 3 outlines the details of the problem of skin lesion analysis
and dataset used. The utilized architectures and details of the
training are described in Section 4. The achieved results are
discussed in Section 5 and concluded in Section 6.

2. Methods

The most popular representative of the deep learning family is
the convolutional neural network (Fig. 1). The basic convolu-
tional neural network is built from convolutional layers that per-
form convolution operations on input data. The convolutional
layers can be interpreted as a set of neurons, and convolutional
operations as the image filtering process. However, there are
two differences between the classical neural layers and convolu-
tional layers. Firstly, each neuron inside the convolutional layer
is connected to only a small fraction of adjacent neurons in the
previous layer. This way the single neuron analyzes a small
section of the image and detects particular features. Secondly,
the neurons in the same group (filter) share their weights, as
a result of which neurons in different positions detect the same
feature. These two traits of convolutional layers are especially
relevant for image processing applications. Due to these attri-
butes, the image detector becomes invariant to object translation
in the image. Moreover, these attributes of convolutional layers
drastically reduce the number of neural network weights, thus
reducing the training time. Such an approach enables parallel
processing when using multiprocessor devices such as graphics
cards.

Each convolutional layer is followed by a nonlinear trans-
formation (activation function). The most popular one is
the rectified linear unit (ReLU) described by the formula:
y = max(0, x), where y stands for output and x for input. An
additional layer, bearing the name of subsampling or pooling
layer, is placed between some convolutional layers. This layer
reduces the sizes of the images processed by successive net-
work layers. The most common operations taking place in sub-
sampling layers are MaxPooling and AveragePooling. Those
operations aggregate the group of adjacent pixels by replacing
them with pixels with maximal value (MaxPooling) or pixels
being the mean of the analyzed group of pixels (Average-
Pooling). A typical convolutional neural network consists of
many convolutional layers and pooling layers between them.
The top of the deep neural network consists of a classical fully
connected neural network that is fed by the output of the last
convolutional layer. This top network is terminated by the sig-
moid neuron or softmax layer, depending on the number of
classes in the task.

As previously mentioned, the convolutional neural networks
have an ability to learn how to extract relevant features. The fea-
ture extraction is performed by the convolutional layers, whose
parameters are adjusted during the training. The extracted fea-
tures are provided to the fully connected neural network classi-
fier that classifies the input images. The feature extractors have
an ability to process the raw data, therefore preliminary image
processing is not required. Practically, only simple operations
are needed, such as resizing (to fit the image size to the input

size), or normalization (to improve the neural network training).
The feature extraction is performed by a stack of convolutional
layers, which performs the convolution operation on the output
of the previous layer. Each layer transforms the representation
of layer outputs to the higher abstract level. For instance, the
first convolutional layer detects simple features, such as colors,
edges, corners, whereas the last layers can detect more complex
features, such as parts of the object.

Combining convolutional layers with nonlinear layers and
pooling operations gives a complex and efficient classifier.
Currently used architectures utilize even hundreds of layers,
at the same time making use of additional methods enhancing
the learning process and accuracy. Nevertheless, the network
presented in Fig. 1 is a backbone of many modern architectures.

The rise of deep learning research caused the development
of dedicated methods for deep neural networks, the most pop-
ular of which are: dropout, batch normalization, and model
ensembling. Each method improves neural network training
and performance in a different way, mainly by changing the
structure and/or method of training. Many papers report the
useful impact of these methods on the improvement of gener-
alization abilities of deep neural networks, verified on popular
benchmark tasks.

2.1. Dropout. Dropout is a technique that improves the per-
formance of neural networks in a wide variety of application
domains, including object classification, natural language pro-
cessing, analysis of scientific data [27].

A method to improve generalization abilities of a deep
neural network consists in combining the outputs of many
trained networks (model ensembling). However, this method
is computationally expensive. Dropout overcomes this problem
by providing a way of approximately combining many neural
networks into one model. The method involves temporarily re-
moving some of the neurons during the training. The group of
neurons to be removed is chosen randomly. The probability
of retaining a neuron is a tunable hyperparameter called the
dropout rate. The neurons are drawn and removed each time
when a batch of samples is provided to the network. In practice,
the neuron is removed by multiplying its output by zero. The
dropout operation can be interpreted as a sampling of many
thinned networks from the neural network. The total number of
possible sampled thinned networks from the original network
equals 2n, where n is the number of neurons in the original
network. Training of such a network can be seen as training of
a collection of thinned networks with extensive weight sharing.
After the training, the parameters of the neural network are
multiplied by the value of the dropout rate.

The neural network that uses the dropout mechanism can
be trained using the backpropagation and stochastic gradient
descent algorithms without major modifications. In this case,
partial derivatives of connections of the dropped neuron are set
to zero. The classical methods, such as momentum or L2 regu-
larization, work well with the dropout mechanism and improve
network training. The dropout method improves the quality of
detected features by preventing their co-adaptation. This is en-
forced by the attributes of the dropout method – each neuron

366

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

has to learn to cooperate with a randomly chosen sample of
other units. Therefore, the trained neurons become more inde-
pendent and create useful features on their own, without relying
on other neurons.

Although dropout provides decent generalization results, the
training of the neural network with dropout mechanism lasts
2‒3 times longer than without it. The reason for longer training
is that adjusting parameters is a very noisy process, due to dif-
ferent random architectures that are drawn each time when the
batch is provided to the network [27].

The authors of [27] reported that the neural network with
the dropout mechanism provided superior results, compared to
the network without the dropout mechanism. The mechanism
was tested on diverse classification tasks, including speech rec-
ognition, natural language processing, and image analysis. The
experiments showed the effectiveness of the dropout method.
It allowed decreasing the test error in the MNIST classification
task from 1.60% (neural network without dropout) to 1.35%
(with dropout). Both networks were equipped with logistic ac-
tivation functions. The use of the ReLU activation function and
the constraint on the maximum norm of weight vector has led
to further improvement in accuracy, i.e. further error decrease
to 0.95%. The dropout method was tested on CIFAR-10 and
CIFAR-100 benchmarks, showing great test error decrease. For
CIFAR-10, the dropout method decreased the test error from
14.98% (previous state of the art) to 14.32% by adding dropout
to fully connected layers. Applying the dropout method to all
layers, including convolutional layers, decreased the test error
to 12.61%. Huge improvement in CIFAR-100 classification
task was also reported, where applying dropout to the neural
network decreased the test error by 6.28 percentage points. Un-
fortunately, the dropout mechanism does not work well on all
types of architectures. For instance, applying dropout to ResNet
identity blocks resulted in the failure of training [32]. On the
other hand, the positive influence of dropout on ResNet was
reported in [33] when inserted between the convolutional layers.

An ability to prevent overfitting, along with the effective-
ness and simplicity of the method, were proved in a wide va-
riety of application domains. The dropout method was used in
numerous states of art classification models in the Imagenet
classification task [18, 25].

2.2. Batch normalization. The batch normalization method
solves the problem of changing the distribution of inputs of
hidden layers. This problem is of especially high importance in
very deep networks with many layers. Changing the distribution
in one layer causes further changes in subsequent layers. This
phenomenon slows down the training of such a network and
makes it more difficult. In order to reduce the effect of this
phenomenon, the networks should be trained with low learning
rates. Moreover, proper weight initialization is required to ob-
tain satisfactory results. To address this issue, the authors of
[26] proposed the batch normalization method. This method is
based on the well-known fact that whitening of classifier inputs
improves the optimization process during the training. It will
also be profitable to normalize the inputs of all hidden layers in
the network. This method could accelerate the training process

of the neural network. However, simple normalization of inputs
to every layer does not work in practice, due to the canceling
effect of backpropagation and normalization terms. Hence, the
normalization should be made visible to the algorithm, which
means that the gradient of loss function needs to backpropagate
through normalization terms. Moreover, the method introduces
two extra learnable parameters per neuron, which scale and shift
the normalized neuron input values. This mechanism allows
recovering the input values from before the normalization if it is
beneficial for the training process. In the case of convolutional
layers, the pair of parameters is assigned per one feature map.

The employment of batch normalization caused an increase
in classification accuracy on the Imagenet benchmark dataset.
For instance, adding batch normalization layers to the Inception
network caused an increase in classification accuracy of the test
set from 72.2% to 74.8% [26]. Moreover, the network required
10 times less training steps than the network without batch
normalization. The method also works well on Google LeNet
architecture, where the employment of batch normalization de-
creased the error from 29.0% to 26.8% in the Imagenet chal-
lenge [34]. The batch normalization method was successfully
applied to many modern network structures, including ResNet
[35], DenseNet [36], and Wide ResNet [33].

Although it would seem reasonable to combine dropout and
batch normalization techniques, this combination usually leads
to conflict in the network structure. The conflict is visible in the
deep architecture test stage. Batch normalization operates on an
average and a variance of the train set statistics, while dropout
introduces a shift in the variance of layer inputs during the test
stage by multiplying the weights by the dropout rate value.
Hence, batch normalization fails to make use of its potential
because of changed distribution of layer inputs.

2.3. Activation functions. Rectified linear unit is the most often
used activation function in the deep learning area. Glorot [37]
found that the rectified function performs much better than
traditional activation functions. The neural networks equipped
with ReLU functions achieved better classification accuracies
than the networks equipped with a hyperbolic tangent function
(tanh). Moreover, the authors of [18] stated that the usage of
ReLU accelerates the training of the neural network by four
times, compared with the neural network employing the tanh
function. This is caused by the simplicity of ReLU and spe-
cial attributes of this function. The function is not saturating,
moreover, it has a piece-wise constant gradient. That fact allows
preventing the well-known problem of vanishing gradient. The
employment of ReLU function accelerates the convergence of
the optimization process when training a network with many
layers and neurons. ReLU enables faster training, compared
to its saturating counterparts (tanh or sigmoid function). Addi-
tionally, the ReLU function is less sensitive to improper weight
initialization, whilst in the case of traditional saturating nonlin-
earities, it is possible to initialize the weights in such a way as
to have most of the functions saturated.

However, the ReLU function has still a chance for improper
initialization, what might lead to the so-called dead neuron
problem. The neuron is “dead” when its weight makes it stay

367

Selected technical issues of deep neural networks for image classification purposes

Bull. Pol. Ac.: Tech. 67(2) 2019

not activated by any training example, it is not possible to fur-
ther learn the weights because of zero gradient. Such a neuron
will never fire and will never have an ability to adjust their
parameters.

To overcome this problem, the ReLU function was slightly
modified, hence the Leaky Rectified Linear Unit was firstly in-
troduced in [29]. The authors showed that employing the Leaky
ReLU instead of ReLU improved the performance of acoustic
models. The Leaky ReLU is a similar function to ReLU, but
instead of taking zero value for arguments below zero, it replaces
this part of the function with a linear function with a small slope,
which is chosen before the training. Therefore, using leaky
ReLU requires tuning an extra hyperparameter. The small slope
in the leaky ReLU function enables the gradient to flow when the
input is below zero, thus preventing the dead neuron problem.

Unlike the standard ReLU function, the leaky ReLU acti-
vation function has a non-zero gradient over its entire domain.
This attribute allows the gradient to flow slowly when the
neuron is not active. Moreover, the features of the function
prevent the appearance of the dead neuron problem occurring in
the ReLU function. In [38], the authors have empirically shown
that the Leaky ReLU function achieved better test accuracy
on benchmark datasets than its standard counterpart (ReLU).
For CIFAR-10, the use of leaky ReLU reduced the test error
from 12.45% to 11.20%, while for CIFAR-100 from 42.9%
to 40.42%. Moreover, the authors also showed that the leaky
ReLU performs better on the real-world problem of classifying
plankton. In [39], the use of leaky ReLU improved the per-
formance (measured by the F-score) from 0.78 points (ReLU)
to 0.85 points on the real-world problem – lung cancer clas-
sification. The slope of the function for negative arguments
in leaky ReLU was reported to have a strong influence on the
performance. For instance, changing the slope from 0.01 to
0.3 caused an increase in the performance (F-score) from 0.81
to 0.85 points. This finding suggests that studying activation
functions is still a crucial research field.

2.4. Transfer learning. Transfer learning is a technique that
highly improves neural network performance [28]. The method
is especially useful for small datasets. Training the deep neural
network on a small dataset from a scratch could be difficult, as
too many parameters are to be found in relation to the available
training data. Transfer learning involves training the network on
a big dataset, Imagenet for example, that contains 1M images.
Then the weights of the network trained in the above way might
serve as a good starting point in training it on another classifica-
tion task. It is possible because many visual objects share sim-
ilar low-level features like edges, shapes or colors. Therefore,
convolutional layers could be trained once on a given task and
then trained again on the target dataset (so-called fine-tuning).
An intuitive explanation of the transfer learning effect comes
from the real world. For instance, a person who can play the
guitar will learn to play the piano more easily than the person
who does not play any instrument, because both activities
involve knowledge and specific skills such as note reading,
knowledge of music theory, etc. It was reported in the liter-
ature [18, 40–43] that utilization of transfer learning enables

to achieve much better results than the networks trained from
scratch. Moreover, transfer learning shortens the neural network
training time. However, there is little possibility of modifica-
tion of the pretrained network, for example, it is impossible
to change the activation function because different activation
functions work with different sets of weights.

Transfer learning was successfully used especially in vi-
sion applications. For instance, the authors of [18] reported that
pretraining on a huge dataset with further target task training
caused the reduction of validation error from 18.2% to 16.6%.
In such applications as mammographic tumor classification
[40], pulmonary module detection [41], chest pathology detec-
tion [42], and image segmentation [43], employing the transfer
learning method enhanced the classification accuracy.

2.5. Model ensembling. The model ensembling method in-
volves training many classifiers, then combining classifier out-
puts to produce better classification result than a single classi-
fier. The performance of models working together is better than
that of a single model, because different neural models make
mistakes for different testing inputs, despite similar levels of
training error. Therefore, utilizing a number of different neural
models may decrease the likelihood of a mistake. There is a va-
riety of approaches to model ensembling, e.g. outputs of the
models may be simply averaged or may stand as the inputs for
another final classifier, such as logistic regression, neural net-
work, or SVM. In practice, the application of the model ensem-
bling method is computationally expensive, because it requires
training of many classifiers. Therefore, this is an active field of
research on how to make use of advantages of model ensem-
bling and simultaneously keep the training time low [44, 45].

The model ensembling method is widely used in modern
deep learning applications. Almost all high-performance Ima-
genet architectures employ the method to improve the perfor-
mance of classification models. The first Imagenet challenge
winner group used an ensemble of 6 networks that reduced the
validation error from 18.2% to 16.4% [18]. An ensemble of
two VGG networks decreased the top-5 test error from 7.0% to
6.8% [25]. An ensemble of six Google LeNet networks caused
even bigger improvement in the top-5 test error – from 7.9%
to 6.7% [46].

2.6. k-fold validation. In many real-world applications, huge
datasets are not available. Hence, it is hard to split the data into
a sufficiently relevant training set and a reliable testing one. It
is obvious that small number of images in the test set can lead
to statistical uncertainty around the averaged test error [47]. For
example, if the test set contains only 50 images, one accurately
classified image yields the accuracy increase by 2 percentage
points. As a result, in a small dataset, statistical measures are
heavily dependent on chosen instances in the training and test
sets. To overcome this problem, the k-fold cross validation
method is employed, which significantly substantiates the re-
sults, especially in the case of small dataset applications. The
method allows using even all examples from a given dataset to
estimate the performance of the classifier more accurately. The
method involves splitting the dataset into k non-overlapping

368

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

subsets. Then, the classifier is trained k times, each time another
subset becoming the test set, with the rest of the data used as the
training set. The performance is computed by taking an average
of accuracies (and another statistical measures) of k trials. The
problem is that the method requires classifier training on each
subset, which increases the time of training by k times [48].

3. The problem of skin lesion analysis

In order to practically test the influence of the described param-
eters and methods on the efficiency and effectiveness of a deep
neural network-based classifier, a decision was made to tackle
a very important real live problem of skin cancer diagnosis.

This task involves making a distinction between benign and
malignant instances of skin lesions. Screening the skin lesion
is a relevant task, due to the high death rate in people being
affected by the disease. Early detection is a crucial aspect of
curation because it increases the chance of full patient recovery
[49]. Classification of lesions is a very challenging task because
of similarity between malignant and benign melanomas, but
also due to a large diversity of images of various quality, the
existence of hair, different markers, and other obstacles hin-
dering proper feature extraction.

The classical method of skin cancer detection involves ex-
amination of a lesion by the skilled specialist. The examination
can be conducted by an unaided eye or using a dermoscope that
allows high-quality lesion observation in fixed lighting condi-
tions. The decision of whether the lesion is benign or malignant
is made based on dermoscopic methods, such as the ABCD
method, 7 point checklist, or Menzies method [50‒52]. The ap-
plication of these methods by the physician involves inspection
of specific features. For example, to examine the lesion based
on ABCD criterions, the physician should check the following
traits: asymmetry (A), border (B), color (C) and differential
structures (D) of the lesion, and, as a result, assign points which
make the basis for final evaluation of the lesion.

The research on automated, computer-aided skin lesion clas-
sification is an active field. The classification of the skin lesion
is a non-trivial task, due to difficulties caused by the charac-
teristic of the task. The main problem is that the rules how to
classify skin lesion are not precisely defined. That means that
the border between benign and malignant lesions can be fuzzy
and can lead to a different diagnosis given by different physi-
cians. Such an inconsistency in diagnosis makes the problem
of automatic classification much more difficult. Moreover, due
to the privacy of patients and the characteristic of medical data,
the datasets are more difficult to prepare. However, the growth
in availability of the well-structured and labeled skin lesion
datasets has been observed in recent years [53‒56].

Classical methods of automatic lesion classification in-
volve tedious and careful preparation of hand-crafted features
which are then provided to the simple classifier, mostly SVM
or shallow neural network, as was described in Section 1. The
other type of methods, especially in medical applications, in-
volves extraction of features related to the method for manual
detection of the skin lesion. In such a solution, the algorithm

Fig. 2. An image with highlighted border feature [57]

Fig. 3. The examples of the lesion from the dataset. Benign lesion
(left), malignant lesion (right)

detects the features described in the method used by the medical
specialist. For instance, the authors of [57] based their system
on the ABCD method. Fig. 2 shows an example of border fea-
ture detection according to the ABCD rule [57]. The methods
have the higher trust of the medical society because the algo-
rithm automates the work that is done manually by them.

Unlike the classical methods, the deep learning-based
methods do not require preliminary preparation of features. The
work is done automatically during the neural network training.
Decent results of skin lesion classification with deep neural
networks have been reported [46].

The dataset used in this research was provided by the In-
ternational Society for Digital Imaging of the Skin [50]. The
dataset is publicly available and contains about 13 000 high-
quality, labeled dermatoscopic images of skin lesion and ad-
ditional masks that indicate the position of the lesion in the
image. The images sizes varies from 900£900 px up to even
3000£4000 px. The dataset is highly unbalanced, it consists
of about 12 500 benign instances and only 1100 malignant in-
stances. This disproportion between the classes makes proper
training of classification systems more difficult. Selected ex-
amples of lesions from the database are shown in Fig. 3. In

369

Selected technical issues of deep neural networks for image classification purposes

Bull. Pol. Ac.: Tech. 67(2) 2019

many cases, making a distinction between benign and malignant
lesions is difficult for both humans and algorithms.

4. Architectures used and training

This section presents the details of the experiments performed to
investigate the influence of the aforementioned methods on the
classification accuracy. A decision was made to base the tested
architectures on a popular VGG network family, which has had
a great impact on the research in the field of deep learning. The
VGG networks served as a backbone for further modifications
and improvements of deep architectures. In the present research,
use was made of popular VGG11 and VGG16 networks, a very
detailed description of which can be found in [25]. In order to
check the influence of the network size on performance and on
generalization abilities, we proposed the VGG8 architecture

with fewer parameters than the VGG11 and VGG16 networks
(see Table 4 for the details). The structure of these networks is
presented in Table 1 and Table 2. A set of modifications was
introduced with different combinations of methods described
in Section II. In the remainder of this section, the details about
the training process and data preparation are described.

4.1. Architectures. Different architectures based on the VGG
family were employed and tested. The elements of the structures
of the VGG neural networks analyzed during the research are
presented in Table 1.

The size of the input of each network is 224£224£3, which
corresponds to the image size of 224£224 pixels, and the last
dimension is the color channel (RGB).

The values alongside the convolutional layers refer to
a number of filters included in these layers, for example,
conv-64 is the convolutional layer consisting of 64 convolu-
tional filters. Each convolutional filter has a 3£3£n kernel,
where n stands for a number of filters in the previous layer.
The assumed filter stride (the number of pixels with which the
filter slides over the image) equals 1. In order to preserve the
same output and input size of the layer, zero padding around the
feature maps was employed. The FC layer refers to a fully-con-
nected layer (classical neural network) and the values indicate
the numbers of neurons, for example, FC-1024 is a fully con-
nected layer with 1024 neurons. There is also a sigmoid neuron
on the top of the network.

A number of experiments have been conducted with dif-
ferent configurations of parameters and methods described in
Chapter II. Details of the analyzed networks, along with the
accompanying methods, are presented in Table 2. The dropout
method was applied after two fully-connected layers (networks:
C, F, G) with the dropout rate set to 0.5. The batch normaliza-
tion mechanism was applied before each activation function
(networks D, E). The influence of activation function was also
tested. In those tests, the Leaky ReLU function was applied with
the slope equal to 0.2. The influence of transfer learning was
tested on the Network G, which was previously pre-trained on
the Imagenet dataset consisting of 1M images divided into 1000
classes (1000 images per class). During network G training, all
weights were adjusted. The publicly available model of pre-
trained VGG16 network from Keras library was utilized [58].

4.2. Optimization algorithm. In order to train the networks,
the mini-batch gradient descent with Nesterov momentum
algorithm was utilized to minimize the loss function. The

Table 2
Tested architectures

Network A Network B Network C Network D Network E Network F Network G

Basic network VGG8 VGG8 VGG8 VGG8 VGG11 VGG16 VGG16
Activation function Leaky ReLU ReLU ReLU ReLU ReLU ReLU ReLU
Transfer learning X

Dropout X X X X

Batch normalization X X

Table 1
Basic architectures

VGG8 VGG11 VGG16

conv-64 conv-64 conv-64
conv-64

maxpool

conv-128 conv-128 conv-128
conv-128

maxpool

conv-256 conv-256
conv-256

conv-256
conv-256
conv-256

maxpool

conv-512 conv-512
conv-512

conv-512
conv-512
conv-512

maxpool

conv-512 conv-512
conv-512

conv-512
conv-512
conv-512

maxpool

FC-1024
FC-1024

Sigmoid neuron

370

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

momentum coefficient was set to 0.9, which is a frequently
chosen value in many applications. The binary cross-entropy
was chosen as the loss function for the two-class classification
problem. The initial learning rate was set equal to 0.01 for
networks B, C, D, and E, while the training of networks A, F,
and G was started with the learning rate set to 0.001, as the
optimization process was unable to converge at higher learning
rates. During the training, the learning rate was divided by 3
each time when the validation loss did not decrease during 4
subsequent epochs. The early stopping method was applied to
prevent overfitting: the training was to stop when no improve-
ment was recorded in the value of the validation loss function
during 8 subsequent epochs.

4.3. Data preparation. The size of the input images was
chosen as (224£224£3), which is a standard size used in many
image recognition applications. This size is a compromise be-
tween the image quality on the one hand, (higher-size images
can contain more details) and the computational requirements
on the other hand. The size of 224£224£3 pixels is also used
in the pretrained network. The original size of the images in
the dataset is much higher, compared to the size of the neural
network input. It is noteworthy that the lesions in the images
cover only a small fraction of image size. Therefore, the lesions
were extracted from the image using masks provided by the
organization and then resized to the size of 224£224£3. The
masks consisting of less than 10 white pixels were qualified as
incorrect and the corresponding images were kept unchanged.
The lesions that covered less than 20 percent of the image were
cut out from the image. First, using the mask, the minimum
radius of the circle covering the lesion was found. Next, the
bounding square of this circle was found in such a way that the
edges of the square were parallel to image edges. In order to
have some skin left around the lesion, the size of the square was
extended by an extra 44%. Finally, the square with the lesion
was cut out from the image of the lesion. The images with le-
sions that covered more than 20 percent were kept unchanged.
Then, the images in the dataset were cropped and resized to fit
the neural network input size. Finally, the dataset was normal-
ized by subtracting the mean and setting the standard deviation
set to one and zero, respectively.

For all experiments, a train-validation-test scheme was
applied. In order, to obtain more substantial results, k-fold
cross-validation with 5 folds was used. After these modifica-
tions, each fold contained 24 709 training images, which were
divided into 12 333 benign lesions and 12 376 malignant le-
sions. The malignant lesions were generated by copying 13
times 884 malignant instances available in the dataset (upsam-
pling). Although several the same images were in the malignant
class, they would become different due to data augmentation
applied online during the training. The validation set and the test
set consisted of 200 images, equally divided into two classes.
In each fold, the validation set and the test sets were unique,
which means that the image used in one fold did not appear in
other folds of the test or validation set.

The dataset was augmented by numerous modifications,
such as rotation, width and height shift, horizontal and vertical

flip, and zooming. The data augmentation was performed on-
line, before providing the images to the neural network input.

4.4. Model ensembling. The influence of model ensembling
on classification results of all tested networks was examined
as well. Each network was trained 6 times to combine their
outputs in model ensembling. Next, two types of model en-
sembling were applied. The first type involves averaging out-
puts of 6 trained networks, in the remainder of the paper this
method is referred to as ‘average ensembling’. The second type
involves training a sigmoid neuron which takes outputs of 6
networks as an input. This method is referred to as ‘logistic
classifier ensembling’. The classifier was trained on outputs
of the deep networks fed with 4000 images randomly chosen
from the train set. The linear regression classifier contained
7 parameters (6 per each input and one for bias term). The
classifier training was conducted using the stochastic gradient
descent optimizer.

4.5. Classification threshold tuning. In order to increase
the classification accuracy, classification threshold tuning was
performed following a simple pipeline. 100 threshold values
ranging from zero to one were iterated, and the classifica-
tion accuracy was checked on the validation set. Next, the
threshold with best classification accuracy on the validation
set was selected. To tune the threshold, the validation set from
all 5 folds was used, which resulted in the same threshold for
all folds.

4.6. Software and hardware. The networks were trained using
the Python Keras [58] library running on the top of the Theano
[14] library. The Keras library allowed easy and fast proto-
typing of neural networks.

During the calculations, the Nvidia CUDA library was uti-
lized that allowed parallel computing on GPU. The networks
were trained on GPU, while the data augmentation operations
were performed by CPU.

All tests were performed on a computing unit equipped
with: GeForce GTX 980 Ti GPU with 6 GB memory, Intel Core
i7‒4930K processor, and 16 GB RAM memory.

5. Experimental results

A series of experiments were conducted with all previously de-
scribed architectures. All results are summarized in Table 3. The
ROC curves of evaluated systems are presented in Figs. 4‒7.
The influence of certain methods on averaged results of a single
network (without model ensembling) is discussed.

5.1. Evaluation metrics. To evaluate the performance of the
tested networks, the metrics of accuracy (ACC), specificity
(SPC) (also known as True Negative Rate – TNR), and sen-
sitivity (SST) (also known as True Positive Rate – TPR) were
used. The accuracy was calculated as the ratio of properly clas-
sified instances to all instances in the dataset. The sensitivity, in
that case, means the ratio of properly classified malignant in-

371

Selected technical issues of deep neural networks for image classification purposes

Bull. Pol. Ac.: Tech. 67(2) 2019

Table 3
Tested architectures

Network Single network Model ensembling by average Model ensembling by neural network

ACC AUC SST SPC ACC AUC SST SPC ACC AUC SST SPC
A 72.12 0.808 0.754 0.688 74.10 0.822 0.774 0.708 73.60 0.823 0.738 0.734
B 70.38 0.786 0.734 0.673 72.50 0.802 0.842 0.608 73.00 0.804 0.854 0.606
C 72.87 0.804 0.775 0.683 76.50 0.821 0.786 0.744 75.50 0.821 0.822 0.688
D 73.77 0.828 0.784 0.692 76.80 0.851 0.796 0.740 76.90 0.852 0.802 0.736
E 68.83 0.765 0.752 0.625 71.20 0.779 0.816 0.608 71.30 0.781 0.766 0.660
F 67.78 0.749 0.687 0.668 65.40 0.759 0.586 0.722 66.20 0.758 0.628 0.696
G 76.67 0.858 0.801 0.732 79.40 0.882 0.868 0.720 79.60 0.883 0.878 0.714

Fig. 4. Comparison of different architectures

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Single Network ROC

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Ensembling by logistic classifier ROC

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Ensembling by averange ROC

372

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

Fig. 5. Influence of model ensembling on different architectures
– networks A–C

Fig. 6. Influence of model ensembling on different architectures
– networks D-F

Network A
Tr

ue
 P

os
iti

ve
 R

at
e

Network B

Tr
ue

 P
os

iti
ve

 R
at

e

Network C

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate False Positive Rate

Network D

Tr
ue

 P
os

iti
ve

 R
at

e

Network E

Network F

Tr
ue

 P
os

iti
ve

 R
at

e
Tr

ue
 P

os
iti

ve
 R

at
e

373

Selected technical issues of deep neural networks for image classification purposes

Bull. Pol. Ac.: Tech. 67(2) 2019

stances to their total number (1), while the specificity is the ratio
of properly classified benign instances to their total number (2):

 Sensitivity (SST) = TP/P = TP/(TP + FN) (1)

 Specificity (SPC) = TN/N = TN/(TN + FP) (2)

where: P is the number of positive samples (malignant), N is
the number of negative samples (benign), TP-True Positive: is
the number of malignant instances correctly identified as ma-
lignant; FP-False Positive: is the number of benign instances
incorrectly identified as malignant; TN-True Negative: is the
number of benign instances correctly identified as benign;
and finally FN-False Negative: is the number of malignant
instances incorrectly identified as benign. Moreover, the ROC
(Receiver Operator Characteristic) curves were prepared and
the area under that curves were calculated, which is known
as the AUC acronym. The ROC curve is created by changing
the classification threshold from 0 to 1 and measuring the
True Positive Rate (Sensitivity) and the False Positive Rate
(1-specificity).

5.2. Transfer learning influence. The influence of transfer
learning on classification accuracies was investigated. For this
purpose, two the same architectures (VGG16) but differently
initialized were used. The first network (F) was initialized
with randomly generated weights, while the second network
(G) – with the weights transferred from the network trained
on the Imagenet set. The results are presented in Table 3 and
in Fig. 4. Transfer learning yielded the accuracy improvement
of about 10.24 percentage points, compared to the network
trained from scratch. Moreover, network G achieved the best
result among all tested networks, while network F, with the
same architecture, achieved the worst result among all tested

architectures. It shows that if we are forced to train the network
from the scratch it is better to use the network with relatively
small amounts of layers.

5.3. Model ensembling influence. Table 3 compares the perfor-
mance of all networks. It is noteworthy that model ensembling
improves the performance of all evaluated architectures. The
influence of model ensembling is depicted in the form of ROC
curves in Figs. 5‒7. The single network ACC stands for the
averaged accuracy of six individual neural networks. Model
ensembling by averaging stands for combining outputs of six
individual networks by averaging their last sigmoid neuron
outputs. Model ensembling by logistic classifier stands for the
accuracy obtained by sigmoid neuron fed by outputs of six
individual networks within the tested architecture. Both model
ensembling methods improved the performance of the evaluated
systems. The ensembling by logistic classifier in most cases is
slightly better then one obtained for ensembling by averaging.

5.4. Comparing different activation functions. Two the
same architectures but with different activation functions were
trained: with the Leaky ReLU function (network A) and with
the ReLU function (network D). Both networks were equipped
with the batch normalization mechanism. Although superior
results of Leaky ReLU have been reported in the literature, in
our experiments this function performed worse (see Table 3
and Fig. 4). It shows that the used methods are not universal
and cannot be successfully applied to an arbitrary problem. The
performance of different architectures depends on attributes of
the solved problem. Therefore, there is still room for further
research in this field.

5.5. Depth influence. We examined how the number of layers
influencing the classification accuracy. We tested three net-
works: C, E, and F containing 8, 11 and 16 layers, respec-
tively. The neural network with the smallest number of layers
performed best (see Table 3 and Fig. 4). Conducted experi-
ments showed that an increase in the number of convolutional
layers does not always lead to better performance. In the case
of having a relatively small dataset, it is much better to start
searching an architecture with a low number of layers, and
eventually increase their size if needed.

5.6. Dropout vs batch normalization. Two methods were
compared that have regularization effect: dropout and batch
normalization. The neural network equipped with batch nor-
malization significantly outperformed the network with dropout
(see Table 3 and Fig. 4). The performance improvement was
even higher in the ensembled networks. The results show that
neural networks with batch normalization are more appropriate
for model ensembling than those equipped with dropout. The
reason for this could be that the dropout method is, in fact, an
approximation of ensembling of many networks. Therefore, the
influence of standard model ensembling on networks trained
with dropout is smaller. Moreover, the architecture (not in-
cluded in Table 3) with both dropout and batch normalization
was evaluated. The network converged during the training, but

Fig. 7. Influence of model ensembling on different architectures
– network G

Network G
Tr

ue
 P

os
iti

ve
 R

at
e

False Positive Rate

374

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

in the test stage, it failed to classify images properly, which is
also confirmed by the results obtained by other researchers.

5.7. Network size, time of learning, number of epochs to
converge. The details of the training are outlined in Table 4.
The time of training and the number of epochs to converge
were calculated as an average of the training process conducted
on 5 folds. We can notice huge improvement caused by the
implementation of transfer learning. It reduced by about twice
the required number of epochs as well as the time to converge.
A slight difference is observed between the results for networks
equipped with ReLU and Leaky ReLU activation functions.
The networks were evaluated in different ways: without any
mechanism, with dropout, and with batch normalization.

Table 4
Models details

Network
size

(MB)

Number
of

parameters

Number of
epochs to
converge

Time to
converge

(h)

Network A
(VGG8) 240 30659587 31.6 3.6

Network B
(VGG8) 240 30652545 17.8 1.5

Network C
(VGG8) 240 30652545 24.6 2.1

Network D
(VGG8) 240 30659587 29.8 3.5

Network E
(VGG11) 281 35971843 20.4 3.75

Network F
(VGG16) 320 41456449 30.0 5.2

Network G
(VGG16) 320 41456449 13.4 2.4

The network without any mechanism converged fastest, but
it achieved worst results among the three evaluated networks.
Although it was reported in [26] that batch normalization ac-
celerates the training, in the present research the training time
of this network was the longest.

6. Discussion

In the previous section, we have presented comprehensive re-
sults of research on the influence of the methods described in the
article on training and performance of the convolutional neural
networks, based on the skin moles classification benchmark.

Transfer learning significantly influences the performance of
the classifier. In the case of analyzed testing data sets, applying of
the transfer learning before the training, increased the classifica-
tion accuracy of about 10% compared with the networks trained
from scratch. Moreover, it shortened the training time twice.

The model ensembling of the networks in case of each kind
of network has improved the results. However, there is only

a small difference between averaging the outputs of the network
and applying an extra neural network at the top of the networks.

Unlike many other studies on the use of different activation
functions, our studies have not confirmed the superiority of
leaky ReLU function over the ReLU. Thus, it seems that this is
not a universal dependence and one can expect different results
for the different applications.

Regarding the dropout and batch normalization mechanisms,
the batch normalized networks achieved superior performance,
compared to the network with the dropout mechanism. As re-
ported in other researches combination of batch normalization
and dropout mechanism leads to the deterioration of classifi-
cation performance.

The number of layers has a major impact on the classifi-
cation performance. In described in the paper case, the net-
work with the smallest number of layers performed best. The
reason for that is a relatively small number of training samples
comparing with parameters of the neural network to be found
during the optimization. Therefore, in case of having a small
dataset, it is advised to start from the architecture with a low
number of layers and increase the numbers of layers if needed.
Another way of having the larger set of data is applying the
data augmentation methods. The examples of such approach
can be found e.g [59‒61].

In order to increase the classification accuracy, classification
threshold tuning was performed. Such method let for increasing
the classification comparing with a fixed threshold.

7. Conclusions

In this paper, the influence of recent advances in the area of
deep learning such as transfer learning, dropout, batch normal-
ization, threshold tuning, model ensembling, is examined for
three different convolutional structures. The analyzed architec-
tures were tested on the very important real-world problem of
skin cancer classification, in which the algorithm has to make
a distinction between benign and malignant lesion.

Seven representative neural networks were evaluated in dif-
ferent settings and methods applied. In order, to obtain more
confident results, k-fold cross-validation with 5 folds was used.
From the same reason, all the experiments were conducted
6 times and the results were averaged.

Certain differences in the conclusions from the conducted
research, as compared to the results obtained by other re-
searchers, may result from the specificity of the considered
case study. This means that some of these conclusions are not
universal.

The authors believe that the presented and described
methods, together with the results demonstrating their practical
influence on the results of classification achieved by networks,
will help other researchers in their work.

Acknowledgments. This research was funded by Polish Min-
istry of Science and Higher Education in the years 2017–2021,
under the Diamond Grant No. DI2016020746. The authors wish
to express their thanks for the support.

375

Selected technical issues of deep neural networks for image classification purposes

Bull. Pol. Ac.: Tech. 67(2) 2019

 [1] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, 2001, vol. 1, pp. I-511-I–518 vol. 1.

 [2] P. Mukhopadhyay and B. B. Chaudhuri, “A survey of Hough Trans-
form,” Pattern Recognition, vol. 48, no. 3, pp. 993–1010, Mar. 2015.

 [3] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), 2005,
vol. 1, pp. 886–893 vol. 1.

 [4] D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

 [5] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

 [6] M. Grochowski, A. Mikołajczyk, and A. Kwasigroch, “Diagno-
sis of malignant melanoma by neural network ensemble-based
system utilising hand-crafted skin lesion features,” Metrology
and Measurement Systems, vol. 26, no. 1, 2019.

 [7] T. Markiewicz, M. Dziekiewicz, S. Osowski, M. Maruszynski,
W. Kozlowski, et al., “Thresholding techniques for segmentation
of atherosclerotic plaque and lumen areas in vascular arteries,”
Bull. Pol. Ac.: Tech., vol. 63, no. 1, pp. 269–280, 2015.

 [8] A. Czajka, W. Kasprzak, and A. Wilkowski, “Verification of iris
image authenticity using fragile watermarking,” Bull. Pol. Ac.:
Tech., vol. 64, no. 4, pp. 807–819, 2016.

 [9] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A Neural
Network Model for a Mechanism of Visual Pattern Recognition,”
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-
13, no. 5, pp. 826–834, 1983.

 [10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

 [11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R.E. Howard,
et al., “Backpropagation applied to handwritten zip code recog-
nition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

 [12] N.P. Jouppi, A. Borchers, R. Boyle, P.-L. Cantin, C. Chao, et
al., “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 2, pp. 1–12, 2017.

 [13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, et al., “Ten-
sorFlow: A System for Large-Scale Machine Learning,” in OSDI,
2016, vol. 16, pp. 265–283.

 [14] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bah-
danau, et al., “Theano: A Python framework for fast computation
of mathematical expressions,” arXiv preprint arXiv:1605.02688,
vol. 472, p. 473, 2016.

 [15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, et al.,
“Caffe: Convolutional architecture for fast feature embedding,”
in Proceedings of the 22nd ACM international conference on
Multimedia, 2014, pp. 675–678.

 [16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, et al.,
“Automatic differentiation in PyTorch,” 2017.

 [17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, et al.,
“Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

 [18] A. Krizhevsky, I. Sutskever, and H. Geoffrey E., “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” Advances
in Neural Information Processing Systems 25 (NIPS2012), pp.
1–9, 2012.

 [19] M. Johnson, M. Schuster, Q.V. Le, M. Krikun, Y. Wu, et al.,
“Google’s Multilingual Neural Machine Translation System:
Enabling Zero-Shot Translation,” 2016.

 [20] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Marti-
nez, J. Gonzalez-Rodriguez, et al., “Automatic language identi-
fication using deep neural networks,” 2014, pp. 5337–5341.

 [21] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Batten-
berg, et al., “Deep Speech 2 : End-to-End Speech Recognition
in English and Mandarin.” pp. 173–182, 2016.

 [22] S.Ö. Arık, G. Diamos, A. Gibiansky, J. Miller, K. Peng, et al.,
“Deep Voice 2: Multi-Speaker Neural Text-to-Speech.”

 [23] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Far-
ley, et al., “Generative Adversarial Networks,” 2014.

 [24] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
et al., “Playing Atari with Deep Reinforcement Learning.”

 [25] K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition,” International Con-
ference on Learning Representations (ICRL), pp. 1–14, 2015.

 [26] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
2015.

 [27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning Re-
search, vol. 15, pp. 1929–1958, 2014.

 [28] S.J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no.
10, pp. 1345–1359, 2010.

 [29] A.L. Maas, A.Y. Hannun, and A.Y. Ng, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” Proceedings of the
30 th International Conference on Machine Learning, vol. 28,
p. 6, 2013.

 [30] A. Kwasigroch, A. Mikołajczyk, and M. Grochowski, “Deep
neural networks approach to skin lesions classification #x2014
– A comparative analysis,” in 2017 22nd International Con-
ference on Methods and Models in Automation and Robotics
(MMAR), 2017, pp. 1069–1074.

 [31] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in Proceedings of 2010
IEEE International Symposium on Circuits and Systems, 2010,
pp. 253–256.

 [32] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep
Residual Networks.”

 [33] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
arXiv preprint arXiv:1605.07146, 2016.

 [34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision.”

 [35] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image
steganalysis,” Multimedia Tools and Applications, pp. 1–17, 2017.

 [36] G. Huang, Z. Liu, L. van der Maaten, and K.Q. Weinberger,
“Densely Connected Convolutional Networks,” Aug. 2016.

 [37] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neu-
ral networks,” AISTATS ’11: Proceedings of the 14th Internation-
al Conference on Artificial Intelligence and Statistics, vol. 15,
pp. 315–323, 2011.

 [38] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of
rectified activations in convolutional network,” arXiv preprint
arXiv:1505.00853, 2015.

 [39] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and
S. Mougiakakou, “Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network,” IEEE trans-
actions on medical imaging, vol. 35, no. 5, pp. 1207–1216, 2016.

References

376

M. Grochowski, A. Kwasigroch, and A. Mikołajczyk

Bull. Pol. Ac.: Tech. 67(2) 2019

 [40] B.Q. Huynh, H. Li, and M.L. Giger, “Digital mammographic
tumor classification using transfer learning from deep convolu-
tional neural networks,” Journal of Medical Imaging, vol. 3, no.
3, p. 034501, 2016.

 [41] B. van Ginneken, A.A. Setio, C. Jacobs, and F. Ciompi, “Off-
the-shelf convolutional neural network features for pulmonary
nodule detection in computed tomography scans,” in Biomedical
Imaging (ISBI), 2015 IEEE 12th International Symposium on,
2015, pp. 286–289.

 [42] Y. Bar, I. Diamant, L. Wolf, S. Lieberman, E. Konen, et al.,
“Chest pathology detection using deep learning with non-med-
ical training,” in Biomedical Imaging (ISBI), 2015 IEEE 12th
International Symposium on, 2015, pp. 294–297.

 [43] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015,
pp. 3431–3440.

 [44] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, et al., “Snap-
shot ensembles: Train 1, get M for free,” arXiv preprint arXiv:
1704.00109, 2017.

 [45] T. Garipov, P. Izmailov, D. Podoprikhin, D.P. Vetrov, and
A.G. Wilson, “Loss Surfaces, Mode Connectivity, and Fast En-
sembling of DNNs,” arXiv preprint arXiv:1802.10026, 2018.

 [46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, et al., “Going
deeper with convolutions,” 2015.

 [47] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning, vol. 1. MIT press Cambridge, 2016.

 [48] C.M. Bishop, Pattern Recognition and Machine Learning. New
York: Springer, 2011.

 [49] A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, et al.,
“Dermatologist-level classification of skin cancer with deep neu-
ral networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

 [50] F. Nachbar, W. Stolz, T. Merkle, A.B. Cognetta, T. Vogt, et al.,
“The ABCD rule of dermatoscopy: high prospective value in the
diagnosis of doubtful melanocytic skin lesions,” Journal of the
American Academy of Dermatology, vol. 30, no. 4, pp. 551–559,
1994.

 [51] R.H. Johr, “Dermoscopy: alternative melanocytic algorithms
– the ABCD rule of dermatoscopy, menzies scoring method,
and 7-point checklist,” Clinics in dermatology, vol. 20, no. 3,
pp. 240–247, 2002.

 [52] J.S. Henning, S.W. Dusza, S.Q. Wang, A.A. Marghoob, H.S. Rab-
inovitz, et al., “The CASH (color, architecture, symmetry, and
homogeneity) algorithm for dermoscopy,” Journal of the Amer-
ican Academy of Dermatology, vol. 56, no. 1, pp. 45–52, 2007.

 [53] “ISIC Archive.” [Online]. Available: https://isic-archive.com/.
[Accessed: 10-Jan-2018].

 [54] “Edinburgh Innovations: Dermofit Image Library,” Edinburgh
Innovations, online licensing portal. [Online]. Available: https://
licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html.
[Accessed: 26-Apr-2018].

 [55] G. Argenziano, H.P. Soyer, V. De Giorgi, D. Piccolo, P. Carli,
et al., “Dermoscopy: a tutorial,” EDRA, Medical Publishing &
New Media, vol. 16, 2002.

 [56] T. Mendonça, P.M. Ferreira, J.S. Marques, A.R. Marcal, and
J. Rozeira, “PH 2-A dermoscopic image database for research
and benchmarking,” in Engineering in Medicine and Biology
Society (EMBC), 2013 35th Annual International Conference of
the IEEE, 2013, pp. 5437–5440.

 [57] A. Mikołajczyk, A. Kwasigroch, and M. Grochowski, “Intelli-
gent system supporting diagnosis of malignant melanoma,” in
Polish Control Conference, 2017, pp. 828–837.

 [58] F. Chollet and others, “Keras,” 2015.
 [59] A. Galdran, A. Alvarez-Gila, M.I. Meyer, C.L. Saratxaga, T. Araú-

jo, et al., “Data-Driven Color Augmentation Techniques for Deep
Skin Image Analysis,” arXiv preprint arXiv:1703.03702, 2017.

 [60] M. Grochowski, M. Wąsowicz, A. Mikołajczyk, M. Ficek,
M. Kulka, et al., “Machine Learning System For Automated
Blood Smear Analysis,” Metrology and Measurement Systems,
vol. 26, no. 1, 2019.

 [61] A. Mikołajczyk and M. Grochowski, “Data augmentation for
improving deep learning in image classification problem,” in
2018 International Interdisciplinary PhD Workshop (IIPhDW),
2018, pp. 117–122.

