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This paper presents the research studies carried out on the application of lattice Boltzmann method
(LBM) to computational aeroacoustics (CAA). The Navier-Stokes equation-based solver faces the dif-
ficulty of computational efficiency when it has to satisfy the high-order of accuracy and spectral reso-
lution. LBM shows its capabilities in direct and indirect noise computations with superior space-time
resolution. The combination of LBM with turbulence models also work very well for practical engineering
machinery noise. The hybrid LBM decouples the discretization of physical space from the discretization of
moment space, resulting in flexible mesh and adjustable time-marching. Moreover, new solving strategies
and acoustic models are developed to further promote the application of LBM to CAA.
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Nomenclature

Af – numerical flux,
Am – amplified factor,
a – differential scheme coefficient,
b – time discretization scheme coefficient,
cf – numerical flux,
c – dimensionless constant, time discretization scheme coef-

ficient,
E – total energy,
e – lattice velocity,
F – linear or non-linear function vector,
f – wave velocity, velocity distribution function,
f – solution vector,
g – intermediate solution vector,
h – total energy distribution function,
i – imaginary unit, index number,
j – index number,
k – wavenumber,
L – number of points left from a node,
M – matrix,
n – algebraic precision,
n – normal vector pointing outwards,
O – truncated term,

p – pressure,
Q – auxiliary variable,
R – number of points right from a node, gas constant,
r – particle position,
s – number of stage,
T – temperature,
t – time,
U – conservative variable vector,
u – macro velocity,
V – primitive variable,
W – magnitude variation,
x – component of coordinate system,
α – differential scheme coefficient,
β – coordinate transformation coefficient,
Ω – non-overlapping domain, non-linear collision operator,
ω – circular frequency,
ψ – basis/test function,
∆ – spacing, step,
σ – damping coefficient,
δ – Kronecker delta function,
ρ – density,
κ – thermal conductivity,
τ – viscous stress, relaxation time,
ξ – kinetic viscosity coefficient,
γ – specific heat ratio.
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Superscripts
eq – equilibrium distribution function,
n – number of time steps,

neq – non-equilibrium distribution function,
T – transposition,
′ – spatial derivative, perturbation,
– – volume averaged value, mean value,
∗ – numerical flux,
̂ – magnitude,
̃ – filtered variable.

Subscripts
a – acoustic mode,
B – bulk,
e – direction of east, Euler flux, entropy mode,
i – the i-th variable,
j – the j-th variable,
v – viscous flux,
w – direction of west,
α – lattice direction,
0 – uniform mean flow.

1. Introduction

1.1. Historical development of computational
aeroacoustics

Due to limited capability of theoretical analysis,
and huge cost and long periods of experimental in-
vestigation, numerical simulation has emerged as an
efficient alternative tool for various industrial applica-
tions. With the rapid development of computer power,
this trend is still upwards. When numerical simulation
is combined with aeroacoustics, the discipline is named
computational aeroacoustics (CAA).

CAA was formally brought forward on a workshop
in 1992 (Hardin, Hussaini, 1993). Before, the aeroa-
cousticians are devoted to developing acoustic analogy,
which was firstly proposed for jet noise (Lighthill,
1952). The acoustic analogy provides an exact govern-
ing equation of noise generation away from the flow
region. Then, Lighthill’s equation was generalized in
the presence of arbitrarily moving surfaces (Ffowcs
Williams, Hawkings, 1969). This is a major ad-
vance and the governing equation known as the FW-H
equation shows excellent performance in the predic-
tion of the noise of rotating blades such as pro-
pellers and helicopter rotors. To solve the FW-H
equation, many sophisticated algorithms have been
developed. The Farassat’s formulas are widely used
because of its exact derivation and simple format
(Farassat, 1981).

Besides the acoustic analogy, the compressible vari-
ables can be split into fluctuations and their incom-
pressible counterparts to evaluate noise propagation
(Hardin, Pope, 1994). This approach is similar to
the linearized Euler equations (LEE) with noise source
terms (Bailly, Juve, 2000). Methods based on Kirch-
hoff’s integral as well as boundary element method
combined with the acoustic Green’s function repre-

sent other alternatives (Freund et al., 1996; Manoha
et al., 1999).

The above-mentioned methods have certain fea-
tures in common. Given the input of aerodynamic
source in the near field, the output of sound in the
far field can be immediately obtained. However, the
drawback of these methods is obvious that:

a) they are unable to calculate the noise source,
b) the interaction between flow and sound has to be

significantly weak or negligible.
To overcome the problem, direct computation of

sound in both the near and far fields was proposed
by the aeroacousticians. The key issue is how to cap-
ture accurately the near field aeroacoustics, which is
discussed in the following Subsec. 1.2.

1.2. Recent development of computational
aeroacoustics

From the late eighties, computational fluid dynam-
ics (CFD) has been used to compute the acoustic
source. However, the attempt was a failure because the
underlying physics of aerodynamics and aeroacoustics
are significantly different. The acoustic fluctuation is
usually four orders of magnitude smaller than the mean
flow (Tam, 1995; Lele, 1997). In addition, the acous-
tic propagation is inherently with low dispersion, low
dissipation and long distance. CFD is more suited to
calculate steady or low frequency unsteady flows while
CAA is mostly used to compute unsteady flow noises
with large spectral bandwidth. Therefore, the recent
development of CAA is more on the following numeri-
cal aspects:

a) high-order of accuracy, low-dispersion and low-
dissipation (LDLD) spatial discretization sche-
mes,

b) LDLD and stable time-marching schemes,
c) linear or non-linear non-reflecting boundary con-

ditions (NRBC).
The nature description of aeroacoustics problems

is the Navier-Stokes equations (NSE). With different
ways of treating the spatial derivatives in NSE, the
spatial discretization is mainly partitioned into three
categories: finite difference method (FDM), finite vol-
ume method (FVM), and discontinuous Galerkin-finite
element method (DG-FEM). To compare these spatial
discretization methods in CAA, the first-order wave
equation is taken for example,

∂f

∂t
+ cf ′ = 0, (1)

where c is the dimensionless constant, the superscript
prime – spatial derivative. With the uniform grid as
shown in Fig. 1, the discretized forms of three meth-
ods are

FDM: f ′i +
R1

∑
j=L1

αjf
′
i+j =

1

∆x

R2

∑
j=L2

ajfi+j+O(∆xn), (2)
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FVM:
∂f

∂t
∆x + c [(Af)e − (Af)w] = 0, (3)

DG-FEM: ∫

Ωi

(
∂f

∂t
+ cf ′)ψ dx

= ∫

∂Ωi

n ⋅ [cf − (cf)
∗
]ψ dx, (4)

where L, R – number of points from the left and right
stencils to node i; α, a – differential scheme coefficients;
the bar – the volume averaged value; Af, cf – the nu-
merical fluxes; ∆x – the grid spacing; Ω – the non–
overlapping domain; n – the algebraic precision; n –
normal vector pointing outwards; ψ – basis/test func-
tions.

Fig. 1. Schematic of one-dimensional grid.

From Eq. (2), the Taylor/Fourier accuracy and nu-
merical stability of FDM are determined by the sten-
cil width and differential scheme coefficients. The flux
construction based on Eq. (3) determines the alge-
braic/spectral accuracy of FVM. From Eq. (4), both
the flux construction and test functions can determine
the characteristics of DG-FEM. Obviously, these free
parameters can be optimized to achieve better numer-
ical performance. Table 1 (see Appendix A) gives the
summaries of the main characteristics of three spatial
discretization methods, respectively.

Although many excellent schemes have been pro-
posed for spatial discretization, high-order formal ac-
curacy, LDLD property for high wavenumber resolu-
tion, unconditional stability, and low computational
cost have not yet been well satisfied. It still remains
a challenge for the NSE-based spatial discretization.
The resulting semi-discrete equation after spatial dis-
cretization is written

df
dt

= F(t, f), (5)

where f – the solution vector for f ; F – the linear or
non-linear function vector constructed from the spatial
discretization. It is common to use the Runge-Kutta
(RK) methods for time-marching that

f n+1
=f n +∆t

s

∑
i=1

bigi, (6)

gi=F
⎛

⎝
f n +∆t

s

∑
j=1

aijgj , t
n
+ ci∆t

⎞

⎠
, i = 1, ..., s, (7)

where ∆t – the time step; aij , bi, ci – the time dis-
cretization scheme coefficients. When aij = 0 for i ≤ j,

the RK scheme is explicit. The implicit RK scheme
requires non-zero aij for i ≤ j. Among them, diago-
nally implicit RK scheme satisfies aij = 0 for i < j.
Like the spatial discretization, the time discretization
scheme coefficients can be optimized to achieve the
LDLD property. The summaries of the main charac-
teristics of the RK methods are given in Table 2 (see
Appendix A).

High-resolution schemes do not guarantee high-
accuracy results because of unphysical reflections from
the artificial boundaries. NRBC plays a critical role in
CAA and the widely used is divided into three kinds:

a) Radiation boundary condition (RBC). It is based
on the asymptotic expansion technique. RBC
has been used for linear Euler equation, weakly
non-linear equation and convective wave equation
in exterior domains (Tam, Webb, 1993; Tam,
Dong, 1996; Hagstrom et al., 2003). RBC per-
forms relatively well only when the acoustic source
is far from the artificial boundary.

b) Characteristics boundary condition (CBC). It is
constructed from the eigenvalues of the Euler
equation or NSE (Thompson, 1987; Poinsot,
Lele, 1992). On the artificial boundary, local one-
dimensional inviscid (LODI) relation is assumed
and thus the acoustic wave propagates along the
normal direction. Whether the waves are ingo-
ing or outgoing is judged from the positive and
negative eigenvalues. The magnitude of ingoing
waves is set zero while the magnitude of outgo-
ing waves is interpolated from the interior domain.
Moreover, the multi-dimensional and viscous ef-
fects are supplemented (Yoo, Im, 2007; Lodato
et al., 2008).

c) Absorbing boundary condition (ABC). It adds
buffer zones to the outside of the original com-
putational domain. The flow field variables are
damped to the preset values within the buffer
zones to reduce the reflecting waves from the ori-
gin. Among ABC, perfectly matched layer (PML)
attracted much attention because it ensures the
consistent phase velocity and group velocity of
physical waves within the buffer zones. In addi-
tion, the wavenumbers besides the interface are
matched perfectly. PML was originally developed
for magnetic wave radiation, and later applied to
the Euler equation and NSE (Hu, 2008; Hu et al.,
2008).

1.3. Objective of this paper

So far, the spatial and temporal discretization
methods as well as boundary conditions for CAA have
concentrated on the solution of complete or simplified
NSE. The numerical aspects are highly advanced, but
some challenges still exists as discussed before. From
the nineties, lattice Boltzmann method (LBM) has
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emerged as an efficient tool for CFD. Much attention
has been drawn because its formulation is significantly
simple compared to the NSE-based methods such as
Eqs (2)–(4):

fα (r + eα∆t, t +∆t) = fα (r, t) +Ω (fα), (8)

where fα (the bracket is neglected for simplicity)
means the probability of finding a particle with the
α-th lattice velocity eα at position r at time t; Ω –
the non-linear collision operator. Obviously, the col-
lision process is local while the streaming process is
whole, which highly facilitates the implementation on
parallel processing systems. Moreover, the boundary
conditions including heuristic, kinetic and extrapola-
tion schemes are easy. LBM has been widely applied
to microfluidics, turbulence, multiphase flow, the sus-
pension of particles and deformable capsules. A review
of all publications pertaining to the LBM itself and its
application to CFD would go beyond our space limita-
tions. The interested readers are referred to the state-
of-the-art reviews (Chen, Doolen, 1998; Yu et al.,
2003; Hsu et al., 2004; Aidun, Clausen, 2010).

LBM has also been applied to CAA because of
its inherent high-resolution and efficiency, which will
be discussed in the following. Though its application
is still increasing, only the FDM-based LBM’s appli-
cation has been reviewed (Tsutahara, 2012). Con-
sequently, this paper will provide detailed discussion
and deep insight into the advantage and deficiency
of LBM’s applications as well as promising ways for
CAA. Due to different underlying equations of aeroa-
coustics, the LBM-based methods are partitioned into
two groups: direct acoustic computation with LBM
(Sec. 2) and acoustic model based on LBM (Sec. 3).
Finally, conclusions are drawn.

2. Direct acoustic computation with lattice
Boltzmann method

2.1. Low-dispersion and low-dissipation capabilities
of lattice Boltzmann method

Sound propagation simulations using lattice gas au-
tomata (LGA, the precursor of LBM) was firstly per-
formed (Sudo, Sparrow, 1995). One-dimensional and
two-dimensional lattices were developed to include dis-
sipation. It also has an anisotropic dispersion, which
increases with the increase of the propagating angle
from the coordinate axes.

However, LGA has two drawbacks: the small num-
ber of discrete velocities leads to the statistical noise;
the shear viscosity coefficient is limited to relatively
high values. The development from LGA to LBM has
gone through several stages. Although it was origi-
nally driven by its application to CFD, replacing LGA
with LBM for CAA was accompanied. It underlines the

LDLD capabilities of LBM to model the aeroacoustics
problems, which is highly pursued for the NSE-based
methods. Theoretical analysis and numerical tests have
been used for wave propagation, streaming and scatter-
ing, spectral properties and resolution as well as direct
and indirect models. Table 3 (see Appendix A) sum-
maries the properties of LBM and its modified schemes
for CAA.

The earlier analysis and validation of LBM for CAA
was mainly focused on the very low Mach number
flow sound. Since many applications involve acoustic
generation, propagation and scattering in compress-
ible flows, it is necessary to examine the dispersion and
dissipation relation of the compressible LBM. Here we
take a plane wave propagating in the perfect gas for
example. In order to obtain exact analytical solutions,
all quantities U = (ρ, ρu, ρv, ρw, ρE)T are firstly lin-
earized as follows

U = U0 +U′, (9)

where the subscript 0 means the uniform flow, and the
prime means the small amplitude perturbation. We ne-
glect the second-order terms in the linearized equation
to obtain

∂U′

∂t
+
∂ [E′

e−E′
v]

∂x
+
∂ [F′

e−F′
v]

∂y
+
∂ [G′

e−G′
v]

∂z
=0, (10)

where the subscripts e and v indicate the Eulerian flux
and viscous flux, respectively. The perturbation vector
and six fluxes are given as follows

U′
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ′

ρ0u
′

ρ0v
′

ρ0w
′

ρ0E
′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E′
e =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ′u0 + ρ0u
′

ρ0u0u
′ + p′

ρ0u0v
′

ρ0u0w
′

(ρ0E
′ + p′)u0 + p0u

′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

F′
e =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ′v0 + ρ0v
′

ρ0v0u
′

ρ0v0v
′ + p′

ρ0v0w
′

(ρ0E
′ + p′) v0 + p0v

′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

(11)

G′
e =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ′w0 + ρ0w
′

ρ0w0u
′

ρ0w0v
′

ρ0w0w
′ + p′

(ρ0E
′ + p′)w0 + p0w

′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E′
v =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

τ ′xx
τ ′yx
τ ′zx

τ ′xxu0 + τ
′
yxv0 + τ

′
zxw0 + κ

∂T ′
∂x

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

(12)
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F′
v =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

τ ′xy
τ ′yy
τ ′zy

τ ′xyu0 + τ
′
yyv0 + τ

′
zyw0 + κ

∂T ′
∂y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G′
v =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

τ ′xz
τ ′yz
τ ′zz

τ ′xzu0 + τ
′
yzv0 + τ

′
zzw0 + κ

∂T ′
∂z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(13)

where κ – the thermal conductivity. The linearized
stress tensor is given

τ ′ij = ρ0ξ (
∂u′i
∂xj

+
∂u′j
∂xi

−
2

3

∂u′k
∂xk

δij) + ρ0ξB
∂u′k
∂xk

δij , (14)

where ξ – the shear kinetic viscosity coefficient; ξB
– the bulk kinetic viscosity coefficient. To complete
Eq. (10), the perfect gas satisfying p = ρRgT is used.
Then by neglecting the second-order terms, the per-
turbed pressure and the perturbed total energy are
obtained as follows

p′ = ρ′RgT0 + ρ0RgT
′, (15)

E′
=

1

γ − 1
RgT

′
+ u0u

′
+ v0v

′
+w0w

′, (16)

where γ – the specific heat ratio. Inserting Eqs (11)–
(16) into Eq. (10), we can easily rewrite it as the fol-
lowing matrix form

∂U′

∂t
+ME

∂U′

∂x
+MF

∂U′

∂y
+MG

∂U′

∂z
= 0, (17)

where ME, MF, and MG are the resulting matrices
(see Appendix B). The solutions for plane wave are
usually written in the vector form

U′
=( ρ̂′ ρ0û′ ρ0v̂′ ρ0ŵ′ ρ0Ê′ )

T
exp [i (k ⋅ x−ωt)], (18)

where the accent indicates the complex values. Insert-
ing Eq. (18) into Eq. (17) leads to the general eigen-
value problem

ωU′
= (kxME + kyMF + kzMG)U′. (19)

Then the analytical solutions of Eq. (19) are readily
obtained (see Appendix B).

Next, we examine the spectral properties of the
discrete-velocity Boltzmann equation. For compress-
ible flows, the DDF discrete-velocity Boltzmann equa-
tion is usually used. The gas equation of state and the

kinetic viscosity can be exactly recovered from the fol-
lowing equations with the Chapman-Enskog expansion

∂fα
∂t

+ eα ⋅ ∇fα =
1

τf
(f eq
α − fα) ,

∂hα
∂t

+ eα ⋅ ∇hα =
1

τh
(heq
α − hα) (20)

−
1

τfh
(eα ⋅ u) (f eq

α − fα) ,

where hα – the total energy distribution function;
τf , τh, τfh – the relaxation times; the superscript eq
indicates the equilibrium distribution function. The
D3Q25 lattice model is used and the relaxation times
satisfy: 1/τfh = 1/τh−1/τf (He et al., 2009). Similar to
the decomposition of Eq. (9), the distribution function
is divided into a uniform mean part and a fluctuating
part that

fα = f (0)α + f ′α,

hα = h(0)α + h′α.
(21)

Since the equilibrium distribution functions in
Eq. (20) are still non-linear, it is difficult to conduct lin-
ear analysis. However, the Taylor expansion is adopted
for the equilibrium distribution functions that

f eq
α = f eq,(0)

α +
∂f eq

α

∂fβ
∣
fβ=f(0)β

f ′β +O ((f ′α)
2
),

heq
α = heq,(0)

α +
∂heq

α

∂hβ
∣
hβ=h(0)β

h′β +O ((h′α)
2
).

(22)

With the chain rule and moment conservation, the
two partial derivatives in Eq. (22) can be immediately
obtained as follows

∂f eq
α

∂fβ
=
∂f eq

α

∂ρ
+
∂f eq

α

∂u

eβx − u

ρ

+
∂f eq

α

∂v

eβy − v

ρ
+
∂f eq

α

∂w

eβz −w

ρ
, (23)

∂heq
α

∂hβ
=
∂heq

α

∂E

1

ρ
.

The fluctuating parts for both distribution func-
tions are also written in the wave form like Eq. (18)
that

( f ′α h′α )
T
= ( f̂ ′α ĥ′α )

T
exp [i (k ⋅ x − ωt)]. (24)

Inserting Eq. (22) and Eq. (24) into Eq. (20) and
neglecting the second-order terms result in the linear
equation:

ω (
f ′

h′ ) = (
Mf 0
Mfh Mh

)(
f ′

h′ ), (25)
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where Mf , Mh, Mfh – the components of eigenvalue
matrix. These three matrices are

(Mf)αβ = k ⋅ eαδαβ + i
1

τf
(
∂f eq

α

∂fβ
− δαβ), (26)

(Mh)αβ = k ⋅ eαδαβ + i
1

τh
(
∂h eq

α

∂hβ
− δαβ), (27)

(Mfh)αβ = − i
1

τfh
(eα ⋅ u0)(

∂f eq
α

∂fβ
− δαβ). (28)

The explicit exact solutions of Eq. (19) and Eq. (25)
is too lengthy to write down. But, the eigenvalues
depend on these parameters, namely, the relaxation
times, the wavenumber vectors and the mean flow
parts. Since the lattice model D3Q25 is irregular,
Eq. (20) has to be solved with FDM, FVM or DG-FEM
instead of the standard collision and streaming steps.
Then the more effective dispersion and dissipation re-
lation of compressible LBM has to be analyzed by com-
bining Eqs (2)–(4), which will be illustrated in the fu-
ture paper.

2.2. Aeroacoustics engineering applications
of lattice Boltzmann method

From Subsec. 2.1, it is clearly seen that the intrinsic
LDLD properties of LBM drives it an advanced tool
for CAA. In this subsection, we review the practical
engineering applications of LBM as well as its further
improvement. Since the turbulence is usually involved
in the sound source zone, it needs additional models
for complete simulation. Compared to the NSE-based
methods, LBM provides a convenient way to include
the turbulence effect. By the Boussinesq assumption,
the Reynolds/subgrid stress is expressed as the laminar
viscosity stress, which treats the turbulence effect as
certain viscosity. Consequently, the turbulent kinetic
viscosity is easily incorporated into the collision model
in Eq. (8).

The unsteady Reynolds-Averaged Navier-Stokes
(URANS) model takes the phase average of the flow
field, which can capture tones but neglect the broad-
band characteristics of the fluctuating information.
Large eddy simulation (LES) model takes the space
average of the flow field with the filter functions.
The accuracy of LES depends on the filter width,
which is more controllable than URANS. Even for
the NSE-based CAA, LES shows better performance
than URANS. From the following summary (Table 4,
see Appendix A), the combination of LBM with LES
model is more frequent. The engineering applications
are more concentrated on the machinery noise, like the
airframe noise, the rotor-stator tonal noise, and the jet
noise.

LBM combined with turbulence models has been
widely used for CAA. This trend is still upwards be-

cause of its faster computation compared to the NSE-
based methods. From Eq. (8), LBM is essentially a La-
grangian meshless method. Moreover, all particles obey
the same streaming rule, which transports one parti-
cle to its neighbors. The streaming process requires
uniform square mesh at unit CFL number such that
both (r + eα∆t) and (r) reside on the nodal points of
the mesh, which is inherited from LGA. However, this
brings some inherent disadvantages:

a) the approximation to the curved boundary is
low-order. The boundary shape for computation
becomes a ladder, which may lose certain true
physics,

b) the time step is fixed and small. The stream-
ing step requires that the particles pass to the
neighbors with different lattice velocities during
one time step. For high Reynolds number flow,
the lattice length is significantly small, so is the
time step. Therefore, the step number for time-
marching has to be very large,

c) the lattice length is identical over the whole com-
putational domain. This could lead to huge de-
grees of freedom. Compared to the NSE-based
methods, the excellent acceleration of LBM on
parallel systems is counteracted to some extent.
For the far acoustic field, the low frequency wave
is dominated that using the same degrees of free-
dom as the near hydrodynamic field is a waste of
computing resource.

In recent years, several efforts have been made to
address the above problems because the discretization
of physical space does not necessarily need to couple
with the discretization of moment space (He, Luo,
1997). Abandoning the collision and streaming steps,
the researchers can solve the original discrete-velocity
Boltzmann equation like Eq. (20) with various NSE-
based methods, namely, FDM, FVM and FEM. Actu-
ally, these approaches are hybrid LBM and the char-
acteristics of them is summarized in Table 5 (see Ap-
pendix A). We also abandon the standard streaming
step in Eq. (8). The alternative way is to solve the
following equivalent pure advection equation

∂fα
∂t

+ eα ⋅ ∇fα = 0. (29)

Here we take the combination of LBM with
DG-FEM for example (Shao, Li, 2018a). The key of
the combination is the construction of the Lagrange-
Euler frame. The collision step is maintained within
the Lagrange coordinate system while the streaming
step is solved within the Euler coordinate system. The
one-dimensional form of Eq. (29) in one lattice direc-
tion is equivalent to Eq. (1). Thus, the DG-FEM form
of Eq. (29) is analogy to Eq. (4). Obviously, the LDLD
properties of the standard streaming step have also
been changed. The traditional schemes in Table 1 (see
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Appendix A) as well as advanced interface fluxes can
be used to increase the spectral resolution and LDLD
properties. The brought advantage of the combination
is the geometry adaptivity and flexible hp technology.

Actually, more than just releasing the streaming
step, we also can release the collision step. With the
Strang splitting method, the equation for velocity dis-
tribution function in Eq. (20) can be split into Eq. (29)
and the following one

∂fα
∂t

=
1

τf
(f eq
α − fα) . (30)

Similarly, the above equation can be solved with
FDM, FVM or DG-FEM. It is worth noting that the
right hand side of Eq. (30) is significantly stiff because
of the very small value of the relaxation time. For
the semi-discrete form of Eq. (30), the time-marching
schemes should be carefully chosen. The TVD, expo-
nential or SSP properties in Table 2 (see Appendix A)
are more suitable here for the temporal discretization.

The resulting equation for Eq. (29) or Eq. (30) af-
ter spatial discretization is the same as Eq. (5). Gener-
ally, the right hand side of Eq. (29) and Eq. (30) does
not explicitly contain time. Further assuming that the
semi-discrete operator of Eq. (5) is linear, substituting
Eq. (6) and Eq. (7) into Eq. (5) yields

fn+1
α = fnα +∆t

s

∑
i=1

bigi, (31)

gi =
∂fnα
∂t

+∆t
s

∑
j=1

aij
∂gj
∂t

, i = 1, ..., s. (32)

Considering the Fourier components in Eq. (24),
the above two formulas can be rewritten as follows

f̂
n+1

α = f̂
n

α +∆t
s

∑
i=1

biĝi, (33)

ĝi = −iω̂f
n

α − iω∆t
s

∑
j=1

aij ĝj , i = 1, ..., s. (34)

To evaluate the amplitude error and phase error of
different RK schemes, an amplified factor is defined as

Am (ω∆t) =
f̂
n+1

α

f̂
n

α

. (35)

From Eq. (24), the exact solution of Am is
exp[− iω∆t]. The numerical solution of Am for the
RK scheme can be obtained by solving Eq. (33) and
Eq. (34).

Figure 2 shows the comparison of amplified factors
between various RK schemes. The more the amplitude
of the amplified factor approaches unit, the less dissipa-
tive the RK scheme is. In addition, the more the phase
error of the amplified factor approaches zero, the less

a)

b)

Fig. 2. Comparison of the amplified factors for differ-
ent RK schemes: a) magnitude of Am, b) phase error
of Am. In the legend: CLEX, DIIM, IMEX, SSPL, and
LDDL means the classical explicit scheme, diagonally im-
plicit scheme, implicit-explicit scheme, SSP and low storage
scheme, and LDLD and low storage scheme, respectively.
The first and second numbers indicate the number of stages
and the precision accuracy. For example, CLEX33 repre-
sents the three-stages and third-order classical explicit RK
scheme. The detailed RK coefficients are referred to the

(Shao, Li, 2018a).

dispersive the RK scheme is. It is obviously seen that
LDDL52 and LDDL62 performs the best. The crite-
ria to access the accuracy limit for the RK schemes is
defined as follows

1 − ∣Am (ω∆t)∣ ≤ 5 ⋅ 10−4

or ∣ω∗∆t + ω∆t∣/π ≤ 5 ⋅ 10−4.
(36)

Then, the minimum periodicity for LDDL52 corre-
sponds to 4.27∆t or 4.45∆t while the minimum perio-
dicity for LDDL62 corresponds to 3.29∆t or 4.11∆t.
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In the future, the coupling methods may be more
favorable. As the geometry and physical scales in the
aeroacoustics engineering applications become more
and more complicated, it is very difficult to gather all
strong points like the LDLD property, high efficiency
and so on by one single method. It is suggested that
the standard LBM be adopted in the main flow region
while the combination of LBM with the NSE-based
methods be adopted in the boundary layer or com-
plex flow/acoustics region. This strategy makes use of
the quick calculation of LBM and the flexibility of the
combination (of LBM with the NSE-based methods),
as shown in Fig. 3. The data exchange between differ-
ent methods as well as the optimization of the interface
location should be pay close attention to.

Fig. 3. Schematic of aircraft frame noise prediction us-
ing the coupling methods. The shadow region indicates
where the combination of LBM with DG-FEM is used. The
white area bounded with zigzags indicates where the stan-

dard LBM is used.

Besides the coupling algorithm, the turbulence
models suitable for LBM need further study. So far,
all turbulence models have been developed from NSE.
For the kinetic method, the turbulence models may be
developed from the Boltzmann equation itself, which
would promote the ability of LBM.

3. Acoustic model based on lattice
Boltzmann method

In Sec. 2, the macroscopic equations recovered
from LBM is the Euler equation or incompress-
ible/compressible NSE. Once the boundary conditions
and the initial conditions are given, LBM can be self-
starting and the unsteady hydrodynamic and aeroa-
coustics results would be finally obtained. Most results
are well explained as long as the mesh and turbulence
models are appropriate.

However, for the Euler equation or NSE with acous-
tic source terms, it is wrong to implement the standard
LBM. The new acoustic model has to be constructed
based on LBM. Even for aeroacoustics problems with-
out given sources, the acoustic boundary condition,

i.e. NRBC, has to be constructed within the standard
LBM framework. Thus, in this section we review the
recent acoustic models based on LBM and give the po-
tential methods to overcome the issue.

For monopole source, an easy and convenient way
is replacing the velocity distribution function with its
equilibrium distribution function, where the oscillat-
ing density is specified (Xu et al., 2012). However, the
underlying flow is unphysically disturbed because the
information contained in the non-equilibrium distribu-
tion functions is lost and overwritten at the node. In
addition, it is impossible to extend it to the quadrupole
source. The acoustic multiple source is implemented by
adding an oscillating particle source term to the LBM
equation, i.e. Eq. (8) (Viggen, 2013). When the source
strength goes to zero, the source term naturally van-
ishes. But, the quadrupole strength is nonzero in the
inviscid limit because of a fortuitous discretization
error in the LBM. The analysis of LBM for linear
acoustic waves is further done (Dhuri et al., 2017).
It is found that the LBM’s performance is comparable
to the classical second-order finite difference schemes.
The numerical dispersion is most inaccurate if the wave
is propagating along the lattice direction. Recently, the
acoustic multiple source method is developed to re-
move the dependency of the quadrupole source upon
the fortuitous discretization error (Zhuo, Sagaut,
2017). It is demonstrated that the regularized method
with the regularized finite difference scheme can be
used to simulate the acoustic problems very well.

The construction of acoustic multiple source is
concentrated on the incompressible LBM. Obviously,
the extension of acoustic multiple source method to the
compressible LBM can be done in the future.

Whether the recovered equations from LBM are
with or without multiple source terms, the LBM
scheme has to be implemented with NRBC. NRBC al-
lows the acoustic waves to go through the truncated
boundaries without reflection and thus reduces the
computational domain.

CBC firstly applied to LBM works well for one-
dimensional flow but not for two-dimensional case
of vortex shedding (Izquierdo, Fueyo, 2008). The
problem was overcome by including the transverse
terms with a convex combination in the CBC equa-
tions (Heubes et al., 2014). The extensions of con-
ventional CBC to LBM lead to many spatial and tem-
poral derivatives. This would introduce additional dis-
cretization error and decrease the numerical stability.

When the outgoing or incoming wave reaches the
boundary, it is decomposed into the normal com-
ponent and the tangential component, as illustrated
in Fig. 4. The tangential component is maintained
throughout. The normal component of the outgoing
wave is maintained while the normal component of
the incoming wave is diminished. Whether the nor-
mal component is incoming or not is judged from the
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Fig. 4. Schematic of characteristic boundary condition.

characteristic theory. Since the characteristic theory is
established for the hyperbolic system, the Euler equa-
tion has to be recovered on the boundary.

The Euler equation is written in the primitive vari-
able vector as follows

∂V
∂t

+A
∂V
∂x

+B
∂V
∂y

+C
∂V
∂z

= 0, (37)

where V – the primitive variable, V = [ρ, u, v,w]T. The
coefficient matrices are

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u ρ 0 0

ρ−1c2s u 0 0

0 0 u 0

0 0 0 u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v 0 ρ 0

0 v 0 0

ρ−1c2s 0 v 0

0 0 0 v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 ρ

0 w 0 0

0 0 w 0

ρ−1c2s 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(38)

Their diagonalization are

R−1AR = L, S−1BS = M, T−1CT = N, (39)

where L, M, N – the eigenvalue matrices. These ma-
trices can be easily obtained

L = diag (u − cs, u, u, u + cs) ,

M = diag (v − cs, v, v, v + cs) ,

N = diag (w − cs,w,w,w + cs) .

(40)

The positive eigenvalue indicates waves propagating in
the positive x/y/z direction while the negative eigen-
value indicates waves propagating in the negative
x/y/z direction. The direction of waves on the bound-
ary can be immediately determined. From Eq. (39),
the magnitude variation vectors are defined as

Wx = LR−1 ∂V
∂x

, Wy = MS−1 ∂V
∂y

,

Wz = NT−1 ∂V
∂z

.

(41)

Inserting Eq. (41) into Eq. (37) yields

∂V
∂t

+RW̃x + SW̃y +TW̃z = 0, (42)

where the wavy line means the filtered variables. The
components of the filtered values are set to zero when
the normal components are the incoming waves. There-
fore, the controlling equation for CBC is Eq. (42).
Moreover, LBM provides an easy way to implement
CBC. The distribution functions are taken as their
equilibrium distribution functions, where primitive
variables are obtained from Eq. (42).

Besides the application of CBC to LBM, ABC has
been applied to LBM. Adding a friction term to the
discrete-velocity Boltzmann equation works well for
simple test cases (Kam et al., 2015). Then, the the-
oretical analysis of choosing the reference distribution
functions was provided (Xu, Sagaut, 2013). Although
an optimal absorbing strategy shows effective perfor-
mance for vortical flows, the friction term could not
guarantee the match of wave numbers at the interface
between the interior domain and the sponge layer.

Based on the PML concept, a lattice Boltzmann
model was developed for acoustic waves normally in-
cident to the interface (Tekiteck et al., 2009). The
discrete-velocity Boltzmann equation can be recast in
terms of perturbation components with the pseudo
mean flow (Craig, Hu, 2010). The pseudo mean flow
satisfies:

a) the steady Euler equation,
b) it is aligned with one of the Cartesian coordinates.

The stability region can be determined with
the Von Neumann analysis. Abandoning the above
condition (b), an ABC model was introduced and
a linear homogeneous hyperbolic system was ob-
tained (Nayafi-Yazdi, Mongeau, 2012). A complete
second-order temporal discretization of the result-
ing formulation with DG-FEM was further achieved
(Shao, Li, 2018b).

Figure 5 illustrates the schematic of PML, which
damps the outgoing waves in the buffer zone and
matches the wavenumbers at the interface. Within the
PML, more than the acoustic perturbation is absorbed.
The velocity distribution function in Eq. (20) is firstly
decomposed into an equilibrium equation and a non-
equilibrium equation:

∂f eq
α

∂t
+ eα ⋅ ∇f eq

α = 0,

∂f neq
α

∂t
+ eα ⋅ ∇f neq

α = −
f neq
α

τf
,

(43)

where the superscript neq represents the non-equi-
librium distribution function. Invoking the concept of
time-independent pseudo mean flow, the equilibrium
distribution function is partitioned into

f eq
α = f

eq

α (ρ,u) + f ′α
eq. (44)
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Fig. 5. Schematic of perfectly matched layer.

The only requirement for pseudo mean flow is

eα ⋅ ∇f
eq

α = 0. (45)

Using the Chapman-Enskog expansion again, the
steady Euler equation is recovered. Since the pseudo
mean flow is not unique, it could be chosen as accurate
as possible to resemble the actual mean flow. Subtract-
ing Eq. (45) from the Eq. (43) results in

∂f ′α
eq

∂t
+ eα ⋅ ∇f ′α

eq
= 0. (46)

The above equation can be transformed in the fre-
quency domain with the unsplit form as in the (Shao,
Li, 2018a)

− iωf̂ ′
α

eq
+

eαx
ω + iσx

∂f̂ ′
α

eq

∂x
+

eαy

ω + iσy

∂f̂ ′
α

eq

∂y

+
eαz

ω + iσz

∂f̂ ′
α

eq

∂z
= 0, (47)

where σx, σy, σz – the positive damping coefficients.
Introducing the following two auxiliary variables,

P̂α =
i

ω
f̂ ′
α

eq, Q̂α =
i

ω
P̂α, (48)

Eq. (47) can be rewritten as

−iωf̂ ′
α

eq
+ eα ⋅ ∇f̂ ′

α
eq

= − (σx + σy + σz) f̂
′
α

eq

− (σxσy + σxσz + σyσz) P̂α

−eαx (σy + σz)
∂P̂α
∂x

−eαy (σx + σz)
∂P̂α
∂y

−eαz (σx + σy)
∂P̂α
∂z

−eαxσyσz
∂Q̂α
∂x

− eαyσxσz
∂Q̂α
∂y

−eαzσxσy
∂Q̂α
∂z

−σxσyσzQ̂α. (49)

With the inverse Fourier transform, Eq. (49) can
be written into the time domain. Adding the non-
equilibrium distribution function in Eq. (43) and
Eq. (45) to the transformed equation yields

∂fα
∂t

+ eα ⋅ ∇fα = − (σx + σy + σz) f
′
α

eq

− (σxσy + σxσz + σyσz)Pα

+
f eq
α − fα
τf

− eαx (σy + σz)
∂Pα
∂x

−eαy (σx + σz)
∂Pα
∂y

−eαz (σx + σy)
∂Pα
∂z

−eαxσyσz
∂Qα
∂x

− eαyσxσz
∂Qα
∂y

−eαzσxσy
∂Qα
∂z

− σxσyσzQα. (50)

The auxiliary variables Eq. (48) can also be written
into the time domain

∂Pα
∂t

= f ′α
eq,

∂Qα
∂t

= Pα. (51)

The ABC Eq. (50) is marched with the standard LBM
or the NSE-based methods.

So far, respective studies for CBC and ABC applied
to LBM have been done (Heubes et al., 2014; Nayafi-
Yazdi, Mongeau, 2012; Shao, Li, 2018a). The influ-
ences of free parameters in the controlling equations on
the NRBC performance have been discussed in detail.
CBC applied to LBM still suffers from the conventional
corner problems. The reason for the unphysical reflec-
tions around the corner zones has not been clarified
yet. Both the LODI assumption and the information
loss of non-equilibrium distribution functions at the
boundary may cause the corner problems. The com-
parison of CBC and ABC applied to the incompres-
sible LBM has been done (Stoll, 2014). It was shown
that PML combined with LBM had better NRBC per-
formance than CBC combined with LBM.

However, PML applied to LBM also has some
defects. Firstly, the turbulence intensity at the inlet
or outlet can not be considered because the turbulent
fluctuation is gradually damped to the given pseudo
mean flow in the PML zone. Secondly, it increases the
computational cost because of the auxiliary equations
and the extended computational domain. Thirdly,
the absorption only works for acoustic fluctuation
when the mean flow is not aligned with one of the
coordinates.

The first and second defects of PML applied to
LBM are intrinsic while the third defect can be
amended. As shown in Fig. 6, the mean flow is ar-
bitrary and the absorption should work for all hydro-
dynamic and aeroacoustics fluctuations. The compu-
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Fig. 6. PML constructed with arbitrary mean flow.

tational instability results from the inconsistent phase
velocity and group velocity of hydrodynamic waves
(Hu, 2008). In order to remove the inconsistency, a new
space-time transformation is introduced in the follow-
ing.

Subtracting Eq. (45) from Eq. (43) results in

∂f ′α
∂t

+ eα ⋅ ∇f ′α = −
f neq
α

τf
. (52)

The difference between Eq. (46) and Eq. (52) is the
velocity distribution functions to be damped. Equa-
tion (46) focuses on the absorption of fluctuating equi-
librium velocity distribution function while Eq. (52)
concentrates on the absorption of fluctuating velocity
distribution function. Consequently, PML constructed
from Eq. (46) is deemed at the Euler level while PML
constructed from Eq. (52) is deemed at the NSE level.

Taking the two-dimensional PML constructed in
the x direction for example, the space-time transfor-
mation is

x̃ = x,

t̃ = t + βxx, βx =
Ux

c2s −U
2

x

,

ỹ = y −Uyt,

(53)

that gives
∂

∂x
=
∂

∂x̃
+ βx

∂

∂t̃
,

∂

∂t
=
∂

∂t̃
−Uy

∂

∂ỹ
,

∂

∂y
=
∂

∂ỹ
.

(54)

Substituting Eq. (54) into Eq. (52) yields

(1 + βxeαx)
∂f ′α
∂t̃

+ eαx
∂f ′α
∂x̃

+ (eαy −Uy)
∂f ′α
∂ỹ

= −
f neq
α

τf
. (55)

Similar to Eq. (47), Eq. (55) is written in the frequency
domain with the unsplit form

−iω (1 + βxeαx) f̂
′
α +

eαx
1 + iσxω−1

∂f̂ ′
α

∂x̃

+ (eαy − Ūy)
∂f̂ ′

α

∂ỹ
= −

f̂ neq
α

τf
. (56)

With the following auxiliary variables

P̂α =
i

ω
f̂ ′
α, Q̂α =

i

ω
f̂ neq
α . (57)

Using again the Fourier transform and Eqs (54), (56)
and (57) can be written in the time domain

∂fα
∂t

+ eα ⋅ ∇fα + (1 + βxeαx)σxf
′
α

+ (eαy −Uy)σx
∂Pα
∂ỹ

+
σx
τf
Qα = −

f neq
α

τf
, (58)

∂Pα
∂t

+Uy
∂Pα
∂y

= f ′α,
∂Qα
∂t

+Uy
∂Qα
∂y

= f neq
α . (59)

Similarly, the PML in the y direction and corner
can be easily constructed. Moreover, the numerical sta-
bility of PML applied to LBM needs further analysis
and the involved free parameters can be reasonably
chosen.

4. Conclusions and final remarks

The review of literature shows that the acoustic
analogy does not allow us to calculate the noise source
or the interaction between flow and noise. Aeroacousti-
cians tried to compute directly flow noise with the com-
mon computational fluid dynamics methods, but failed
because of the significant difference between aerody-
namics and aeroacoustics. Sound is about four orders
of magnitude lower than the mean pressure, with high
bandwidth and long propagation distance. It requires
that schemes used to solve the controlling equation be
absolutely non-dispersive and non-dissipative.

The requirement is almost unreasonable consider-
ing the limited computational resources. Consequently,
the spatial and temporal discretization has to be at
least low-dispersive and low-dissipative (LDLD). The
widely used methods (FDM, FVM and DG-FEM) in
solving the Navier-Stokes equation (NSE) need opti-
mization, mainly in terms of stencil width, differential
scheme coefficient, flux construction and test functions.
Many excellent schemes are discussed in Tables 1 and 2
(see Appendix A). The general principle is to decrease
the magnitude error and phase error (of numerical
schemes themselves) as much as possible. Meanwhile,
the computational stability has to be maintained.

It is unfortunate that the computational efficiency
is highly reduced when the NSE-based methods sat-
isfy the LDLD property. The situation is remedied to
a great extent by lattice Boltzmann method (LBM)
because the LDLD property is inherent. For a given
dispersion error, LBM is faster than the high-order
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NSE-based schemes (Marie et al., 2009). A choice of
12–16 points per wavelength leads to reasonable nu-
merical losses about 0.068 dB per wavelength (Bres
et al., 2009). The capabilities of direct and indirect
models applied to computational aeroacoustics (CAA)
are demonstrated based on rigorous tests with wave
generation, propagation, streaming and scattering.

LBM also shows its potential in engineering ma-
chinery noise. In order to include the turbulence ef-
fect, several turbulence models are incorporated into
LBM. The implementation is quite easy just by replac-
ing the laminar viscosity with the equivalent viscosity.
In addition, the large eddy simulation (LES) subgrid
model is more frequently adopted because it is time
accurate for the small scale turbulence structure. For
many examples in Table 4 (see Appendix A), both the
near hydrodynamic field and far acoustic field are ac-
curately simulated. The numerical results from LBM
match well with theoretical analysis, high-order NSE-
based results or experiments.

LBM is essentially a Lagrangian meshless method
in that all particles obey the same streaming rule in-
herited from lattice gas automata (LGA), which re-
quires regular mesh at unit CFL number. However,
this brings some limitations that the approximation to
the curved boundary is low-order and the step number
for time-marching has to be very large. Moreover, the
lattice length is identical over the whole computational
acoustic domain, leading to huge degrees of freedom.
Actually, the discretization of physical space does not
necessarily need to couple with the discretization of
moment space (He, Luo, 1997). Various NSE-based
methods are adopted to solve the original discrete-
velocity Boltzmann equation, which is the so-called
hybrid LBM in Table 5 (see Appendix A).

Appendix A
Table 1. Summary of three spatial discretization methods’ characteristics.

Method Numerical scheme Accuracy/stability Description

FDM Compact (Lele, 1992) Spectral-like behavior. It improves representation of a range
of wavenumbers rather than accurate
resolution of a single wave.

Disperison-Relation-Preserving
(DRP) (Tam, Webb, 1993)

Significant increase of the spectral
resolution compared to the standard
difference schemes.

It is guaranteed that the computed
wave speeds, dispersion and isotropy
are the same as those of the original
partial derivative.

Optimized Compact
(Kim, Lee, 1996)

Multi-diagonal with high-order and
high-resolution.

The phase errors are minimized in the
wavenumber domain.

Shock-fitting
(Zhong, 1998)

Less dissipative and high-order. It adopts an upwind-bias grid stencil,
and a high-order shock-fitting formu-
lation.

Optimized upwind DRP
(Zhuang, Chen, 1998)

Much smaller dispersive and dissipa-
tive errors.

It improves the quality of numerical
solutions without adding artificial se-
lective damping terms.

Compact spectral
(Lee, Seo, 2002)

Wave resolution errors uniformly di-
stributed in the wavenumber space.

An optimization in the wavenumber
space does not guarantee the best per-
formance.

Acoustic models based on LBM are divided into
two kinds: model with acoustic multiple source and
model combined with NRBC. The key of the first
kind model is removing the dependency of the
quadrupole source upon the fortuitous discretization
error (Zhuo, Sagaut, 2017). It is demonstrated that
the regularized method with the regularized finite dif-
ference scheme can be used to simulate the acoustic
problems very well. The second kind model is also par-
titioned into two kinds: CBC-LBM and ABC-LBM.
CBC-LBM suffers from the conventional corner prob-
lems. Both the LODI assumption and the information
loss of non-equilibrium distribution functions at the
boundary may be the cause. For the case of low Mach
number flow sound, ABC-LBM has better NRBC per-
formance than CBC-LBM (Stoll, 2014). However,
the turbulence intensity at the inlet or outlet can
not be considered because the turbulent fluctuation
is gradually damped to the given pseudo mean flow in
the PML zone.

The authors try to present solving strategies and
acoustic models to promote the application of LBM
to CAA. The exact solution of plane wave propaga-
tion in compressible flows is obtained as Eq. (19).
The dispersion and dissipation relation of compress-
ible DDF LBM is examined. The standard streaming
step can be released with the replace of DG-FEM (for
the equivalent advection equation) to achieve the ge-
ometry adaptivity and flexible hp technology (Shao,
Li, 2018a). A coupling algorithm is proposed to make
use of the quick calculation of LBM and the flexibility
of combination (of LBM with the NSE-based meth-
ods). ABC with arbitrary mean flow based on per-
fectly matched layers at the Navier-Stokes level is de-
veloped.
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Table 1. [Cont.]

Method Numerical scheme Accuracy/stability Description

Optimized prefactored compact
(Ashcroft, Zhang, 2003)

Matching of their dispersion charac-
teristics with those of central com-
pact schemes.

It requires very small stencil support
by splitting central implicit schemes
into forward and backward biased op-
erators.

Non-centered FDM and selec-
tive filters
(Berland et al., 2007)

Highly accurate for waves with at
least five points per wavelength.

It minimizes the dispersion and dissi-
pation errors with the maximum order
of accuracy.

FVM Optimized compact-difference-
based
(Gaitonde, Shang, 1997)

Combining the primitive function
approach with five-point spatially
sixth- and fourth-order methods.

It minimizes Fourier analysis-based
dispersion and isotropy error functions
for each wavenumber range of interest.

DRP-based
(Popescu et al., 2005)

Better solution of short waves while
maintaining the pre-determined for-
mal orders of accuracy.

It produces noticeably better solutions
and handling the discontinuity or large
gradients more satisfactorily.

Symmetry preserving
(Kok, 2009)

Fourth-order accurate and LDLD. Kinetic energy, sound-velocity and in-
ternal energy are locally conserved by
convection.

Compact upwind
(Murman, 2010)

Fourth- and fifth-order based on
a variable reconstruction.

It demonstrates formal accuracy of
the scheme, the resolution of a broad
wavenumber spectrum.

Compact interpolation
(Fosso P. et al., 2010)

Formally sixth-order accurate in
a preferred direction orthogonal to
the interface and at most fourth-
order accurate in the transversal.

It matches Taylor series expansions
around the interface center and guar-
antees good spectral resolution and
low computational costs.

Energy preserving
(Capuano et al, 2015)

Up to a certain order of accuracy on
both solution and energy conserva-
tion.

The properly constructed RK schemes
are faster than the standard skew-
symmetric schemes.

Freestream preserving
(Xu et al., 2016)

The order of metric polynomials
lower than the order of accuracy of
Gaussian quadrature.

The metrics should be evaluated by
the conservative or symmetric conser-
vative forms.

DG-FEM Flux analysis (Hu et al., 1999) Dissipation error is dominant with
the upwind flux while it is zero with
the center flux.

The orientation of element in a mesh
introduces anisotropy in the phase
speed and damping rate.

Gauss and Gauss-Lobatto
(Gassner, Kopriva, 2011)

The Gauss scheme is more accurate
than the Gauss-Lobatto scheme and
needing fewer points per wavelength.

The Gauss scheme is more restricted
in the explicit time step choice. The
spectra depends on the boundary con-
ditions applied.

Non-uniform basis functions
(Lahivaara, Huttunen, 2011)

A relatively constant error level of
the solution can be achieved for
a given mesh.

The CFL number is small enough so
that the error is dominated by the er-
ror in the spatial discretization.

Posteriori subcell limiter
(Dumbser et al., 2014)

It works well for arbitrary high-order
of accuracy in space and time and
that does not destroy the natural
subcell resolution.

High-order discretization is achieved
using a local space-time DG predic-
tor to evolve the data locally in time
within each cell.

Kinetic energy preserving
(Gassner, 2014)

It improves the approximation qual-
ity for coarsely resolved non-linear
acoustics.

The kinetic energy preservation is
guaranteed by a suitable interface flux
combined with the skew-symmetric
formulation.

Entropy-bounded
(Lv, Ihme, 2015)

Stabilizing solution in the vicinity of
discontinuities and retaining the op-
timal accuracy for smooth solutions.

It relies on a linear scaling operator
so that it is unable to remove shock-
triggered oscillations of smaller mag-
nitude.

Embedded
(Nguyen et al., 2015)

It gives rise to a matrix system hav-
ing the sparsity system of the stati-
cally condensed continuous scheme.

It does not provide the optimal conver-
gence of the approximate gradient, re-
sulting in lacking local conservativity.

Positivity-preserving
(Zhang, 2017)

Preserving positivity of density and
internal energy without losing local
conservation or high-order accuracy.

It does not depend on how deriva-
tives of solutions are approximated
and does not produce excessive arti-
ficial viscosity.



228 Archives of Acoustics – Volume 44, Number 2, 2019

Table 2. Summary of the RK methods’ characteristics.

Numerical schemes Description

LDLD low-storage
(Stanescu, Habashi, 1998)

It leaves useful information in the storage locations, by writing each successive stage
on the same register without zeroing the previously held values.

Total variation diminishing (TVD)
(Gottlieb, Shu, 1998)

Non-TVD but linearly stable RK time-marching can generate oscillations even for
the TVD spatial discretization; second- and third-order optimal RK methods are
with a CFL coefficient equal to one.

Strong-stability-preserving (SSP)
(Gottlieb et al., 2001)

Optimal explicit SSP linear RK methods are applied to the strong stability of coer-
cive approximations; Explicit SSP multistep methods for non-linear problems; SSP
property of implicit RK and multistep methods.

Optimal SSP
(Spiteri, Ruuth, 2002)

By allowing the number of stages to differ from the order of the method, optimal
SSP schemes are with better, more effective CFL coefficients than the standard SSP
schemes.

Optimal LDLD
(Bogey, Bailly, 2004)

It minimizes the dispersion and dissipation errors in the wavenumber space up to
the high wavenumber corresponding to four points per wavelength.

Exponential
(Hockbruck, Ostermann, 2010)

It can be applied to problems characterized by a Jacobian that possesses eigenvalues
with large negative real parts; highly oscillatory problems with purely imaginary
eigenvalues of large modulus can be solved.

Non-uniform time-step
(Liu et al., 2010)

The value at the intermediate-stages on the elements neighboring such as interfaces
are linearly coupled with minimal dissipation and dispersion errors to ensure correct
communication of solutions on the interfaces of grids with different time step sizes.

Linearly implicit Rosenbrock
(Bassi et al., 2015)

It overcomes the severe time step restriction of explicit schemes and requires one Ja-
cobian matrix evaluation per time step; it ensures the positivity of all thermodynamic
variables at the discrete level.

Table 3. Summary of LBM’s capabilities for CAA.

Type Numerical schemes Description

Wave generation,
propagation,
streaming,
and scattering

For linear sound waves
(Buick et al., 1998)

When the pressure variations are considered to be a small perturba-
tion, LBM is in line with theoretical expressions for waves unbound
or in a pipe.

For non-linear sound waves
(Buick et al., 2000)

It is demonstrated that LBM can deal with a range of problems
in non-linear acoustics. However, simulations presented there are
limited to progressive waves in an unbound media.

Modelling acoustic streaming
(Haydock, Yeomans, 2001;
2003; Haydock, 2005)

Acoustic streaming and radiation force are due to a time-averaged
momentum transfer from the acoustic waves. Using LBM to model
the acoustic streaming produced by two plates of finite length,
a complex object placed in the acoustic field, and the motion of
particles is demonstrated.

Thermal-acoustic scattering
(Kam et al., 2009)

The theoretical solution of acoustic scattering by a thermal distur-
bance with zero net heat gain/loss was derived. The validity and
extent of gas-kinetic scheme was verified.

Through porous media
(Hasert et al., 2011)

Acoustic wave generation and propagation in porous media is vali-
dated through a spinning vortex pair.

Noise source identification
(Vergnault et al., 2013)

Based on a split of the lattice Boltzmann method into a mean
and a perturbation component, the inherent instability of the time-
reversed LBM is overcome.

For acoustic flows
(Chen, Ren, 2015)

Multi-relaxation-time (MRT) model coupled with far field boundary
condition is used to study the non-linear characteristics of acous-
tic flows. Single and double layers of steady streaming can be well
captured.

For compressible flow sound
(Li, Zhong, 2016)

The potential energy double-distribution-function (DDF) LBM is
validated through flows around circular cylinder and airfoil.

Resolution
and spectral
properties

Modified bulk viscosity
(Dellar, 2001)

By solving a linearized NSE, decaying sound waves using LBM with
addition of viscosity are studied. The deviations introduced by the
modified viscosity is better.

Canonical acoustic waves
(Crouse et al., 2006)

LBM can correctly reproduce basic acoustic phenomena. A basic
grid solution requires at least 5.6 grid cells per wavelength.
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Table 3. [Cont.].

Type Numerical schemes Description

Dissipation and dispersion
property
(Marie et al., 2009)

By stability analysis, the comparison between isothermal and lin-
earized NSE and LBM models was made. It proves the low dis-
sipative capabilities of LBM compared to high-order NSE-based
schemes. For a given dispersion error, LBM is faster than high-order
schemes.

Requirements for resolution
(Bres et al., 2009)

Deviation of LBM on the phase speed is almost identical to direct
numerical simulation (DNS). A choice of 12–16 points per wave-
length leads to reasonable numerical losses about 0.068 dB per wave-
length.

Validation of LBM
(Lafitte, Perot, 2009)

The use of sponge zone reduces the magnitude of the acoustic re-
flections by 96%. The overall results both in terms of aerodynamics
and acoustics can be correctly simulated.

Optimal LDLD MRT
(Xu, Sagaut, 2011)

The acoustic modes are decoupled from the shear modes with re-
spect to zero-mean flows by optimizing free parameters. It annihi-
lates the spurious waves and the isotropic error suffered from the
original scheme and reduces the over-damping influence of the bulk
viscosity on pressure waves.

For adiabatic acoustics
(Li, Shan, 2011)

Providing the lattice and the distribution functions ensure adequate
recovery of NSE, adiabatic sound waves can be accurately simulated
at least at the low-frequency limit.

Viscously damped waves
(Viggen, 2011)

Through linearization analysis, acoustic waves which are viscously
damped in space are studied. The phase velocities and amplitude
ratios do not match theory well.

For flow around obstacles
(Machrouki et al., 2012)

Spectral analysis shows an agreement between the numerical results
and the experimental measurements in low and medium frequencies,
but divergence at high frequencies.

Moving boundary conditions
(Chen et al., 2014)

Immersed boundary methods’ smooth interpolation produces less
disturbing spurious pressure waves than bounce-back methods’.

Accuracy for sound diffraction
(Hao et al., 2016)

The maximum relative difference in acoustic pressure between nu-
merical and analytical solutions is only about 20% among all.

Direct and
indirect models

One-step direct simulation
(Li et al., 2006a; 2006b;
Kam et al., 2016)

The ideal gas equation of state and the temperature dependence
of the first coefficient of viscosity were correctly recovered. It is
demonstrated that the modified LBM possesses the same accuracy
as DNS for CAA.

For non-linear shock
(Dellar, 2008)

By introducing an entirely separate set of particle distribution func-
tions, the macroscopic energy equation is correctly recovered for
compressible flows including shock problems.

Improved LBM model
(Fu et al., 2008)

The state equation for diatomic gas is exactly recovered without
invoking the small Mach number assumption. The viability and cor-
rectness of the modified equilibrium distribution functions is verified
with comparison to DNS.

FDM-based LBM
(Tsutahara et al., 2008)

It introduces a negative viscosity term to reduce viscosity and addi-
tional internal degree of freedom for diatomic gases. Speed of sound
is exactly recovered. Reasonable results can be obtained even at the
very low Mach number of 0.027.

Multi-entropy-level
(Zhang et al., 2011)

The use of isentropic equation makes the model simple and efficient.
However, the dissipation and dispersion effects as well as NRBC are
not considered.

For isotropic turbulence sound
(Zhou, Dong, 2014)

The use of LBM-based DNS is efficient when it is combined with the
Lighthill analogy. The assumption of compactness of source com-
bined with the stochastic forcing model modifies acoustic properties
and may lead to spurious noise.
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Table 4. Summary of engineering applications of LBM.

Applications Turbulence Description

Trapezoidal wing
(Satti et al., 2008)

Very LES (VLES) Mean flow predictions of lift/drag, surface pressure distribu-
tions, noise sources and their relative strength provide excellent
comparison with experiments.

Axisymmetric ducts
(Da Silva et al., 2009)

None The simulation results for the flow and acoustic fields of an un-
flanged pipe model issuing a subsonic jet into a stagnant fluid
region agree well with theory and experiments.

HVAC blowers
(Franck et al., 2011)

VLES Favorable comparison to measurements demonstrate the capa-
bility of LBM simulations to be used for optimizing blower and
casing designs during the development stages.

Tandem cylinder
(Bres et al., 2012)

RNG k-e model with
hybrid wall function

For the surface, flow field and radiated noise, simulation results
are in good agreement with experimental data. The presence of
the side plates reduces significantly the spanwise coherence and
improves the comparison with experiments.

Partially covered cavities
(De Jong et al., 2013)

Implicit LES (ILES) Simulations with direct turbulent fluctuations introduced at the
inlet exhibit the same resonance amplitude with experiments.
However, large spanwise widths and included boundary layer
direct turbulent fluctuations are not considered.

Bluff body
(Han et al., 2013)

None Utilizing blend radius can reduce the noise around bluff bodies.

Axial fan
(Lallier-Daniels et al., 2013)

RNG k-e model The mean pressure on the pressure side of blade for the design
flowrate agrees with experimental data. However, the grid is too
coarse to overpredict 30% of the pressure rise.

High speed train
(Meskine et al., 2013)

Unknown LBM-based solver is used for the near field while the porous
FW-H solver is used for the far field. It is indicated that simu-
lations can be used as a design tool for far field noise levels.

Centrifugal fan
(Perot et al., 2013)

VLES The fan noise and heat exchanger effects are correctly modeled.
Comparison of experiments and simulations show a very sat-
isfying agreement. The obstruction reduces the tonal noise by
10–13 dB.

Fan blade
(Stadler et al., 2014)

LES For most of 1/3-octave bands, the overall agreement between
simulations and experiments is within ±2 dB. The total reduc-
tion of sound power level is 1.3 dB(A).

Coaxial jet noise
(Casalino, Lele, 2014)

VLES LBM is proven to capture both the flow field and the associated
noise radiation. The mesh resolution and turbulence model on
the shear layer instabilities need further analysis.

Circular orifice
(Ji, Zhao, 2014)

LES Results from theoretical analysis, simulations and experiments
are in good agreement. The damping effect depends on the in-
cident sound frequency, the orifice thickness and the bias flow
Mach number.

Porous media
(Qi et al., 2015)

None It presents an interpolation-supplemented grid refinement
method. However, a load balancing algorithm to account for
the altered mesh topology is further needed.

Isolated axial fan
(Strum et al., 2015)

VLES The predicted spectrum agrees satisfactorily with the experi-
mental data. The fan is very sensitive to the inflow conditions.

Full aircraft
(Fares et al., 2016)

VLES The Reynolds number is 10.5 million. It is highlighted that finer
geometrical details not captured at model scales have a non-
negligible contribution to the far field noise signature.

Low-speed fan
(Moreau et al., 2016)

VLES Simulations are still too coarse and predict too wide wakes. It is
suggested that the wall pressure statistics are hardly influenced
by rotation in the trailing-edge region.

Outlet-guide-vane
(Sanjose et al., 2017)

RNG k-e model The detailed acoustic modal powers from simulations compare
well with the analytical results for homogeneous and heteroge-
neous configurations.
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Table 5. Summary of characteristics of hybrid LBM.

Type Characteristics Description

FDM-based High order accuracy
(Reider, Sterling, 1995)

It allows coarser resolution for a given error or lower error for fixed
resolution in comparison with the standard LBM. The fourth-order
upwind scheme is used for spatial discretization and the fourth-order
RK scheme for time discretization.

Physical symmetry and lattice
symmetry
(Cao et al., 1997)

Both symmetry is not necessary for recovering the correct macro-
scopic dynamics. The central difference scheme is applied for spatial
discretization and the modified Euler method for time discretiza-
tion.

With curvilinear body-fitted co-
ordinates
(Mei, Shyy, 1998)

It can handle the boundary with desirable flexibility. The second-
order central and upwind difference schemes are used for spatial
discretization and the forward Euler method for time discretization.

Numerical viscosity
(Sofonea, Sekerka, 2003)

FDM-based LBM introduces a spurious numerical viscosity in the
compressible regime. The standard LBM is recovered when the re-
laxation time is also calculated on the characteristics line.

Implicit-explicit
(Wang et al., 2007)

The computational convergence rate can be significantly improved
compared with the previous FDM-based and standard LBM. The
TVD and weighted essentially non-oscillatory schemes are adopted
for spatial discretization.

FVM-based Structured mesh
(Nannelli, Succi, 1992)

The particle distribution function is stored on the cell center of
control volume. The Poiseuille flow is applied for validation.

Unstructured triangular mesh
(Xi et al., 1999)

It can easily handle complex boundary geometries. It works well
for Taylor vortex flow, shear flow between two parallel plates and
cylinders as well as Poiseuille flow.

Upwind scheme
(Stiebler et al., 2006)

Discretizing the convective operator using upwind scheme demon-
strates the improved stability and significant improvement in com-
putational efficiency.

TVD scheme
(Patil, Lakshmisha, 2009)

The discrete-velocity Boltzmann equation is discretized on a cell-
centered, arbitrary shaped, triangular tessellation with the TVD
scheme for terms representing advection. It is robust and accurate.

Gas-kinetic BGK scheme
(Li, Li, 2018)

The formal analytical solution of the lattice Boltzmann BGK equa-
tion is used to determine the flux on cell interfaces. The numerical
dissipation is reduced.

FEM-based Eulerian description
(Lee, Lin, 2003)

The streaming step is carried out by solving the pure linear advec-
tion equations in an Eulerian framework. The speedup of conver-
gence significantly improves with the implicit unstructured method.

DG spectral element
(Shi et al., 2003)

It is used to solve the discrete-velocity Boltzmann equation with
triangular elements because of their flexibility to deal with complex
geometries.

Least-squares element
(Li et al., 2005)

It enjoys fourth-order accuracy in space and second-order accuracy
in time. The flexibility for complex geometries is demonstrated by
a fluid flow in porous media.

With an exponential time inte-
grator
(Uga et al., 2013)

Using the spectral element DG to discretize the streaming step re-
sults in a system of ordinary differential equations, which is solved
with an exponential time integrator. It can obtain high CFL num-
ber.

Nodal DG scheme
(Zadehgol et al., 2014)

The streaming step is solved with nodal DG scheme and the time
marching is carried out with low-storage fourth-order, five-stage RK
method. It requires significantly lower number of grid points than
the standard LBM.
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Appendix B

Three matrices for the linearized NSE are

ME=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u0 1 0 0 0

RgT0 (2 − γ)u0 − ( 4
3
ξ + ξB) ∂

∂x
(1 − γ) v0 + ( 2

3
ξ − ξB) ∂

∂y
(1 − γ)w0 + ( 2

3
ξ − ξB) ∂

∂z
γ − 1

0 −ξ ∂
∂y

u0 − ξ
∂
∂x

0 0

0 −ξ ∂
∂z

0 u0 − ξ
∂
∂x

0

RgT0u0 a∗ b∗ c∗ d∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (60)

where

a∗ = (1 − γ)u2
0 − ξv0

∂

∂y
− ξw0

∂

∂z
− [

4

3
ξ + ξB −

(γ − 1)κ

ρ0Rg
]u0

∂

∂x
+RgT0,

b∗ = (1 − γ)u0v0 + (
2

3
ξ − ξB)u0

∂

∂y
− [ξ −

(γ − 1)κ

ρ0Rg
] v0

∂

∂x
,

c∗ = (1 − γ)u0w0 + (
2

3
ξ − ξB)u0

∂

∂z
− [ξ −

(γ − 1)κ

ρ0Rg
]w0

∂

∂x
,

d∗ = γu0 −
(γ − 1)κ

ρ0Rg

∂

∂x
;

MF=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v0 0 1 0 0

0 v0 − ξ
∂
∂y

−ξ ∂
∂x

0 0

RgT0 (1 − γ)u0 + ( 2
3
ξ − ξB) ∂

∂x
(2 − γ) v0 − ( 4

3
ξ + ξB) ∂

∂y
(1 − γ)w0 + ( 2

3
ξ − ξB) ∂

∂z
γ − 1

0 0 −ξ ∂
∂z

v0 − ξ
∂
∂y

0

RgT0v0 e∗ f∗ g∗ h∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (61)

where

e∗ = (1 − γ)u0v0 + (
2

3
ξ − ξB) v0

∂

∂x
− [ξ −

(γ − 1)κ

ρ0Rg
]u0

∂

∂y
,

f∗ = (1 − γ) v2
0 − ξu0

∂

∂x
− ξw0

∂

∂z
− [

4

3
ξ + ξB −

(γ − 1)κ

ρ0Rg
] v0

∂

∂y
+RgT0,

g∗ = (1 − γ) v0w0 + (
2

3
ξ − ξB) v0

∂

∂z
− [ξ −

(γ − 1)κ

ρ0Rg
]w0

∂

∂y
,

h∗ = γv0 −
(γ − 1)κ

ρ0Rg

∂

∂y
;
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MG=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w0 0 0 1 0

0 w0 − ξ
∂
∂z

0 −ξ ∂
∂x

0

0 0 w0 − ξ
∂
∂z

−ξ ∂
∂y

0

RgT0 (1 − γ)u0 + ( 2
3
ξ − ξB) ∂

∂x
(1 − γ) v0 + ( 2

3
ξ − ξB) ∂

∂y
(2 − γ)w0 − ( 4

3
ξ + ξB) ∂

∂z
γ − 1

RgT0w0 i∗ j∗ k∗ l∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (62)

where

i∗ = (1 − γ)u0w0 + (
2

3
ξ − ξB)w0

∂

∂x
− [ξ −

(γ − 1)κ

ρ0Rg
]u0

∂

∂z
,

j∗ = (1 − γ) v0w0 + (
2

3
ξ − ξB)w0

∂

∂y
− [ξ −

(γ − 1)κ

ρ0Rg
] v0

∂

∂z
,

k∗ = (1 − γ)w2
0 − ξu0

∂

∂x
− ξv0

∂

∂y
− [

4

3
ξ + ξB −

(γ − 1)κ

ρ0Rg
]w0

∂

∂z
+RgT0,

l∗ = γw0 −
(γ − 1)κ

ρ0Rg

∂

∂z
.

The eigenvalues corresponding to Eq. (19) are

ω1 = ωa+,
ω2 = ωa−,

ω3 = k ⋅ u0 − iξk2,

ω4 = k ⋅ u0 − iξk2,

ω5 = ωe,

(63)

where ωa+, ωa−, and ωe mean the acoustic modes
and the entropy mode, respectively. ω3 and ω4 indi-
cate the vorticity modes, which have simple expression.
The dissipation of vorticity mode only comes from the
shear kinetic viscosity. Since both viscosity and heat
conductivity influence the propagation of the acoustic
modes and entropy modes, the expressions for ω1, ω2,
and ω5 are complex. These eigenvalues are the three
roots of the following equation

ω′3 − i (η + ς)k2ω′2 − (ηςk2
+ c20)ω

′
+ i
ς

γ
c20k

4
= 0,

ω′ = k ⋅ u0 − ω, η =
4

3
ξ + ξB ,

ς = (γ − 1)
κ

ρ0Rg
.

(64)
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Pérot F. (2013), Numerical analysis of axial fans
for performance and noise evaluation using the lattice
Boltzmann method, CFD Canada 2013, Sherbrooke,
Canada.

63. Lee C., Seo Y. (2002), A new compact spectral
scheme for turbulence simulation, Journal of Compu-
tational Physics, 183, 2, 438–469.

64. Lee T., Lin C.L. (2003), An Eulerian description of
the streaming process in the lattice Boltzmann equa-
tion, Journal of Computational Physics, 185, 445–
471.



236 Archives of Acoustics – Volume 44, Number 2, 2019

65. Lele S.K. (1992), Compact finite difference scheme
with spectral-like resolution, Journal of Computa-
tional Physics, 103, 1, 16–42.

66. Lele S.K. (1997), Computational aeroacoustics –
A review, 35th Aerospace Sciences Meeting and Ex-
hibit, AIAA 97-0018, pp. 1–15, Reno, NV, USA.

67. Li K., Zhong C.W. (2016), Aeroacoustic simula-
tions using compressible lattice Boltzmann method,
Advances in Applied Mathematics and Mechanics, 8,
5, 795–809.

68. Li W.D., Li W. (2018), A gas-kinetic BGK scheme
for the finite volume lattice Boltzmann method for
nearly incompressible flow, Computers & Fluids, 162,
126–138.

69. Li X.M., Leung R.C.K., So R.M.C. (2006a), One-
step aeroacoustics simulation using lattice Boltzmann
method, AIAA Journal, 44, 1, 78–89.

70. Li Y.B., Shan X.W. (2011), Lattice Boltzmann
method for adiabatic acoustics, Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 369, 1944, 2371–2380.

71. Li Y.S., Leboeuf E.J., Basu P.K. (2005), Least-
squares finite-element scheme for the lattice Boltz-
mann method on an unstructured mesh, Physical Re-
view E, 72, 046711.

72. Li X.M., So R.M.C., Leung R.C.K. (2006b), Prop-
agation speed, internal energy, and direct aeroacous-
tics simulation using lattice Boltzmann method, AIAA
Journal, 44, 12, 2896–2903.

73. Lighthill M.J. (1952), On sound generated aerody-
namically. I. General theory, Proceedings of the Royal
Society of London Series A – Mathematical and Phys-
ical Sciences, 211, 1107, 564–587.

74. Liu L., Li X.D., Hu F.Q. (2010), Nonuniform time-
step Runge-Kutta discontinuous Galerkin method for
computational aeroacoustics, Journal of Computa-
tional Physics, 229, 19, 6874–6897.

75. Lodato G., Domingo P., Vervisch L. (2008),
Three-dimensional boundary conditions for direct and
large-eddy simulation of compressible viscous flows,
Journal of Computational Physics, 10, 1, 5105–5143.

76. Lv Y., Ihme M. (2015), Entropy-bounded discontinu-
ous Galerkin scheme for Euler equations, Journal of
Computational Physics, 295, 715–739.

77. Machrouki H., Ricot D., Coste O. (2012), Lattice
Boltzmann aero-acoustics modelling of flow around
obstacles, Proceedings of the Acoustics 2012 Nantes
Conference, 1297–1301, Nantes, France.

78. Manoha E., Elias G., Troff B., Sagaut P.
(1999), Towards the use of boundary element method
in computational aeroacoustics, 5th AIAA/CEAS
Aeroacoustics Conference and Exhibit, AIAA 99–
1980, pp. 1161–1171, Bellevue, WA, USA.
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