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Abstract. The positivity of fractional descriptor linear continuous-time systems is investigated. The solution to the state equation of the systems 
is derived. Necessary and sufficient conditions for the positivity of fractional descriptor linear continuous-time systems are established. The 
considerations are illustrated by numerical examples.
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tional descriptor linear continuous-time systems are established 
in section 3. Concluding remarks are given in section 4.

The following notations will be used: ℜ – the set of real 
numbers, ℜn×m – the set of n×m real matrices, ℜ+

n×m – the set 
of n×m real matrices with nonnegative entries and ℜ+

n = ℜ+
n×1, 

Mn – the set of n×n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – the n×n identity matrix.

2. Fractional descriptor linear continuous-time 
systems

Consider the fractional descriptor linear system

 E dαx
dtα

 = Ax + Bu, 0 < α < 1 , (1a)

 y = Cx , (1b)

where x = x(t) 2 ℜn, u = u(t) 2 ℜm, y = y(t) 2 ℜ p are the 
state, input and output vectors and E, A 2 ℜn×n, B 2 ℜn×m, 
C 2 ℜp×n and

 dαx
dtα

 = 
1

Γ(α ¡ 1)

t

0
∫

x ̇ (τ)
(t ¡ τ)α

dt , x ̇ (τ) =  dx(τ)
dτ

 (1c)

is the Caputo derivative of the order α,

	 Γ(x) = 
1

0
∫ e– ttα ¡ 1dt , (1d)

is the gamma function.
It is assumed that

 det
£
Es ¡ A

¤
  6= 0 for some s 2 C (2)

where C is the field of complex numbers.
In this case the equation (1a) has unique solution [16, 22].

1. Introduction

A dynamical system is called positive if its state variables take 
nonnegative values for all nonnegative inputs and nonnegative 
initial conditions. The positive linear systems have been inves-
tigated in [1‒3] and positive nonlinear systems in [4‒8].

Examples of positive systems are industrial processes in-
volving chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, water and 
atmospheric pollution models. A variety of models having pos-
itive linear behavior can be found in engineering, management 
science, economics, social sciences, biology and medicine, etc.

Positive linear systems with different fractional orders have 
been addressed in [9‒11]. Descriptor (singular) linear systems 
have been analyzed in [6, 12‒16] and the stability of a class of 
nonlinear fractional-order systems in [4, 17, 18]. Fractional pos-
itive continuous-time linear systems and their reachability have 
been addressed in [19]. Application of Drazin inverse to anal-
ysis of descriptor fractional discrete-time linear systems has 
been presented in [20]. The robust stabilization of discrete-time 
positive switched systems with uncertainties has been addressed 
in [21]. Comparison of three methods of analysis of the de-
scriptor fractional systems has been presented in [22]. Stability 
of linear fractional order systems with delays has been analyzed 
in [23] and simple conditions for practical stability of positive 
fractional systems have been proposed in [24]. The stability 
of interval positive continuous-time linear systems has been 
addressed in [25].

In this paper the positivity of fractional descriptor continu-
ous-time linear systems will be investigated.

The paper is organized as follows. In section 2 the basic 
definitions of Drazin inverse of matrices are recalled and the 
solution to the state equation of the systems is derived. The 
necessary and sufficient conditions for the positivity of the frac-
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Definition 1. For any matrix E– 2 [Eλ ¡ A]
–1E 2 ℜn×n there 

exists a unique Drazin inverse E–D 2 ℜn×n defined by the con-
ditions

 E– DE– = E–E– D, (3a)

 E– DE–E– D = E– D, (3b)

 E– DE–µ + 1 = E–µ, (3c)

where µ is the smallest nonnegative integer such that

 rank E–µ = rank E–µ + 1 (3d)

and λ is chosen so that the matrix [Eλ ¡ A] is invertible. It is 
well-known [12, 22] that for

 P = E– DE– and A ̂  = E– D£
Eλ ¡ A

¤–1A (4)

the following relations hold

 P k = P for k = 2, 3, …, (5a)

 PA ̂  = A ̂ P = A ̂ , (5b)

 Px(t) = x(t),  t ¸ 0 . (5c)

Premultiplying (1a) by the matrix E
–D[Eλ ¡ A]

–1 we obtain

 P dαx
dtα

 = A ̂ x + B ̂ u , (6a)

where

 B ̂  = E– D£
Eλ ¡ A

¤–1B . (6b)

Applying Laplace transform (L) to the equation (6a) and taking 
into account that

 
L
∙

dαx
dtα

¸
 = sαX(s) ¡ sα ¡ 1x(0), x(0) = Pc = im P,

c 2 ℜn – arbitrary
 (7)

we obtain
 £

Psα ¡ A ̂
¤
X(s) = Psα ¡ 1x(0) + B ̂ U(s), (8)

where

 X(s) = L
£
x(t)
¤
 = 

1

0
∫ x(t)e– stdt , U(s) = L

£
u(t)
¤
. (9)

Note that

 

£
Psα ¡ A ̂

¤
X(s) = 

£
In sα ¡ A ̂

¤
PX(s) =

£
Psα ¡ A ̂

¤
X(s) = 

£
In sα ¡ A ̂

¤
X(s),

 (10)

since by (5b) and (5c) A ̂  = A ̂ P and PX(s) = X(s).

Taking into account (10) from (8) we obtain

 
X(s) = 

£
In sα ¡ A ̂

¤–1
Psα ¡ 1x(0) +

X(s) + 
£
In sα ¡ A ̂

¤–1
B ̂ U(s).

 (11)

It is easy to show that [17]

 £
In sα ¡ A ̂

¤–1
 = 

k = 0

1

∑ A ̂ ks– (k + 1)α . (12)

Substituting (12) into (11) we obtain

 X(s) = 
k = 0

1

∑ A ̂ ks– (kα + 1)x(0) + 
k = 0

1

∑ A ̂ k B ̂ s– (k + 1)αU(s) (13)

since Px(0) = x(0).
Applying to (13) the inverse Laplace transform (L–1) and 

the convolution theorem we obtain

 x(t) = Φ0(t)Pc + 
t

0
∫ Φ(t ¡ τ)B ̂ u(τ)dτ ,  (14a)

where

	 Φ0(t) = 
k = 0

1

∑ A ̂ L–1
£
s–k(α + 1)

¤
 = 

k = 0

1

∑ A ̂ kt kα

Γ(kα  + 1)
, (14b)

	 Φ(t) = 
k = 0

1

∑ A ̂ L–1
£
s– (k + 1)α

¤
 = 

k = 0

1

∑ A ̂ kt(k + 1)α ¡ 1

Γ
£
(k + 1)α

¤ , (14c)

since L[tα] = Γ(α + 1)s–(α + 1).
Therefore, the following theorem has been proved.

Theorem 1. The solution x(t) of the equation (1a) is given by 
(14).

Example 1. Consider the fractional descriptor system (1) with

 

E = 
 0 0
 –1 1

, A = 
0 1
0 0

, B = 
0
1

,

x(t) = 
1 for t ¸ 0 ,
0 for t < 0 ,

x(0) 2 ℜ+
2 , 0 < α < 1 .

 (15)

The system satisfies the assumption (2) since

 det
£
Es ¡ A

¤
 = j 0 –1

 –s s j = – s . (16)

Choosing λ = –1 and using (15) we obtain
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E– = 
£
Eλ ¡ A

¤–1E =  
0 –1
1 –1

–1  0 0
 –1 1

 = 
 –1 1
 0 0

,

A
– = 

£
Eλ ¡ A

¤–1A =  
0 –1
1 –1

–1 0 1
0 0

 = 
0 –1
0 –1

.

 (17)

In this case the Drazin inverse matrix E
–D of E

–
 given by (17) 

has the form

 E– D = E– =  
 –1 1
 0 0

. (18)

Using (4a), (6b), (17) and (18) we obtain

 P = E– DE– =  
 –1 1
 0 0

2

 =  
 1 –1
 0 0

 (19a)

and

 

A ̂  = E– DA
– =  

 –1 1
 0 0

0 –1
0 –1

 = 
0 0
0 0

,

B ̂  = E– D£
Eλ ¡ A

¤–1B =

B ̂  =  
 –1 1
 0 0

0 –1
1 –1

–1 0
1

 = 
–1
0

.

 (19b)

Taking into account (19) from (14) we obtain

	 Φ0(t) = 
k = 0

1

∑ A ̂ kt kα

Γ(kα  + 1)
 = I2 = 

1 0
0 1

, (20a)

Φ0(t) = 
k = 0

1

∑ A ̂ kt kα

Γ(kα  + 1)
 = I2

tα ¡ 1

Γ(α)
 = 

 t
α ¡ 1

Γ(α)
 0

 0 tα ¡ 1

Γ(α)

, (20b)

and

x(t) = Φ0(t)x0 + 
t

0
∫Φ(t ¡ τ)B ̂ u(τ)dτ = 

x(t) = 
1 0
0 1

x0 + 
t

0
∫

 
(t ¡ τ)α ¡ 1

Γ(α)
 0

 0 
(t ¡ τ)α ¡ 1

Γ(α)

–1
0

dτ =

x(t) = 
1 0
0 1

x0 + 
t

0
∫

–(t ¡ τ)α ¡ 1

Γ(α)

0

dτ .

 (21)

3. Positivity of fractional descriptor  
linear systems

The following lemma will be used in the further considerations.

Lemma 1. For the fractional linear system

 dαz
dtα

 = Mz, M 2 ℜn×n, 0 < α < 1  (22)

the following implication holds true

 
Fz(0) 2 ℜ+

p then Fz(t) 2 ℜ+
p

for F 2 ℜp×n and t ¸ 0
 (23)

if and only if there exists a Metzler matrix H 2 Mp such that

 FM = HF . (24)

Proof. Premultiplying (22) by the matrix F we obtain

 F dαz
dtα

 = FMz . (25)

The equation (25) has the solution Fz 2 ℜ+
p for t ¸ 0 if and  

only if (24) holds true. In this case the equation

 F dαz
dtα

 = HFz  (26)

has the solution Fz 2 ℜ+
p, t ¸ 0 if and only if H 2 Mp. □

First let us consider the autonomous fractional descriptor 
system

 E dαz
dtα

 = Ax (27)

obtained from (1a) for Bu = 0.

Definition 2. The autonomous fractional descriptor system (27) 
is called (internally) positive if v for t ¸ 0 and any admissible 
initial conditions x(0) 2 ℜ+

n(x(0) 2 ℜ+
n).

Theorem 2. The fractional descriptor system (27) is positive if 
and only if there exists a matrix G 2 ℜn×n such that

 H = A ̂  + G(In ¡ P) 2 Mn , (28)

where A ̂  and P are defined by (4).

Proof. By Lemma 1 the system (27) is positive if and only if 
there exists a Metzler matrix H 2 Mn such that

 A ̂  = HP . (29)



232

T. Kaczorek

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

The solution of equation (29) is given by (28) since by (5b) and 
(5a) A ̂ P = A ̂ , P2 = P and

 HP = A ̂ P + G(In ¡ P)P = A ̂ P = A ̂ . (30)

This completes the proof. □

Note that the system (27) can be positive even when the 
matrix A ̂  is not a Metzler matrix.

If A ̂  2 Mn then we have the following corollary.

Corollary 1. The fractional descriptor system (27) is positive if 
A ̂  2 Mn. In this case we may choose in (28) G = 0.

Example 1. Consider the system (27) with

 E = 
 1 –1
 0 0

, A = 
 –1 2
 0 –1

, 0 < α < 1 . (31)

The assumption (2) is satisfied and for λ = 0 we have

 

E– = 
£
– A
¤–1E =  

1 2
0 1

 1 –1
 0 0

 = 
 1 –1
 0 0

,

A
– = 

£
– A
¤–1A =  

 –1 0
 0 –1

, E– D = E– =  
 1 –1
 0 0

.

 (32)

Using (4) and (32) we obtain

 

P = E– DE– =  
 1 –1
 0 0

,

A ̂  = E– DA
– =  

 1 –1
 0 0

 –1 0
 0 –1

 = 
 –1 1
 0 0

.

 (33)

Note that the matrix A ̂  defined by (33) is a Metzler matrix. 
Therefore, by Corollary 1 the system (27) with (31) is positive.

Example 2. Consider the system (27) with

 E = 
 –1 1
 0 0

, A = 
 –1 2
 0 –1

, 0 < α < 1 . (34)

The assumption (2) is satisfied and for λ = 0 we have

 

E– = 
£
– A
¤–1E =  

1 2
0 1

 –1 1
 0 0

 = 
 –1 1
 0 0

,

A
– = 

£
– A
¤–1A =  

 –1 0
 0 –1

, E– D = E– =  
 –1 1
 0 0

.

 (35)

Using (4) and (35) we obtain

 P = E– DE– =  
 1 –1
 0 0

, A ̂  = E– DA
– =  

 1 –1
 0 0

. (36)

Note that the matrix A ̂  given by (36) is not a Metzler matrix. 
Using (28) and (36) we choose the matrix

 G =  
1 2
0 1

. (37)

so that the matrix

 

H = A ̂  + G(In ¡ P) =

H =  
 1 –1
 0 0

 + 
1 2
0 1

0 1
0 1

 =  
1 2
0 1

 (38)

is a Metzler matrix.
In general case the positivity of the fractional descriptor 

system (1) is defined as follows.

Definition 3. The fractional descriptor system (1) is called 
(internally) positive if x(t) = ℜ+

n and y(t) 2 ℜ+
p, t ¸ 0 for 

any admissible initial conditions x(0) 2 ℜ+
n(x(0) 2 im P) and 

u(t) 2 ℜ+
m, t ¸ 0.

Theorem 3. The fractional descriptor system (1) is positive if 
and only if there exists a matrix G 2 ℜn×n such that (28) holds 
true and

 B ̂  2 ℜ+
n×m, C 2 ℜ+

p×n. (39)

Proof. The proof of (28) is the same as of Theorem 2. Note that

 
t

0
∫Φ(t ¡ τ)B ̂ u(τ)dτ 2 ℜ+

n , t ¸ 0  (40)

if and only if B ̂  2 ℜ+
n×m since u(t) 2 ℜ+

m, t ¸ 0 is arbitrary.
Similarly, y(t) 2 ℜ+

p, t ¸ 0 if and only if C 2 ℜ+
p×n since 

x(t) = ℜ+
n, t ¸ 0 can be arbitrary. □

4. Concluding remarks

The positivity of fractional descriptor linear discrete-time has 
been investigated. The solution to the state equation of the 
fractional descriptor linear continuous-time systems has been 
derived (Theorems 1). Necessary and sufficient conditions for 
the positivity of the fractional descriptor linear continuous-time 
systems has been established (Theorems 2 and 3). The consid-
erations have been illustrated by numerical examples.



233

Positivity of fractional descriptor linear continuous-time systems

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

Acknowledgment. This work was supported by National Sci-
ence Centre in Poland under work No. 2017/27/B/ST7/02443.

References
 [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the 

Mathematical Sciences, SIAM, 1994.
 [2] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and 

Applications, J. Wiley, New York, 2000.
 [3] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, Lon-

don, 2002.
 [4] T. Kaczorek, “Analysis of positivity and stability of fractional dis-

crete-time nonlinear systems”, Bull. Pol. Ac.: Tech. 64(3), 2016, 
491‒494.

 [5] T. Kaczorek, “Analysis of positivity and stability of discrete-time 
and continuous-time nonlinear systems”, Computational Prob-
lems of Electrical Engineering 5(1), 2015.

 [6] T. Kaczorek, “Descriptor positive discrete-time and continu- 
ous-time nonlinear systems”, Proc. of SPIE 9290, 2014, DOI. 
10.1117/12.2074558.

 [7] T. Kaczorek, “Positivity and stability of discrete-time nonlinear 
systems”, IEEE 2nd International Conference on Cybernetics, 
2015, 156‒159.

 [8] T. Kaczorek, “Stability of fractional positive nonlinear sys-
tems”, Archives of Control Sciences 25(4), 2015, 491‒496, DOI: 
10.1515/acsc-2015‒0031.

 [9] M. Busłowicz, “Stability analysis of continuous-time linear sys- 
tems consisting of n subsystems with different fractional orders”, 
Bull. Pol. Ac.: Tech. 60(2), 2012, 279‒284.

 [10] T. Kaczorek, “Positive linear systems with different fractional 
orders”, Bull. Pol. Ac.: Tech. 58(3), 2010, 453‒458.

 [11] T. Kaczorek, “Positive linear systems consisting of n subsystems 
with different fractional orders”, IEEE Trans. on Circuits and 
Systems 58(7), 2011, 1203‒1210.

 [12] T. Kaczorek, “Drazin inverse matrix method for fractional de- 
scriptor discrete-time linear systems”, Bull. Pol. Ac.: Tech., 
64(2), 2016, 395‒399.

 [13] T. Kaczorek, “Positivity and stability of standard and fractional 
descriptor continuous-time linear and nonlinear systems”, Inter- 
national Journal of Nonlinear Sciences and Numerical Simula- 
tion 19(3‒4), 2018, 299‒307.

 [14] T. Kaczorek, “Positive fractional continuous-time linear sys-
tems with singular pencils”, Bull. Pol. Ac.: Tech. 60(1), 2012, 
9‒12.

 [15] T. Kaczorek, “Positive singular discrete-time linear systems”, 
Bull. Pol. Ac.: Tech. 45(4), 1997, 619‒631.

 [16] T. Kaczorek, Theory of Control and Systems, PWN, Warszawa, 
1993 (in Polish).

 [17] T. Kaczorek, Selected Problems of Fractional Systems Theory, 
Springer, Berlin, 2011.

 [18] W. Xiang-Jun, W. Zheng-Mao, and L. Jun-Guo, “Stability anal- 
ysis of a class of nonlinear fractional-order systems”, IEEE 
Trans. Circuits and Systems-II, Express Briefs 55(11), 2008, 
1178‒1182.

 [19] T. Kaczorek, “Fractional positive continuous-time linear systems 
and their reachability”, Int. J. Appl. Math. Comput. Sci. 18(2), 
2008, 223‒228.

 [21] T. Kaczorek, “Application of Drazin inverse to analysis  
of descriptor fractional discrete-time linear systems with 
regular pencils”, Int. J. Appl. Math. Comput. Sci. 23(1), 2013, 
29‒34.

 [22] H. Zhang, D. Xie, H. Zhang, and G. Wang, “Stability analysis 
for discrete-time switched systems with unstable subsystems by 
a mode-dependent average dwell time approach”, ISA Transac- 
tions 53, 2014, 1081‒1086.

 [23] Ł. Sajewski, “Descriptor fractional discrete-time linear system 
with two different fractional orders and its solution”, Bull. Pol. 
Ac.: Tech. 64(1), 2016, 15‒20.

 [24] M. Busłowicz, Stability of linear continuous-time fractional or-
der systems with delays of the retarded type, Bull. Pol. Ac.: Tech. 
56(4, 2008, 319‒324.

 [25] M. Busłowicz and T. Kaczorek, “Simple conditions for practical 
stability of positive fractional discrete-time linear systems”, Int. 
J. Appl. Math. Comput. Sci. 19(2), 2009, 263‒169.

 [26] T. Kaczorek, “Stability of interval positive continuous-time lin-
ear systems”, Bull. Pol. Ac.: Tech. 66(1), 2018.

 [27] M. Ali Rami and D. Napp, “Characterization and stability of 
autonomous positive descriptor systems”, IEEE Trans. Autom. 
Contr. 57(10), 2012, 2668‒2673.

 [28] J. Zhang, Z. Han, H. Wu, and J. Hung, “Robust stabilization of 
discrete-time positive switched systems with uncertainties and 
average dwell time switching”, Circuits Syst. Signal Process. 33, 
2014, 71‒95.


