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Abstract. In the present paper, we investigate a multi-server Erlang queueing system with heterogeneous servers, non-homogeneous customers
and limited memory space. The arriving customers appear according to a stationary Poisson process and are additionally characterized by some
random volume. The service time of the customer depends on his volume and the joint distribution function of the customer volume and his service
time can be different for different servers. The total customers volume is limited by some constant value. For the analyzed model, steady-state
distribution of number of customers present in the system and loss probability are calculated. An analysis of some special cases and some
numerical examples are attached as well.
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1. Introduction

In the classical queueing theory, we usually investigate systems
with some finite or infinite number of identical servers hav-
ing some finite or infinite queues. For such systems, service
time distribution is the same for all servers. The main purpose
of the analysis is to obtain very important, from the practical
point of view, characteristics such as: distribution of number of
customers present in the system, waiting time distribution (for
systems with finite number of servers and infinite queues) or
busy period distribution. In many cases, it is not possible to
obtain these characteristics in exact form and we have to present
final results in terms of generating functions or Laplace–Stieltjes
transforms. By this way, we are able to calculate at least mean
values (or other moments) of the analyzed random variables.
Obtained results help us to design telecommunication or com-
puter systems (to choose the proper number of servers, num-
ber of waiting positions or to plan parameters connected with
customers arrival stream or mean value of their service time)
according to given assumptions and taking into account (among
others) maximal acceptable loss probability or mean value of
waiting time. Moreover, in analyzed models with finite number
of servers and finite queues, customer is usually lost only if
there are no free servers and no free places in the queue at the
epoch of his arrival. So the loss characteristics depend only on
the distribution of number of customers present in the system
at this epoch, e.g. loss probability Ploss in steady-state can be
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calculated using the obvious formula: Ploss = pn+m, where n is
the number of servers, m is the size of the queue and pn+m is the
steady-state probability that there are n+m customers present
in the system. In past years, such systems were widely analyzed
by many researchers (see e.g. [2, 5, 6, 17, 18]).

It seems to be clear that practical telecommunication or com-
puter systems are rarely composed of servers that can be treated
as identical. In many situations, servers can have different ser-
vice time characteristics. Although we try to obtain similar char-
acteristics for such systems (in this case we can additionally
obtain also usage characteristics of all servers), analysis of them
is much more complicated because the number of equations de-
scribing the system behavior increases exponentially together
with increasing number of servers (the number of states in an-
alyzed markovian processes also increases exponentially). In
addition, we have to take into account the possible mechanism
of choosing the free server (e.g. random choice or fastest server
choice). Systems with non-identical (heterogeneous) servers are
relatively seldom investigated. The results of these investiga-
tions (containing classical queueing models with heterogeneous
servers analysis) can be found e.g. in [7, 8, 15–17,21].

On the other hand, in classical queueing models we assume
that customers are homogeneous. In other words, they differ in
arriving time moments only, and we do not take into account
that they can be different in some other aspects. For example,
independently on other customers, a customer can be charac-
terized by some random volume (size) that has an influence on
his service time. If we assume the above non-homogenity, we
obtain the new class of queueing models containing the systems
with customers of random volume. During such investigations
we generally have to take into account both possible limitation
of the total (customers) volume (which is the sum of the volumes
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of all customers present in the system at some time instant or
in steady state) and character of dependency between customer
volume and his service time. As summary volume can be limited
or unlimited and analyzed random variables (customer volume
and his service time) can be dependent or independent, we ob-
tain four types of models. The classification of such models can
be found in [18]. The results of the analysis involve not only dis-
cussed classical characteristics but also new results like total vol-
ume distribution (at any time instant or in steady state). It is worth
highlighting in this case the meaning of the loss characteristics
for the models with limited total volume. Here we analyze two
loss characteristics Ploss (part of lost customers) and Qloss (which
is the information unit loss probability showing the part of lost
information). These characteristics strictly depend on both the
memory volume V (that limits total volume) and the character of
the dependency between customer volume and his service time.
In this case loss probability in the steady state Ploss is often big-
ger than pn+m (the customer volume also has an influence on his
possible lost). The above dependency plays very important role
– we can design two different systems that are undifferentiated
from the classical point of view (e.g. they have the same charac-
teristics of arrival rate and service time) and obtain different final
results containing customers number distribution and loss prob-
ability for these systems. This is the main reason why such mod-
els analysis needed expanding of the previously used classical
methods (at the beginning, for analyzing such systems classical
queueing models were used but obtained results did not coincide
with simulation ones because during the analysis dependency
between customer volume and his service time was not exactly
taken into account [12,13]). It is also clear that this approach is
more closely related to the real computer (or network) systems in
which we have memory limitation and dependence between the
service time of the customer (packet) and his volume (size). The
practical usage of obtained results is related to the process of de-
signing computer systems in which the customers usually carry
some portion of information that is located on servers having
limited memory. The above calculations can be exemplary used
to choose the proper value of the memory of the computer sys-
tem according to assumptions connected with maximal accept-
able loss characteristics. The importance of such investigations
increases together with the progress of computer systems and
network solutions (e.g. routers, nodes of telecommunication net-
works). Some of these models were analyzed e.g. in [18,22,23].
The most difficult for analysis are the models with limited total
volume and service time depending on customer volume. The
exact formulae for steady-state customers number distribution
and loss probability were obtained only for systems without
waiting positions (Erlang queueing system M/G/n/(0,V ) [19]
and processor sharing system M/G/1/(∞,V )−EPS [20]).

In classical queueing theory and its applications to loss net-
works (that are a collection of resources shared by calls [11])
the Erlang problem plays an important role. The simplest Erlang
formula [5, 6] determines the steady-state distribution of num-
ber of customers present in the system M/M/n/0. Probably the
first generalization of this relation was presented by B.A. Sev-
ast’yanov in [14]. In this paper, it was proved that the above
distribution depends on the first moment of service time only.
So, the Erlang formula was generalized on the system M/G/n/0.

Further generalizations were concerned with 1) analysis of pol-
icy of resource sharing (see e.g. [9, 11]), 2) investigations of
systems with non-Poisson customers entrance flow. E.g in [4]
the system BMAP/M/n/0 was investigated. In this paper, an
algorithm of calculation of steady-state distribution of number
of customers present in the system and the relation for loss prob-
ability were obtained. For all these systems it was assumed that
all servers of the system are identical, but, in some of them, cus-
tomers can belong to different classes dependent on the need of
discrete resource (the amount of which is limited in the system)
for their service. The next generalization of the Erlang problem
concerns with supposition of non-homogenity of customers. It
means that each customer is characterized by some random ca-
pacity (volume) and the total capacity of customers present in
the system is limited by a constant called system capacity (buffer
space) V . Such system was analyzed in [19], where it was sup-
posed that customer service time depends on his volume and the
amount of the discrete resource that the customer needs during
his service. The total amount of this resource in the system is
also limited by some constant value.

The aim of present paper is to analyze the M/�G/n/(0,V )
queueing system with non-homogeneous customers, heteroge-
neous servers and limited (by value V ) total volume. This model
belongs to the very practical class of models in which we take
into account both difference between servers (in practice, all
servers are characterized by different service time distributions),
non-homogenity of the customers (in many practical applica-
tions customers can be understood as packets having some ran-
dom size and service time of the packet usually depends on its
size) and limitation of the total customers volume (e.g. routers
have limited memory size). The approach that we use lets cal-
culate exact characteristics of steady-state customers number
distribution and loss probability.

The rest of the paper is organized as follows. In the next Sec-
tion 2, we introduce some necessary notations and random pro-
cess describing the behavior of the system under consideration
together with functions that characterize this process. Section 3
contains an analysis of the mentioned above model. In this sec-
tion, we obtain the equations for the introduced functions and
give their steady-state solution. By this way, we obtain the ex-
act formulae for steady-state customers number distribution and
loss probability. In Section 4, we investigate some special cases
of the model analyzed in Section 3 and show that the character of
the service time and customer volume dependency has an influ-
ence on the customers number distribution and loss probability
formulae. Finally, Section 5 contains some concluding remarks.

2. The random process and the functions
describing the system behavior

Consider the modification of the classical M/G/n/0 system
in which an arriving customer has additionally some random
volume ζ , where ζ is a non-negative random variable. Let
L(x) = P{ζ < x} be the distribution function of the random
variable ζ . Denote by η(t) the number of customers present
in the system at time instant t. We assume that service time

characteristics can be different for different servers. Denote by
Fj(x,y) =P{ζ < x, ξ j < y}, j = 1,n, the joint distribution func-
tion of the customer volume and his service time for j-th server.
Assume that the total customers volume σ(t), which is the sum
of the volumes of all customers present in the system at time
instant t, is limited by the value V, V > 0. It means that the
arriving at epoch t customer whose volume is equal to x will
be accepted to the service if η(t−) < n and σ(t−)+ x ≤ V . In
opposite case, he will be lost without any influence on the future
system behavior. We also assume that a customer accepted to
service chooses one of free servers randomly. It means that he
will be served by one of l free servers with probability 1/l.

For the system under consideration, we shall obtain the for-
mulae for the steady-state customers number distribution and
loss probability. To do this, we will use the generalized method
of auxiliary variables [2]. We denote by a the parameter of cus-
tomers entrance flow and by B j(y) the distribution function of
service time ξ j for j-th server. Let β j be the mean value of the
random variable ξ j. It is obvious that L(x) = Fj(x,∞) for all
j = 1,n and B j(y) = Fj(∞,y). We also assume that all servers
are numbered by the natural numbers from 1 to n. Let A(t) be
the set of the numbers of busy servers in the system at time
instant t. We denote the rest of the service time of the customer
(that is served by j-th server at time instant t) as ξ ∗

j (t) and the
volumes of the present customers as χ j(t), j ∈ A(t). It is clear
that σ(t) = ∑ j∈A(t) χ j(t).

We shall characterize the system behavior by the following
markovian process:

(
η(t),A(t),ξ ∗

j (t),χ j(t), j ∈ A(t)
)
. (1)

Later on, we shall denote the analyzed system by the notation
M/�G/n/(0,V ). It is clear that, in the case of empty system
(η(t) = 0), the process (1) reduces to η(t).

The process (1) is characterized by the following functions
(see [23]):

Pk(t) = P{η(t) = k}, k = 0,n; (2)

P{i1,...,ik}
k (t) = P{η(t) = k, A(t) = {i1, . . . , ik}},

k = 1,n;
(3)

G{i1,...,ik}
k (y1, . . . ,yk, t) = P

{
η(t) = k, A(t) = {i1, . . . , ik},

ξ ∗
i j
(t)< y j, j = 1,k

}
, k = 1,n;

(4)

H{i1,...,ik}
k (x,y1, . . . ,yk, t) = P

{
η(t)=k, A(t)={i1, . . . , ik},

σ(t)< x, ξ ∗
i j
(t)< y j, j = 1,k

}
, k = 1,n.

(5)

If k = n, the functions (4) and (5) are denoted by
Gn(y1, . . . ,yn, t) and Hn(x,y1, . . . ,yn, t), respectively.

In steady-state (if the inequality aβ j < ∞, j = 1,n, holds), we
can introduce the stationary analogies of the functions (2)–(5):

pk = lim
t→∞

Pk(t), k = 0,n; (6)

p{i1,...,ik}
k = lim

t→∞
P{i1,...,ik}

k (t), k = 1,n; (7)

g{i1,...,ik}
k (y1, . . . ,yk) =

= lim
t→∞

G{i1,...,ik}
k (y1, . . . ,yk, t), k = 1,n; (8)

h{i1,...,ik}
k (x,y1, . . . ,yk) =

= lim
t→∞

H{i1,...,ik}
k (x,y1, . . . ,yk, t), k = 1,n. (9)

If k = n, we use the notations gn(y1, . . . ,yn) and hn(x,y1, . . . ,yn)

instead of g{i1,...,in}
n (y1, . . . ,yn) and h{i1,...,in}

n (x,y1, . . . ,yn), re-
spectively. Note that the functions (4), (5) and (8), (9) are
not symmetrical in regard to permutations of the variables y j,
j = 1,k, because the servers are not identical in the system under
consideration.

It is clear that

p{i1,...,ik}
k = g{i1,...,ik}

k (∞, . . . ,∞), (10)

g{i1,...,ik}
k (y1, . . . ,yk) = h{i1,...,ik}

k (V,y1, . . . ,yk), k=1,n. (11)

3. An analysis of the model

First, we analyze, for simplicity, the system with two different
servers (n = 2). In this case, we can write down the following
difference equations:

P0(t +∆t) = P0(t)(1−a∆tL(V ))+G{1}
1 (∆t, t)

+G{2}
1 (∆t, t)+o(∆t); (12)

G{1}
1 (y, t +∆t) =

a∆t
2

P0(t)F1(V,y+∆t)+G{1}
1 (y+∆t, t)

−G{1}
1 (∆t, t)−a∆t

V∫

0

H{1}
1 (V − x,y+∆t, t)dL(x)

+G2(y+∆t,∆t, t)+o(∆t); (13)

G{2}
1 (y, t +∆t) =

a∆t
2

P0(t)F2(V,y+∆t)+G{2}
1 (y+∆t, t)

−G{2}
1 (∆t, t)−a∆t

V∫

0

H{2}
1 (V − x,y+∆t, t)dL(x)

+G2(∆t,y+∆t, t)+o(∆t); (14)

G2(y1,y2, t +∆t) = a∆t
V∫

0

(
H{1}

1 (V − x,y1 +∆t, t)

−H{1}
1 (V − x,∆t, t)

)
dxF2(x,y2 +∆t)

+a∆t
V∫

0

(
H{2}

1 (V − x,y2 +∆t, t)

−H{2}
1 (V − x,∆t, t)

)
dxF1(x,y1 +∆t)

+G2(y1 +∆t,y2 +∆t, t)−G2(∆t,y2 +∆t, t)

−G2(y1 +∆t,∆t, t)+o(∆t). (15)
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characteristics can be different for different servers. Denote by
Fj(x,y) =P{ζ < x, ξ j < y}, j = 1,n, the joint distribution func-
tion of the customer volume and his service time for j-th server.
Assume that the total customers volume σ(t), which is the sum
of the volumes of all customers present in the system at time
instant t, is limited by the value V, V > 0. It means that the
arriving at epoch t customer whose volume is equal to x will
be accepted to the service if η(t−) < n and σ(t−)+ x ≤ V . In
opposite case, he will be lost without any influence on the future
system behavior. We also assume that a customer accepted to
service chooses one of free servers randomly. It means that he
will be served by one of l free servers with probability 1/l.

For the system under consideration, we shall obtain the for-
mulae for the steady-state customers number distribution and
loss probability. To do this, we will use the generalized method
of auxiliary variables [2]. We denote by a the parameter of cus-
tomers entrance flow and by B j(y) the distribution function of
service time ξ j for j-th server. Let β j be the mean value of the
random variable ξ j. It is obvious that L(x) = Fj(x,∞) for all
j = 1,n and B j(y) = Fj(∞,y). We also assume that all servers
are numbered by the natural numbers from 1 to n. Let A(t) be
the set of the numbers of busy servers in the system at time
instant t. We denote the rest of the service time of the customer
(that is served by j-th server at time instant t) as ξ ∗

j (t) and the
volumes of the present customers as χ j(t), j ∈ A(t). It is clear
that σ(t) = ∑ j∈A(t) χ j(t).

We shall characterize the system behavior by the following
markovian process:

(
η(t),A(t),ξ ∗

j (t),χ j(t), j ∈ A(t)
)
. (1)

Later on, we shall denote the analyzed system by the notation
M/�G/n/(0,V ). It is clear that, in the case of empty system
(η(t) = 0), the process (1) reduces to η(t).

The process (1) is characterized by the following functions
(see [23]):

Pk(t) = P{η(t) = k}, k = 0,n; (2)

P{i1,...,ik}
k (t) = P{η(t) = k, A(t) = {i1, . . . , ik}},

k = 1,n;
(3)

G{i1,...,ik}
k (y1, . . . ,yk, t) = P

{
η(t) = k, A(t) = {i1, . . . , ik},

ξ ∗
i j
(t)< y j, j = 1,k

}
, k = 1,n;

(4)

H{i1,...,ik}
k (x,y1, . . . ,yk, t) = P

{
η(t)=k, A(t)={i1, . . . , ik},

σ(t)< x, ξ ∗
i j
(t)< y j, j = 1,k

}
, k = 1,n.

(5)

If k = n, the functions (4) and (5) are denoted by
Gn(y1, . . . ,yn, t) and Hn(x,y1, . . . ,yn, t), respectively.

In steady-state (if the inequality aβ j < ∞, j = 1,n, holds), we
can introduce the stationary analogies of the functions (2)–(5):

pk = lim
t→∞

Pk(t), k = 0,n; (6)

p{i1,...,ik}
k = lim

t→∞
P{i1,...,ik}

k (t), k = 1,n; (7)

g{i1,...,ik}
k (y1, . . . ,yk) =

= lim
t→∞

G{i1,...,ik}
k (y1, . . . ,yk, t), k = 1,n; (8)

h{i1,...,ik}
k (x,y1, . . . ,yk) =

= lim
t→∞

H{i1,...,ik}
k (x,y1, . . . ,yk, t), k = 1,n. (9)

If k = n, we use the notations gn(y1, . . . ,yn) and hn(x,y1, . . . ,yn)

instead of g{i1,...,in}
n (y1, . . . ,yn) and h{i1,...,in}

n (x,y1, . . . ,yn), re-
spectively. Note that the functions (4), (5) and (8), (9) are
not symmetrical in regard to permutations of the variables y j,
j = 1,k, because the servers are not identical in the system under
consideration.

It is clear that

p{i1,...,ik}
k = g{i1,...,ik}

k (∞, . . . ,∞), (10)

g{i1,...,ik}
k (y1, . . . ,yk) = h{i1,...,ik}

k (V,y1, . . . ,yk), k=1,n. (11)

3. An analysis of the model

First, we analyze, for simplicity, the system with two different
servers (n = 2). In this case, we can write down the following
difference equations:

P0(t +∆t) = P0(t)(1−a∆tL(V ))+G{1}
1 (∆t, t)

+G{2}
1 (∆t, t)+o(∆t); (12)

G{1}
1 (y, t +∆t) =

a∆t
2

P0(t)F1(V,y+∆t)+G{1}
1 (y+∆t, t)

−G{1}
1 (∆t, t)−a∆t

V∫

0

H{1}
1 (V − x,y+∆t, t)dL(x)

+G2(y+∆t,∆t, t)+o(∆t); (13)

G{2}
1 (y, t +∆t) =

a∆t
2

P0(t)F2(V,y+∆t)+G{2}
1 (y+∆t, t)

−G{2}
1 (∆t, t)−a∆t

V∫

0

H{2}
1 (V − x,y+∆t, t)dL(x)

+G2(∆t,y+∆t, t)+o(∆t); (14)

G2(y1,y2, t +∆t) = a∆t
V∫

0

(
H{1}

1 (V − x,y1 +∆t, t)

−H{1}
1 (V − x,∆t, t)

)
dxF2(x,y2 +∆t)

+a∆t
V∫

0

(
H{2}

1 (V − x,y2 +∆t, t)

−H{2}
1 (V − x,∆t, t)

)
dxF1(x,y1 +∆t)

+G2(y1 +∆t,y2 +∆t, t)−G2(∆t,y2 +∆t, t)

−G2(y1 +∆t,∆t, t)+o(∆t). (15)
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If ∆t → 0, then, from the equations (12)–(15), we obtain the
following system of the partial differential equations:

dP0(t)
dt

=−aP0(t)L(V )+
∂G{1}

1 (y, t)
∂y

∣∣∣∣
y=0

+
∂G{2}

1 (y, t)
∂y

∣∣∣∣
y=0

; (16)

∂G{1}
1 (y, t)
∂ t

−
∂G{1}

1 (y, t)
∂y

+
∂G{1}

1 (y, t)
∂y

∣∣∣∣
y=0

=
a
2

P0(t)F1(V,y)−a
V∫

0

H{1}
1 (V − x,y, t)dL(x)

+
∂G2(y,u, t)

∂u

∣∣∣∣
u=0

; (17)

∂G{2}
1 (y, t)
∂ t

−
∂G{2}

1 (y, t)
∂y

+
∂G{2}

1 (y, t)
∂y

∣∣∣∣
y=0

=
a
2

P0(t)F2(V,y)−a
V∫

0

H{2}
1 (V − x,y, t)dL(x)

+
∂G2(u,y, t)

∂u

∣∣∣∣
u=0

; (18)

∂G2(y1,y2, t)
∂ t

− ∂G2(y1,y2, t)
∂y1

− ∂G2(y1,y2, t)
∂y2

+
∂G2(y1,y2, t)

∂y1

∣∣∣∣
y1=0

+
∂G2(y1,y2, t)

∂y2

∣∣∣∣
y2=0

= a
V∫

0

H{1}
1 (V − x,y1, t)dxF2(x,y2)

+a
V∫

0

H{2}
1 (V − x,y2, t)dxF1(x,y1). (19)

In steady state (t → ∞), we easily obtain from (16)–(19):

0 =−ap0L(V )+
∂g{1}

1 (y)
∂y

∣∣∣∣
y=0

+
∂g{2}

1 (y)
∂y

∣∣∣∣
y=0

; (20)

−
∂g{1}

1 (y)
∂y

+
∂g{1}

1 (y)
∂y

∣∣∣∣
y=0

=
a
2

p0F1(V,y)

−a
V∫

0

h{1}
1 (V − x,y)dL(x)+

∂g2(y,u)
∂u

∣∣∣∣
u=0

; (21)

−
∂g{2}

1 (y)
∂y

+
∂g{2}

1 (y)
∂y

∣∣∣∣
y=0

=
a
2

p0F2(V,y)

−a
V∫

0

h{2}
1 (V − x,y)dL(x)+

∂g2(u,y)
∂u

∣∣∣∣
u=0

; (22)

− ∂g2(y1,y2)

∂y1
− ∂g2(y1,y2)

∂y2

+
∂g2(y1,y2)

∂y1

∣∣∣∣
y1=0

+
∂g2(y1,y2)

∂y2

∣∣∣∣
y2=0

= a
V∫

0

h{1}
1 (V − x,y1)dxF2(x,y2)

+a
V∫

0

h{2}
1 (V − x,y2)dxF1(x,y1). (23)

In steady state, the following boundary conditions take place:

∂g2(y1,y2)

∂y1

∣∣∣∣
y1=0

= a
V∫

0

h{2}
1 (V − x,y2)dL(x); (24)

∂g2(y1,y2)

∂y2

∣∣∣∣
y2=0

= a
V∫

0

h{1}
1 (V − x,y1)dL(x). (25)

The normalization condition has the following form:

p0 +g{1}
1 (∞)+g{2}

1 (∞)+g2(∞,∞) = 1. (26)

To write out the solution of the equations (20)–(23) with
the boundary conditions (24), (25), we need some subsidary
notations. Denote by Kj(x,y) the probability than an arbitrary
customer that is served by j-th server ( j = 1,2) has a volume
less than x and service time greater or equal y i.e.

Kj(x,y) = P{ζ < x, ξ j ≥ y}
= P{ζ < x}−P{ζ < x, ξ j < y}
= L(x)−Fj(x,y), j = 1,2.

(27)

Introduce one more function that is defined as follows:

Ry
j(x) =

y∫

0

Kj(x,u)du, j = 1,2. (28)

We also use the following notation for the Stieltjes convolution
of the functions F1(x) and F2(x):

F1 ∗F2(x) =
x∫

0

F1(x−u)dF2(u). (29)

By direct substitution, taking into account the boundary con-
ditions (24), (25), we can check that the solution of the equations
(20)–(23) has the following form:

h{ j}
1 (x,y) =

ap0

2
Ry

j(x), j = 1,2; (30)

g{ j}
1 (y) =

ap0

2
Ry

j(V ), j = 1,2; (31)

g2(y1,y2) =
a2 p0

2
Ry1

1 ∗Ry2
2 (V ). (32)

Now we introduce one more notation:

D j(x) = lim
y→∞

Ry
j(x), j = 1,2. (33)

Taking into consideration relation (10), we finally obtain:

p{ j}
1 =

ap0

2
D j(V ), j = 1,2; (34)

p1 = p{1}
1 + p{2}

1 =
ap0

2
(D1(V )+D2(V )) ; (35)

p2 =
a2 p0

2
D1 ∗D2(V ) (36)

and

p0 =

[
1+

a
2
(D1(V )+D2(V ))+

a2

2
D1 ∗D2(V )

]−1

, (37)

as it follows from the relation (26).
We can analyze the general case of M/�G/n/(0,V ) system

with heterogeneous servers, non-homogeneous customers and
limited memory space by analogous way. It is clear that the
number of equations describing the system behavior increases
exponentially together with increasing number of servers n. For
simplicity, we introduce the following notations. Let {Cn

k} be the
set of all k-element combinations of the n-element set. Then, the
steady-state equations for the system under consideration can be
presented in the following form:

0 =−ap0L(V )+
n

∑
i=1

∂g{i}
1 (y)
∂y

∣∣∣∣
y=0

; (38)

−
∂g{i}

1 (y)
∂y

+
∂g{i}

1 (y)
∂y

∣∣∣∣
y=0

=
a
n

p0Fi(V,y)

−a
V∫

0

h{i}
1 (V − x,y)dL(x)+

i−1

∑
j=1

∂g{i, j}
2 (u,y)

∂u

∣∣∣∣
u=0

+
n

∑
j=i+1

∂g{i, j}
2 (y,u)

∂u

∣∣∣∣
u=0

, i = 1,n; (39)

−
k

∑
i=1

∂g{i1,...,ik}
k (y1, . . . ,yk)

∂yi
+

k

∑
i=1

∂g{i1,...,ik}
k (y1, . . . ,yk)

∂yi

∣∣∣∣
yi=0

=
a

n−k+1

k

∑
j=1

V∫

0

h
{i1,...,i j−1,i j+1,...,ik}
k−1 (V−x,y1, ...,y j−1,y j+1, ...,yk)

× dxFj(x,y j)−a
V∫

0

h{i1,...,ik}
k (V − x,y1, . . . ,yk)dL(x)

+ ∑
j/∈{i1,...,ik}

∂g{i1,...,ik, j}
k+1 (y1, . . . ,y j−1,u,y j, . . . ,yk)

∂u

∣∣∣∣
u=0

,

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n−1; (40)

−
n

∑
i=1

∂gn(y1, . . . ,yn)

∂yi
+

n

∑
i=1

∂gn(y1, . . . ,yn)

∂yi

∣∣∣∣
yi=0

= a
n

∑
j=1

V∫

0

h
{i1,...,i j−1,i j+1,...,in}
n−1 (V−x,y1, ...,y j−1,y j+1, ...,yn)

× dxFj(x,y j). (41)

The following boundary conditions take place:

∂g{i1,...,ik}
k (y1, . . . ,yk)

∂y j

∣∣∣∣
y j=0

=
a

n− k+1

V∫

0

h
{i1,...,i j−1,i j+1,...,ik}
k−1 (V − x,y j)dL(x),

j = 1,k, k = 2,n. (42)

By direct substitution, taking into account the boundary con-
ditions (42) and using analogously defined functions Ry

j(x) and
D j(x), we can check that the solution of equations (38)–(41) has
the following form:

h{ j}
1 (x,y) =

ap0

n
Ry

j(x), j = 1,n; (43)

h{i1,...,ik}
k (x,y1, . . . ,yk) =

ak(n− k)!p0

n!
Ry1

i1
∗ . . .∗Ryk

ik
(x),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n−1; (44)

g{ j}
1 (y) =

ap0

n
Ry

j(V ), j = 1,n; (45)

g{i1,...,ik}
k (y1, . . . ,yk) =

ak(n− k)!p0

n!
Ry1

i1
∗ . . .∗Ryk

ik
(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n; (46)

p{ j}
1 =

ap0

n
D j(V ), j = 1,n; (47)

p{i1,...,ik}
k =

ak(n− k)!p0

n!
Di1 ∗ . . .∗Dik(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n. (48)

Finally, we obtain steady-state customers number distribution
in the following form:

p1 =
ap0

n

n

∑
j=1

D j(V ); (49)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ . . .∗Dik(V ), (50)

k = 2,n,
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Now we introduce one more notation:

D j(x) = lim
y→∞

Ry
j(x), j = 1,2. (33)

Taking into consideration relation (10), we finally obtain:

p{ j}
1 =

ap0

2
D j(V ), j = 1,2; (34)

p1 = p{1}
1 + p{2}

1 =
ap0

2
(D1(V )+D2(V )) ; (35)

p2 =
a2 p0

2
D1 ∗D2(V ) (36)

and

p0 =

[
1+

a
2
(D1(V )+D2(V ))+

a2

2
D1 ∗D2(V )

]−1

, (37)

as it follows from the relation (26).
We can analyze the general case of M/�G/n/(0,V ) system

with heterogeneous servers, non-homogeneous customers and
limited memory space by analogous way. It is clear that the
number of equations describing the system behavior increases
exponentially together with increasing number of servers n. For
simplicity, we introduce the following notations. Let {Cn

k} be the
set of all k-element combinations of the n-element set. Then, the
steady-state equations for the system under consideration can be
presented in the following form:

0 =−ap0L(V )+
n

∑
i=1

∂g{i}
1 (y)
∂y

∣∣∣∣
y=0

; (38)

−
∂g{i}

1 (y)
∂y

+
∂g{i}

1 (y)
∂y

∣∣∣∣
y=0

=
a
n

p0Fi(V,y)

−a
V∫

0

h{i}
1 (V − x,y)dL(x)+

i−1

∑
j=1

∂g{i, j}
2 (u,y)

∂u

∣∣∣∣
u=0

+
n

∑
j=i+1

∂g{i, j}
2 (y,u)

∂u

∣∣∣∣
u=0

, i = 1,n; (39)

−
k

∑
i=1

∂g{i1,...,ik}
k (y1, . . . ,yk)

∂yi
+

k

∑
i=1

∂g{i1,...,ik}
k (y1, . . . ,yk)

∂yi

∣∣∣∣
yi=0

=
a

n−k+1

k

∑
j=1

V∫

0

h
{i1,...,i j−1,i j+1,...,ik}
k−1 (V−x,y1, ...,y j−1,y j+1, ...,yk)

× dxFj(x,y j)−a
V∫

0

h{i1,...,ik}
k (V − x,y1, . . . ,yk)dL(x)

+ ∑
j/∈{i1,...,ik}

∂g{i1,...,ik, j}
k+1 (y1, . . . ,y j−1,u,y j, . . . ,yk)

∂u

∣∣∣∣
u=0

,

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n−1; (40)

−
n

∑
i=1

∂gn(y1, . . . ,yn)

∂yi
+

n

∑
i=1

∂gn(y1, . . . ,yn)

∂yi

∣∣∣∣
yi=0

= a
n

∑
j=1

V∫

0

h
{i1,...,i j−1,i j+1,...,in}
n−1 (V−x,y1, ...,y j−1,y j+1, ...,yn)

× dxFj(x,y j). (41)

The following boundary conditions take place:

∂g{i1,...,ik}
k (y1, . . . ,yk)

∂y j

∣∣∣∣
y j=0

=
a

n− k+1

V∫

0

h
{i1,...,i j−1,i j+1,...,ik}
k−1 (V − x,y j)dL(x),

j = 1,k, k = 2,n. (42)

By direct substitution, taking into account the boundary con-
ditions (42) and using analogously defined functions Ry

j(x) and
D j(x), we can check that the solution of equations (38)–(41) has
the following form:

h{ j}
1 (x,y) =

ap0

n
Ry

j(x), j = 1,n; (43)

h{i1,...,ik}
k (x,y1, . . . ,yk) =

ak(n− k)!p0

n!
Ry1

i1
∗ . . .∗Ryk

ik
(x),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n−1; (44)

g{ j}
1 (y) =

ap0

n
Ry

j(V ), j = 1,n; (45)

g{i1,...,ik}
k (y1, . . . ,yk) =

ak(n− k)!p0

n!
Ry1

i1
∗ . . .∗Ryk

ik
(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n; (46)

p{ j}
1 =

ap0

n
D j(V ), j = 1,n; (47)

p{i1,...,ik}
k =

ak(n− k)!p0

n!
Di1 ∗ . . .∗Dik(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n. (48)

Finally, we obtain steady-state customers number distribution
in the following form:

p1 =
ap0

n

n

∑
j=1

D j(V ); (49)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ . . .∗Dik(V ), (50)

k = 2,n,
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where

p0 =

[
1+

a
n

n

∑
j=1

D j(V )

+
1
n!

n

∑
k=2

ak(n−k)! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ ...∗Dik(V )



−1

(51)

can be obtained from the normalization condition ∑n
k=0 pk = 1.

As it follows from the obtained relations, the steady-state cus-
tomers number distribution in the system under consideration
depends not only on the mean values (β j) of service time (as
it takes place in the classical M/�G/n/0 model [23]) but it also
depends on the joint distribution fuction of the customer volume
and his service time. Formulae (47)–(51) can be used for calcu-
lating of some very practical characteristics, including the mean
value of the steady-state number of customers present in the
system (Eη = ∑n

k=0 kpk) and steady-state distribution of usage
of j-th server Q j ( j = 1,n). Indeed, we have

Q j =
n

∑
k=1

P({Cn
k, j}), (52)

where {Cn
k, j} denotes the set of all k-element subsets of the set

of the numbers of servers containing j and P({Cn
k, j}) denotes

the probability that we find our system in a state from the set
{Cn

k, j} e.g. for the system M/�G/3/(0,V ) we obtain:

Q1 = p{1}
1 + p{1,2}

2 + p{1,3}
2 + p3 ,

Q2 = p{2}
1 + p{1,2}

2 + p{2,3}
2 + p3 ,

Q3 = p{3}
1 + p{1,3}

2 + p{2,3}
2 + p3 .

Now we find a formula for the steady-state loss probability. It is
clear that it is not equal to pn as it takes place for the classical
M/�G/n/0 model [23]. The arriving customer can be lost not
only in the case when there are no free servers at his arriving
epoch, but also if his volume is too big, for the reason that the
total volume is limited.

To find the formula for the steady-state loss probability Ploss,
we use the equilibrium condition. This condition is based on
the fact that, in steady state, the average number of customers
accepted for service within a time unit is equal to the average
number of customers whose service was terminated within this
time period. Therefore, we obtain the following equation:

a(1−Ploss)

=
n

∑
k=1

∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

∂g{i1,...,ik}
k (∞ j−1,z,∞k− j)

∂ z

∣∣∣∣
z=0

, (53)

where ∞ j = (∞, . . . ,∞) denotes the vector with j components,

from which we have:

Ploss = 1− 1
a

×


 n

∑
k=1

∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

∂g{i1,...,ik}
k (∞ j−1,z,∞k− j)

∂ z

∣∣∣∣
z=0


. (54)

Taking into account the relations (45), (46), we easily obtain:

∂g{ j}
1 (z)
∂ z

∣∣∣∣
z=0

=
ap0

n
L(V ), j = 1,n; (55)

∂g{i1,...,ik}
k (∞ j−1,z,∞k− j)

∂ z

∣∣∣∣
z=0

=
ak p0(n− k)!

n!

×Di1 ∗ ...∗Di j−1 ∗L∗Di j+1 ∗ ...∗Dik(V ), (56)

{i1, ..., ik} ∈ {Cn
k}, k = 2,n.

Finally, the loss probability formula takes the form:

Ploss = 1− p0

[
L(V )+

1
n!

n

∑
k=2

ak−1(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

Di1 ∗ ...∗Di j−1 ∗L∗Di j+1 ∗ ...∗Dik(V )

]
. (57)

4. Special cases and numerical examples

In this section, we consider two practical special cases of the an-
alyzed model. In the first case, customer volume and his service
time on j-th server, j = 1,n, are independent. The second case
presents a situation in which service time on j-th server is pro-
portional to customer volume with coefficient c j i.e. ξ j = c jζ .
For these special cases, we obtain the formulae for the steady-
state customers number distribution and loss probabilty and
present some numerical results.

4.1. Service time and customer volume are independent.
Assume that customer volume and his service time are indepen-
dent for every server. It is obvious that Fj(x,y) = L(x)B j(y) in
this case. Then, the formulae (45)–(51) take the following form:

g{ j}
1 (y) =

ap0L(V )

n

y∫

0

[1−B j(u)]du, j = 1,n; (58)

g{i1,...,ik}
k (y1, . . . ,yk)

=
ak(n− k)!p0

n!

k

∏
j=1

y j∫

0

[1−Bi j(u)]du L∗
k(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n; (59)

p{ j}
1 =

ap0L(V )β j

n
, j = 1,n; (60)

p{i1,...,ik}
k =

ak(n− k)!p0

n!

k

∏
j=1

βi j L∗
k(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n; (61)

p1 =
ap0L(V )

n

n

∑
j=1

β j; (62)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

βi j L∗
k(V ), k = 2,n; (63)

p0 =

[
1+

aL(V )

n

n

∑
j=1

β j

+
1
n!

n

∑
k=2

ak(n− k)! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

βi j L∗
k(V )



−1

, (64)

where L∗
k(x) denotes the k-fold Stieltjes convolution of the func-

tion L(x).
Loss probability formula takes the form:

Ploss = 1− p0

[
L(V )+

1
n!

n

∑
k=2

ak−1(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

k

∏
l=1, l �= j

βil L∗
k(V )


 . (65)

It is clear that we can use the above formulae to calculate exact
characteristics only if the convolutions L∗

k(x) can be obtained in
exact form. In other cases, we can use approximating methods.

Let us additionally assume that customer volume is expo-
nentially distributed with parameter f and his service time on
each of n servers is exponentially distributed with parameters
µ1, . . . ,µn, respectively. Then, we obtain the following exact
formulae:

p1 =
ap0

(
1− e− fV

)
n

n

∑
j=1

1
µ j

; (66)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

1
µi j

(
1− e− fV

k−1

∑
l=0

( fV )l

l!

)
,

k = 2,n; (67)

p0 =

[
1+

a
(
1− e− fV

)
n

n

∑
j=1

1
µ j

+
1
n!

n

∑
k=2

ak(n− k)! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

1
µi j

(
1

− e− fV
k−1

∑
l=0

( fV )l

l!

)]−1

; (68)

Ploss = 1− p0

[
1− e− fV +

1
n!

n

∑
k=2

ak−1(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

k

∏
l=1, l �= j

1
µil

(
1− e− fV

k−1

∑
l=0

( fV )l

l!

)]
. (69)

Now, we illustrate obtained theoretical results with some nu-
merical example. Let us consider M/�M/3/(0,V ) queueing sys-
tem in which service times are exponentially distributed with
parameters µ1 = 2, µ2 = 4 and µ3 = 5. Service times and cus-
tomer volumes are independent and the customer volume is
exponentially distributed with parameter f = 1. The parameter
of a Poisson entrance flow is equal to a = 1. Then, using the
relations (66)–(69), we obtain the following results:

p1 =
19
60

p0
(
1− e−V ) ;

p2 =
11

240
p0

(
1− e−V (1+V )

)
;

p3 =
1

240
p0

(
1− e−V

(
1+V +

V 2

2

))
;

p0 =

[
1+

19
60

(
1− e−V )+ 11

240
(
1− e−V (1+V )

)

+
1

240

(
1− e−V

(
1+V +

V 2

2

))]−1

;

Ploss = 1− p0

[
1− e−V +

19
60

(
1− e−V (1+V )

)

+
11

240

(
1− e−V

(
1+V +

V 2

2

))]
.

(70)

Now we present obtained results in two tables. Table 1
presents the results for the steady-state customers number dis-
tribution pk, k = 0,3 and loss probability Ploss obtained us-
ing (70). Calculations were done using previously prepared
Python3 scripts [3], whereas in Table 2 we present the same
results obtained by simulation. Simulation was done with the
usage of discrete event simulation method (DES) that is dis-
cussed e.g. in [10] with the help of previously prepared Python3
programs [3]. As the moments of discrete events in the above
method (generated with the usage of computer random gen-
erators) we take here the moments when state of the system
changes (in whiles of customers arrival or their service termina-
tion). During simulation we collect (sum) all time characteristics
of system presence in state k (k customers present in the system).
We use obtained statistics Tk to calculate this part of simulation
time T M in which system is in state k. This pSIM

k statistics equals
Tk/T M and converges to pk if T M → ∞ (we choose enough long
simulation time T M). By analogous way, we also calculate this
part of the number of arriving customers that are lost (this PSIM

loss
statistics converges to Ploss). We can see that the simulation
results (Table 2) confirm theoretical ones (Table 1).

In the next numerical example, we investigate M/�G/2/(0,V )
system with Poisson entrance flow parameter a = 4. Assume
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p{i1,...,ik}
k =

ak(n− k)!p0

n!

k

∏
j=1

βi j L∗
k(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n; (61)

p1 =
ap0L(V )

n

n

∑
j=1

β j; (62)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

βi j L∗
k(V ), k = 2,n; (63)

p0 =

[
1+

aL(V )

n

n

∑
j=1

β j

+
1
n!

n

∑
k=2

ak(n− k)! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

βi j L∗
k(V )



−1

, (64)

where L∗
k(x) denotes the k-fold Stieltjes convolution of the func-

tion L(x).
Loss probability formula takes the form:

Ploss = 1− p0

[
L(V )+

1
n!

n

∑
k=2

ak−1(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

k

∏
l=1, l �= j

βil L∗
k(V )


 . (65)

It is clear that we can use the above formulae to calculate exact
characteristics only if the convolutions L∗

k(x) can be obtained in
exact form. In other cases, we can use approximating methods.

Let us additionally assume that customer volume is expo-
nentially distributed with parameter f and his service time on
each of n servers is exponentially distributed with parameters
µ1, . . . ,µn, respectively. Then, we obtain the following exact
formulae:

p1 =
ap0

(
1− e− fV

)
n

n

∑
j=1

1
µ j

; (66)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

1
µi j

(
1− e− fV

k−1

∑
l=0

( fV )l

l!

)
,

k = 2,n; (67)

p0 =

[
1+

a
(
1− e− fV

)
n

n

∑
j=1

1
µ j

+
1
n!

n

∑
k=2

ak(n− k)! ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

1
µi j

(
1

− e− fV
k−1

∑
l=0

( fV )l

l!

)]−1

; (68)

Ploss = 1− p0

[
1− e− fV +

1
n!

n

∑
k=2

ak−1(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

k

∏
l=1, l �= j

1
µil

(
1− e− fV

k−1

∑
l=0

( fV )l

l!

)]
. (69)

Now, we illustrate obtained theoretical results with some nu-
merical example. Let us consider M/�M/3/(0,V ) queueing sys-
tem in which service times are exponentially distributed with
parameters µ1 = 2, µ2 = 4 and µ3 = 5. Service times and cus-
tomer volumes are independent and the customer volume is
exponentially distributed with parameter f = 1. The parameter
of a Poisson entrance flow is equal to a = 1. Then, using the
relations (66)–(69), we obtain the following results:

p1 =
19
60

p0
(
1− e−V ) ;

p2 =
11
240

p0
(
1− e−V (1+V )

)
;

p3 =
1

240
p0

(
1− e−V

(
1+V +

V 2

2

))
;

p0 =

[
1+

19
60

(
1− e−V )+ 11

240
(
1− e−V (1+V )

)

+
1

240

(
1− e−V

(
1+V +

V 2

2

))]−1

;

Ploss = 1− p0

[
1− e−V +

19
60

(
1− e−V (1+V )

)

+
11
240

(
1− e−V

(
1+V +

V 2

2

))]
.

(70)

Now we present obtained results in two tables. Table 1
presents the results for the steady-state customers number dis-
tribution pk, k = 0,3 and loss probability Ploss obtained us-
ing (70). Calculations were done using previously prepared
Python3 scripts [3], whereas in Table 2 we present the same
results obtained by simulation. Simulation was done with the
usage of discrete event simulation method (DES) that is dis-
cussed e.g. in [10] with the help of previously prepared Python3
programs [3]. As the moments of discrete events in the above
method (generated with the usage of computer random gen-
erators) we take here the moments when state of the system
changes (in whiles of customers arrival or their service termina-
tion). During simulation we collect (sum) all time characteristics
of system presence in state k (k customers present in the system).
We use obtained statistics Tk to calculate this part of simulation
time T M in which system is in state k. This pSIM

k statistics equals
Tk/T M and converges to pk if T M → ∞ (we choose enough long
simulation time T M). By analogous way, we also calculate this
part of the number of arriving customers that are lost (this PSIM

loss
statistics converges to Ploss). We can see that the simulation
results (Table 2) confirm theoretical ones (Table 1).

In the next numerical example, we investigate M/�G/2/(0,V )
system with Poisson entrance flow parameter a = 4. Assume
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Table 1
Customers number distribution and loss probability for M/�M/3/(0,V )
system – service times and customer volumes are independent – theo-

retical results

V p0 p1 p2 p3 Ploss

1 0.8247 0.1651 0.0100 0.0003 0.4067

2 0.7678 0.2102 0.0209 0.0010 0.1803

3 0.7463 0.2246 0.0274 0.0018 0.0819

4 0.7376 0.2293 0.0307 0.0023 0.0379

5 0.7341 0.2309 0.0323 0.0027 0.0183

6 0.7327 0.2314 0.0330 0.0029 0.0096

7 0.7321 0.2316 0.0333 0.0030 0.0059

8 0.7319 0.2317 0.0334 0.0030 0.0042

9 0.7318 0.2317 0.0335 0.0030 0.0035

10 0.7317 0.2317 0.0335 0.0030 0.0033

Table 2
Customers number distribution and loss probability for M/�M/3/(0,V )
system – service times and customer volumes are independent – simu-

lation results

V pSIM
0 pSIM

1 pSIM
2 pSIM

3 PSIM
loss

1 0.8245 0.1652 0.0100 0.0003 0.4065

2 0.7677 0.2103 0.0209 0.0010 0.1806

3 0.7468 0.2241 0.0273 0.0018 0.0819

4 0.7379 0.2290 0.0308 0.0023 0.0378

5 0.7350 0.2302 0.0321 0.0027 0.0182

6 0.7327 0.2314 0.0330 0.0029 0.0095

7 0.7327 0.2312 0.0331 0.0030 0.0058

8 0.7327 0.2311 0.0332 0.0030 0.0043

9 0.7314 0.2321 0.0335 0.0030 0.0036

10 0.7325 0.2312 0.0334 0.0030 0.0032

that volumes of the arriving customers are uniformly distributed
on the interval [0,2] and service times on each of two servers
are also uniformly distributed on the intervals [0,5] and [0,10],
respectively and do not depend on the customer volume. For
analyzed example, obtaining the exact form of convolutions ap-
pearing in (64–65) is more complicated and we use the following
method of calculating the convolution F1 ∗F2(x): we calculate
the Laplace-Stieltjes transforms (LSTs) α1(q) and α2(q) of the
functions F1(x) and F2(x), respectively. So the LST of the con-
volution F1 ∗F2(x) has the form α(q) = α1(q)α2(q). It is clear

that function γ(q) =
α(q)

q
is the Laplace transform of the above

convolution. Finally, we use Laplace transform inversion to ob-
tain the formula for F1 ∗ F2(x). This inversion is possible to
calculate with the help of Mathematica environment [1]. The
discussed method is widely investigated e.g. in [25]. Thus, bas-

ing on (62)–(65) formulae, after some calculations, we obtain
the following results:

p1 =
15
2

p0 [V − (V−2)H(V−2)] ;

p2 =
25
2

p0
[
(V−4)2H(V−4)−2(V−2)2H(V−2)+V 2] ;

p0 =

{
1+

15
2
[V − (V−2)H(V−2)]

+
25
2
[
(V−4)2H(V−4)−2(V−2)2H(V−2)+V 2]

}−1

;

Ploss = 1− p0

{
1
2

V − 1
2
(V−2)H(V−2)

+
15
8
[
(V−4)2H(V−4)−2(V−2)2H(V−2)+V 2]

}
,

(71)

where H(x) denotes the Heaviside unit step fuction.
In Table 3 and Table 4 we present the results obtained using

(71) and DES simulation method, respectively. It is clear that,

Table 3
Customers number distribution and loss probability for M/�G/2/(0,V )
system – service times and customer volumes are independent (uniform

distributions) – theoretical results

V p0 p1 p2 Ploss

0.5 0.1270 0.4762 0.3968 0.9087

1.0 0.0476 0.3571 0.5952 0.8869

1.5 0.0248 0.2786 0.6966 0.8769

2.0 0.0152 0.2273 0.7576 0.8712

2.5 0.0114 0.1707 0.8179 0.8659

3.0 0.0097 0.1449 0.8454 0.8635

3.5 0.0089 0.1329 0.8583 0.8624

4.0 0.0086 0.1293 0.8621 0.8621

Table 4
Customers number distribution and loss probability for M/�G/2/(0,V )
system – service times and customer volumes are independent (uniform

distributions) – simulation results

V pSIM
0 pSIM

1 pSIM
2 PSIM

loss

0.5 0.1273 0.4761 0.3966 0.9089

1.0 0.0477 0.3575 0.5948 0.8870

1.5 0.0247 0.2785 0.6967 0.8769

2.0 0.0151 0.2272 0.7578 0.8712

2.5 0.0114 0.1705 0.8181 0.8658

3.0 0.0095 0.1450 0.8455 0.8635

3.5 0.0089 0.1335 0.8576 0.8622

4.0 0.0086 0.1294 0.8620 0.8620

in analyzed case, Ploss → p2 if V → 4 because if V ≥ 4, then the
volume of the arriving customer has no influence on his possible
lost (total volume of two customers is less or equal 4).

4.2. Service time is proportional to customer volume. As-
sume that the service time on j-th server is proportional to the
customer volume with coefficient c j i.e. ξ j = c jζ , j = 1,n. In
this case, we obtain the obvious formula:

Fj(x,y) = P{ζ < x, ξ j < y}= P{ζ < x, c jζ < y}

= P
{

ζ < x, ζ <
y
c j

}
= L

(
min

(
x,

y
c j

))
. (72)

Then, the formulae (45)–(46) take the following form:

g{ j}
1 (y) =

ap0

n


L(V )y−

y∫

0

L
(

min
(

V,
u
c j

))
du


 ,

j = 1,n; (73)

g{i1,...,ik}
k (y1, . . . ,yk) =

ak(n− k)!p0

n!
Ry1

i1
∗ . . .∗Ryk

ik
(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n, (74)

where

R
y j
i j
(x) = L(x)y j −

y j∫

0

L

(
min

(
x,

u
ci j

))
du, j = 1,k.

Our main purpose is to obtain the steady-state customers
number distribution and loss probability in the analyzed special
case. First, we notice interesting property of the fuction D j(x)
defined by (33) that simplify our computations. In our case, this
function can be presented in the following form [19]:

D j(x) =
∞∫

0

Kj(x,u)du =

∞∫

0

P{ζ < x, ξ j ≥ u}du

=

∞∫

0

[L(x)−P{ζ < x, ξ j < u}] du

=

∞∫

0

[L(x)−L(x)B j(u|ζ < x)] du

= L(x)
∞∫

0

[1−B j(u|ζ < x)] du

= L(x) ·E(ξ j|ζ < x)

= E(ξ j,ζ < x) =
x∫

u=0

∞∫

y=0

ydFj(u,y). (75)

If ξ j = c jζ , then we obtain the following formula:

D j(x) = E(ξ j,ζ < x) = c jE(ζ ,ζ < x) = c j

x∫

0

udL(u). (76)

If we use the generalized density function l(x) of the random
variable ζ [24], then we finally obtain:

D j(x) = c j

x∫

0

udL(u) = c j

x∫

0

ul(u)du. (77)

Then, the formulae (47)–(51) take the following form, as it
follows from the relation (77):

p{ j}
1 =

ap0c j

n

V∫

0

ul(u)du, j = 1,n; (78)

p{i1,...,ik}
k =

ak(n− k)!p0

n!
Di1 ∗ . . .∗Dik(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n, (79)

where

Di j(x) = ci j

x∫

0

ul(u)du, j = 1,k;

p1 =
ap0

n

n

∑
j=1

c j

V∫

0

ul(u)du; (80)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ . . .∗Dik(V ),

k = 2,n; (81)

p0 =

[
1+

a
n

n

∑
j=1

c j

V∫

0

udl(u)

+
1
n!

n

∑
k=2

ak(n− k)! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ ...∗Dik(V )

]−1

. (82)

Loss probability formula can be calculated using the relation
(57). In this case, we also can calculate exact characteristics
only if it is possible to obtain exact formulae for the convolutions
appearing in (79) but it has to be also possible to obtain exact
result of the integral

∫ x
0 ul(u)du. In opposite case, we can only

use approximating methods.
Let us additionally assume that customer volume is expo-

nentially distributed with parameter f and service time on j-th
server is proportional to the customer volume with coefficient
c j. It means that service time on j-th server is also exponentially
distributed with parameter f/c j. After rather easy computations,
we obtain in this case:

x∫

0

udl(u) =
1
f

[
1− (1+ f x)e− f x] . (83)



497

M/G
→
/n/(0, V) Erlang queueing system with non-homogeneous customers, non-identical servers and limited memory space

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

in analyzed case, Ploss → p2 if V → 4 because if V ≥ 4, then the
volume of the arriving customer has no influence on his possible
lost (total volume of two customers is less or equal 4).

4.2. Service time is proportional to customer volume. As-
sume that the service time on j-th server is proportional to the
customer volume with coefficient c j i.e. ξ j = c jζ , j = 1,n. In
this case, we obtain the obvious formula:

Fj(x,y) = P{ζ < x, ξ j < y}= P{ζ < x, c jζ < y}

= P
{

ζ < x, ζ <
y
c j

}
= L

(
min

(
x,

y
c j

))
. (72)

Then, the formulae (45)–(46) take the following form:

g{ j}
1 (y) =

ap0

n


L(V )y−

y∫

0

L
(

min
(

V,
u
c j

))
du


 ,

j = 1,n; (73)

g{i1,...,ik}
k (y1, . . . ,yk) =

ak(n− k)!p0

n!
Ry1

i1
∗ . . .∗Ryk

ik
(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n, (74)

where

R
y j
i j
(x) = L(x)y j −

y j∫

0

L

(
min

(
x,

u
ci j

))
du, j = 1,k.

Our main purpose is to obtain the steady-state customers
number distribution and loss probability in the analyzed special
case. First, we notice interesting property of the fuction D j(x)
defined by (33) that simplify our computations. In our case, this
function can be presented in the following form [19]:

D j(x) =
∞∫

0

Kj(x,u)du =

∞∫

0

P{ζ < x, ξ j ≥ u}du

=

∞∫

0

[L(x)−P{ζ < x, ξ j < u}] du

=

∞∫

0

[L(x)−L(x)B j(u|ζ < x)] du

= L(x)
∞∫

0

[1−B j(u|ζ < x)] du

= L(x) ·E(ξ j|ζ < x)

= E(ξ j,ζ < x) =
x∫

u=0

∞∫

y=0

ydFj(u,y). (75)

If ξ j = c jζ , then we obtain the following formula:

D j(x) = E(ξ j,ζ < x) = c jE(ζ ,ζ < x) = c j

x∫

0

udL(u). (76)

If we use the generalized density function l(x) of the random
variable ζ [24], then we finally obtain:

D j(x) = c j

x∫

0

udL(u) = c j

x∫

0

ul(u)du. (77)

Then, the formulae (47)–(51) take the following form, as it
follows from the relation (77):

p{ j}
1 =

ap0c j

n

V∫

0

ul(u)du, j = 1,n; (78)

p{i1,...,ik}
k =

ak(n− k)!p0

n!
Di1 ∗ . . .∗Dik(V ),

{i1, . . . , ik} ∈ {Cn
k}, k = 2,n, (79)

where

Di j(x) = ci j

x∫

0

ul(u)du, j = 1,k;

p1 =
ap0

n

n

∑
j=1

c j

V∫

0

ul(u)du; (80)

pk =
ak(n− k)!p0

n! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ . . .∗Dik(V ),

k = 2,n; (81)

p0 =

[
1+

a
n

n

∑
j=1

c j

V∫

0

udl(u)

+
1
n!

n

∑
k=2

ak(n− k)! ∑
{i1,...,ik}∈{Cn

k }
Di1 ∗ ...∗Dik(V )

]−1

. (82)

Loss probability formula can be calculated using the relation
(57). In this case, we also can calculate exact characteristics
only if it is possible to obtain exact formulae for the convolutions
appearing in (79) but it has to be also possible to obtain exact
result of the integral

∫ x
0 ul(u)du. In opposite case, we can only

use approximating methods.
Let us additionally assume that customer volume is expo-

nentially distributed with parameter f and service time on j-th
server is proportional to the customer volume with coefficient
c j. It means that service time on j-th server is also exponentially
distributed with parameter f/c j. After rather easy computations,
we obtain in this case:

x∫

0

udl(u) =
1
f

[
1− (1+ f x)e− f x] . (83)
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This formula presents the distribution function of second order

Erlang distribution with parameter f multiplied by constant
1
f
,

whereas Erlang distribution function is the Stieltjes convolution
of two functions that are the distributions of independent expo-
nentially distributed random variables with parameter f . So, we
finally obtain the following formulae:

p1 =
ap0

n f

(
1− (1+ fV )e− fV ) n

∑
j=1

c j; (84)

pk =
ak(n− k)!p0

n! f k ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

ci j

(
1− e− fV

2k−1

∑
l=0

( fV )l

l!

)
,

k = 2,n; (85)

p0 =

[
1+

a
n f

(
1− (1+ fV )e− fV ) n

∑
j=1

c j

+
1
n!

n

∑
k=2

(
a
f

)k

(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∏
j=1

ci j

(
1− e− fV

2k−1

∑
l=0

( fV )l

l!

)

−1

; (86)

Ploss = 1− p0

[
1− e− fV +

1
n!

n

∑
k=2

(
a
f

)k−1

(n− k)!

× ∑
{i1,...,ik}∈{Cn

k }

k

∑
j=1

k

∏
l=1, l �= j

cil

(
1− e− fV

2k−2

∑
l=0

( fV )l

l!

)
. (87)

Now, we illustrate the obtained in (84–87) theoretical results
with a numerical example. Let us consider M/�M/3/(0,V )
queueing system in which service times are proportional to
the customer volume with coefficients c1 = 1/2, c2 = 1/4 and
c3 = 1/5, respectively, and the customer volume is exponentially
distributed with parameter f = 1. The parameter of Poisson en-
trance flow is equal to a = 1. From the classical point of view,
this system is the same as the analogous one analyzed in pre-
vious subsection, but on the base of (84–87) we obtain here
following different (in comparison to (70)) formulae:

p1 =
19
60

p0
(
1− e−V (1+V )

)
;

p2 =
11
240

p0

(
1− e−V

(
1+V +

V 2

2
+

V 3

6

))
;

p3 =
1

240
p0

(
1− e−V

(
1+V+

V 2

2
+

V 3

6
+

V 4

24
+

V 5

120

))
;

p0 =

[
1+

19
60

(
1− e−V (1+V )

)

+
11

240

(
1− e−V

(
1+V +

V 2

2
+

V 3

6

))

+
1

240

(
1− e−V

(
1+V +

V 2

2
+

V 3

6
+

V 4

24
+

V 5

120

))]−1

;

Ploss = 1− p0

[
1− e−V +

19
60

(
1− e−V

(
1+V +

V 2

2

))

+
11

240

(
1− e−V

(
1+V +

V 2

2
+

V 3

6
+

V 4

24

))]
. (88)

Analogously to the investigations in previous subsection, Ta-
ble 5 presents the results for the steady-state customers number
distribution and loss probability, obtained using (88), and Ta-
ble 6 presents results for the same system obtained by simula-
tion using DES method and with the help of programs written
in Python3 language. We can see that the results of simulation
(Table 6) also confirm theoretical ones (Table 5).

Table 5
Customers number distribution and loss probability for M/�M/3/(0,V )
system – service times are proportional to the customer volumes –

theoretical results

V p0 p1 p2 p3 Ploss

1 0.9220 0.0772 0.0008 0.0000 0.3936

2 0.8370 0.1574 0.0055 0.0001 0.1885

3 0.7873 0.1997 0.0127 0.0003 0.1014

4 0.7607 0.2188 0.0198 0.0007 0.0567

5 0.7467 0.2269 0.0252 0.0012 0.0321

6 0.7394 0.2301 0.0288 0.0017 0.0185

7 0.7356 0.2313 0.0310 0.0021 0.0111

8 0.7337 0.2316 0.0322 0.0025 0.0071

9 0.7327 0.2317 0.0329 0.0027 0.0051

10 0.7322 0.2317 0.0332 0.0028 0.0040

Table 6
Customers number distribution and loss probability for M/�M/3/(0,V )
system – service times are proportional to the customer volumes –

simulation results

V pSIM
0 pSIM

1 pSIM
2 pSIM

3 PSIM
loss

1 0.9220 0.0772 0.0008 0.0000 0.3939

2 0.8372 0.1573 0.0054 0.0001 0.1879

3 0.7876 0.1995 0.0127 0.0003 0.1012

4 0.7609 0.2186 0.0198 0.0007 0.0567

5 0.7467 0.2269 0.0252 0.0012 0.0323

6 0.7395 0.2301 0.0287 0.0017 0.0187

7 0.7358 0.2313 0.0308 0.0021 0.0111

8 0.7334 0.2317 0.0324 0.0025 0.0070

9 0.7329 0.2317 0.0327 0.0027 0.0050

10 0.7324 0.2315 0.0333 0.0028 0.0042

In addition, we notice that for analyzed system loading pa-

rameter ρ = a( f (1/c1 +1/c2 +1/c3))
−1 =

1
11

� 1 (the speed

of customers service is much greater than the speed of their
arrival), so in this case (and also in analyzed in previous sec-
tion analogous system having the same classical characteristics)
loss probabilities are very small what is also connected with the
small mean value of the customer volume: Eζ = 1 (in compar-
ison to V volume) and simulation results are very close to the
theoretical ones. On the base of analyzed example, we can also
show the possible practical applications of the obtained results.
Assume that we design communication (or computer) system
that has the same parameters and we only want to choose the
proper value of the memory V by this way that loss probability
Ploss satisfies the inequality Ploss ≤ 0.05. In our case Ploss is the
decreasing function of an argument V . On the base of results
presented in Tables 5 and 6, we can choose the following value:
V ≈ 9. In general, if we obtain the exact formula for the loss
probability: Ploss = f (V ) and it is possible to find the inverse
function (it happens very seldom), we can simply chooose the
memory size using formula: V = f−1(Ploss). In opposite case,
we can approximate this value on the base of numerical results
obtained in tables.

In the next example, we analyze M/�G/2/(0,V ) system with
Poisson entrance flow parameter a = 4. Assume that volumes
of the arriving customers are uniformly distributed on the in-
terval [0,2] and service time for the first and second server is
proportional with coefficient c1 = 5/2 and c2 = 5, respectively.
It means that service times on both servers are also uniformly
distributed on the intervals [0,5] and [0,10], respectively, but
they depend on the customer volume. This system is the same
(from the classical point of view) as analogous one analyzed
in previous subsection, but on the base of (80)–(82) and (57)
and with the help of Mathematica environment we obtain here
following diiferent (in comparison to (71)) formulae:

p1 =
15
4

p0
[
V 2 +(4−V 2)H(V −2)

]
;

p2 =
25
24

p0
[
V (V −4)2(V +8)H(V −4)

−2(V −2)3(V +6)H(V −2)+V 4] ;

p0 =
{

1+
15
4
[
V 2 +(4−V 2)H(V −2)

]

+
25
24

[
V (V −4)2(V +8)H(V −4)

− 2(V −2)3(V +6)H(V −2)+V 4]}−1
;

Ploss = 1− p0

{1
2

V − 1
2
(V −2)H(V −2)

+
15
24

[
(V −4)2(V +2)H(V −4)

−2(V −2)2(V +1)H(V −2)+V 3]}.

(89)

Theoretical and simulation results for investigated model are
presented in Table 7 and Table 8, respectively.

We additionally notice that this system (and analogous system
analyzed in previous subsection) is strongly overloaded (load
parameter ρ = a(1/β1 +1/β2)

−1 = 20
3 � 1), so the loss proba-

Table 7
Customers number distribution and loss probability for M/�G/2/(0,V )
system – service times and customer volumes are proportional (uniform

distributions) – theoretical results

V p0 p1 p2 Ploss

0.5 0.4993 0.4681 0.0325 0.8362

1.0 0.1727 0.6475 0.1799 0.8058

1.5 0.0680 0.5736 0.3585 0.8056

2.0 0.0306 0.4592 0.5102 0.8163

2.5 0.0184 0.2753 0.7063 0.8225

3.0 0.0123 0.1838 0.8040 0.8423

3.5 0.0095 0.1422 0.8484 0.8565

4.0 0.0086 0.1293 0.8621 0.8621

Table 8
Customers number distribution and loss probability for M/�G/2/(0,V )
system – service times and customer volumes are proportional (uniform

distributions) – simulation results

V pSIM
0 pSIM

1 pSIM
2 PSIM

loss

0.5 0.5001 0.4674 0.0326 0.8363

1.0 0.1727 0.6478 0.1795 0.8060

1.5 0.0680 0.5736 0.3584 0.8056

2.0 0.0305 0.4578 0.5116 0.8161

2.5 0.0183 0.2748 0.7069 0.8225

3.0 0.0124 0.1836 0.8040 0.8423

3.5 0.0095 0.1422 0.8483 0.8566

4.0 0.0086 0.1293 0.8621 0.8619

bilities are very big (Ploss > 0.8). But, in this situation, we also
obtain the following convergence: Ploss → p2 if V → 4, but sim-
ulation results are not so exact as the theoretical ones, especially
for small values of V .

Finally, if we compare the numerical results obtained in the
above subsections, we can easily notice that two pairs of models
under analysing do not differ from the classical point of view.
It means that they have the same classical characteristics such
like service time distributions or parameters of Poisson entrance
flow. But formula (70) differs from (88) and formula (71) differs
from (89). This fact shows that the character of dependency be-
tween customer volume and his service time has an influence on
steady-state customers number distribution and loss probability.
Our calculations appearing in Tables 1–8 confirm this fact. For
example, loss probabilities have bigger values in the case when
service time is independent on customer volume.

We can also notice that Ploss → pn when V → ∞ which is
obvious, because the big values V have a small influence on the
value of loss probability, that begins to depend more and more
on the number of servers.
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of customers service is much greater than the speed of their
arrival), so in this case (and also in analyzed in previous sec-
tion analogous system having the same classical characteristics)
loss probabilities are very small what is also connected with the
small mean value of the customer volume: Eζ = 1 (in compar-
ison to V volume) and simulation results are very close to the
theoretical ones. On the base of analyzed example, we can also
show the possible practical applications of the obtained results.
Assume that we design communication (or computer) system
that has the same parameters and we only want to choose the
proper value of the memory V by this way that loss probability
Ploss satisfies the inequality Ploss ≤ 0.05. In our case Ploss is the
decreasing function of an argument V . On the base of results
presented in Tables 5 and 6, we can choose the following value:
V ≈ 9. In general, if we obtain the exact formula for the loss
probability: Ploss = f (V ) and it is possible to find the inverse
function (it happens very seldom), we can simply chooose the
memory size using formula: V = f−1(Ploss). In opposite case,
we can approximate this value on the base of numerical results
obtained in tables.

In the next example, we analyze M/�G/2/(0,V ) system with
Poisson entrance flow parameter a = 4. Assume that volumes
of the arriving customers are uniformly distributed on the in-
terval [0,2] and service time for the first and second server is
proportional with coefficient c1 = 5/2 and c2 = 5, respectively.
It means that service times on both servers are also uniformly
distributed on the intervals [0,5] and [0,10], respectively, but
they depend on the customer volume. This system is the same
(from the classical point of view) as analogous one analyzed
in previous subsection, but on the base of (80)–(82) and (57)
and with the help of Mathematica environment we obtain here
following diiferent (in comparison to (71)) formulae:

p1 =
15
4

p0
[
V 2 +(4−V 2)H(V −2)

]
;

p2 =
25
24

p0
[
V (V −4)2(V +8)H(V −4)

−2(V −2)3(V +6)H(V −2)+V 4] ;

p0 =
{

1+
15
4
[
V 2 +(4−V 2)H(V −2)

]

+
25
24

[
V (V −4)2(V +8)H(V −4)

− 2(V −2)3(V +6)H(V −2)+V 4]}−1
;

Ploss = 1− p0

{1
2

V − 1
2
(V −2)H(V −2)

+
15
24

[
(V −4)2(V +2)H(V −4)

−2(V −2)2(V +1)H(V −2)+V 3]}.

(89)

Theoretical and simulation results for investigated model are
presented in Table 7 and Table 8, respectively.

We additionally notice that this system (and analogous system
analyzed in previous subsection) is strongly overloaded (load
parameter ρ = a(1/β1 +1/β2)

−1 = 20
3 � 1), so the loss proba-

Table 7
Customers number distribution and loss probability for M/�G/2/(0,V )
system – service times and customer volumes are proportional (uniform

distributions) – theoretical results

V p0 p1 p2 Ploss

0.5 0.4993 0.4681 0.0325 0.8362

1.0 0.1727 0.6475 0.1799 0.8058

1.5 0.0680 0.5736 0.3585 0.8056

2.0 0.0306 0.4592 0.5102 0.8163

2.5 0.0184 0.2753 0.7063 0.8225

3.0 0.0123 0.1838 0.8040 0.8423

3.5 0.0095 0.1422 0.8484 0.8565

4.0 0.0086 0.1293 0.8621 0.8621

Table 8
Customers number distribution and loss probability for M/�G/2/(0,V )
system – service times and customer volumes are proportional (uniform

distributions) – simulation results

V pSIM
0 pSIM

1 pSIM
2 PSIM

loss

0.5 0.5001 0.4674 0.0326 0.8363

1.0 0.1727 0.6478 0.1795 0.8060

1.5 0.0680 0.5736 0.3584 0.8056

2.0 0.0305 0.4578 0.5116 0.8161

2.5 0.0183 0.2748 0.7069 0.8225

3.0 0.0124 0.1836 0.8040 0.8423

3.5 0.0095 0.1422 0.8483 0.8566

4.0 0.0086 0.1293 0.8621 0.8619

bilities are very big (Ploss > 0.8). But, in this situation, we also
obtain the following convergence: Ploss → p2 if V → 4, but sim-
ulation results are not so exact as the theoretical ones, especially
for small values of V .

Finally, if we compare the numerical results obtained in the
above subsections, we can easily notice that two pairs of models
under analysing do not differ from the classical point of view.
It means that they have the same classical characteristics such
like service time distributions or parameters of Poisson entrance
flow. But formula (70) differs from (88) and formula (71) differs
from (89). This fact shows that the character of dependency be-
tween customer volume and his service time has an influence on
steady-state customers number distribution and loss probability.
Our calculations appearing in Tables 1–8 confirm this fact. For
example, loss probabilities have bigger values in the case when
service time is independent on customer volume.

We can also notice that Ploss → pn when V → ∞ which is
obvious, because the big values V have a small influence on the
value of loss probability, that begins to depend more and more
on the number of servers.
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5. Conclusions

In the present paper, we investigate the queueing sys-
tem of M/G/n/(0,V )-type with heterogeneous servers, non-
homogeneous customers and limited memory space. In the be-
ginning, after exact analysis, we obtain the formulae for steady-
state customers number distribution and loss probability. Later
on, we investigate two interesting and practical special cases
of the analyzed model: when service time on every server and
customer volume are independent and when service time is
proportional to the customer volume for these servers. We illus-
trate these investigations with some numerical examples. Both
the theoretical and simulation results show that the steady-state
customers number distribution and loss probability depend on
the form of the joint distribution of the customer volume and
his service time, and this dependency has a substantial influence
on the steady-state characteristics. Obtained results can be ex-
emplary applied in the process of computer system designing to
calculate the size of needed memory volume.
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