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Abstract. A simple robust cheap LQG control is considered for discrete-time systems with constant input delay. It is well known that the full
loop transfer recovery (LTR) effect measured by error function ∆(z) can only be obtained for minimum-phase (MPH) systems without time-delay.
Explicit analytical expressions for ∆z) versus delay d are derived for both MPH and NMPH (nonminimum-phase) systems. Obviously, introducing
delay deteriorates the LTR effect. In this context the ARMAX system as a simple example of noise-correlated system is examined. The robustness
of LQG/LTR control is analyzed and compared with state prediction control whose robust stability is formulated via LMI. Also, the robustness with
respect to uncertain time-delay is considered including the control systems which are unstable in open-loop. An analysis of LQG/LTR problem
for noise-correlated systems, particularly for ARMAX system, is included and the case of proper systems is analyzed. Computer simulations of
second-order systems with constant time-delay are given to illustrate the performance and recovery error for considered systems and controllers.
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1. Introduction

The control of input-delayed systems has an abundant literature,
see the below cited papers and the references therein. The same
can be said about the robust LQG control based on LTR ap-
proach. However, there is still a space for research combining
both control problems for various discrete-time systems.

The LQG/LTR control for discrete-time state-space systems
was investigated for example in [30] where the general design
aspects of LTR both at the input and the output of the con-
trol system are presented. In [28] the asymptotic case of LQG
control, i.e. when the control weighting factor in the cost func-
tion tends to zero is considered for both predicting and fil-
tering type of controller. The case of NMPH system is also
discussed. Robust LQG/LTR control of discrete-time systems
with time-delay at the input (or equivalently with computa-
tion delay) is a specific problem within a general LQG/LTR
framework. In this context, some results are given in the lit-
erature, like for example: [13, 14, 20, 22, 33]. In [20], an ex-
tension to the case where the LQG/LTR problem with re-
spect to the system input is solved for the square (i.e. when
the number of inputs and outputs is equal) MPH system with
d-sample delay is presented, where the recovery at both sys-
tem input and output is investigated and the corresponding re-
covered loop transfer matrices are derived. Further extension
of these results can be found in [33] where LQG/LTR prob-
lem was solved for NMPH systems with time-delays and ex-
plicit expressions of sensitivity and loop matrices are derived

∗e-mail: dariusz.horla@put.poznan.pl.pl

for the asymptotic behaviour of control system. From stabil-
ity point of view, among the systems with delays two classes
can generally be distinguished: delay-dependent stability and
delay-independent stability. The former concerns the systems
with unknown, time-varying (also randomly-varying) delays
where the delay information, involved in the criterion, is di-
rectly used in the feedback controller. The stability conditions
are usually derived in terms of LMIs with different levels of
conservatism.

An example of delay-dependent stability criterion for LQ
problem with variable input delay is given as an LMI in [32].
Its less conservative version is proposed in [11] or other in [4].
Other approaches to stabilization of delayed systems can be
found in [5–8].

On the other hand, in the delay-independent case the delay
information, not included in the criterion, is not directly used
in the controller. In that case, the delay is usually assumed
arbitrarily large but bounded integer. An example of using this
stability criterion for stabilization of deterministic discrete-time
state-space system is proposed in [35, 36] and in [17, 18], for
system with structured uncertainty. In the case of constant and
known delay the predictor-based controller can obviously assure
the stabilization and performance recovery. If all eigenvalues of
system matrix are inside or on the unit circle the system can
be stabilized for arbitrarily large delay, so the open-loop system
cannot be exponentially unstable.

The stability conditions in stochastic time-delay systems also
fall into delay-dependent and delay-independent classes, where
the former is generally less conservative. There are few methods
to investigate the stabilization problem. One of them is based
on the mean square BIBO stability sense like for example in
[15, 16, 31], for both state and output-feedback controllers and
possible nonlinear modelling errors.
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In this note, the discrete-time Kalman filter-based cheap LQG
control, i.e. with control weighting factor in the cost function
equal to zero, for systems with constant delay at the input is
considered. The concepts of LTR and delay-dependence are ap-
plied. Based on fundamental analysis of the recovery error for
MPH and NMPH stochastic systems given in [20, 28, 33, 34],
the original explicit expressions of error in function of input
delay steps are derived. The resulting robustness with respect
to uncertain delay for stable MPH, NMPH and unstable sys-
tems is analyzed and compared to state-feedback deterministic
predictor-based control whose stability is determined by a given
LMI condition [11]. In the case of unstable systems, the Kalman
predictor-based LQG control in the so called Smith predictor re-
lated structure as proposed in [12], was additionally analyzed
and compared with Kalman filter-based control.

The case of proper systems was analyzed with respect to
the recovery using the transformation of proper system into
its strictly proper model. Moreover, the usefulness of proper
system models preventing the discontinuities of output signal at
sampling instants, is analyzed showing that full recovery is not
achievable.

The ARMAX model represented by the equivalent state-
space model was taken as a simple example of stochastic noise-
correlated system and analyzed with respect to the recovery.
As a result, full recovery is shown for delay-free case (d = 1).
In other cases (d > 1) there is no recovery, however the same
nonzero LTR error occurs for both models.

Simulations were performed for the second-order systems
with input delay. First, several computer tests were done for
true system delay d and its model dm used for implementation
of considered controllers. Then, the heuristic dependence of
closed-loop stability on the noise variance in the input-delayed
ARMAX system is examined. The response of unstable system
with given delay is presented, and finally, plots of magnitude of
the error function for MPH and NMPH systems with different
time-delays are included.

2. LQG/LTR for discrete-time systems with input
delay

In this section the available preliminary results from literature
are shortly surveyed and some new contributions are added. The
considered discrete-time systems are described by the following
state-space discrete-time SISO stochastic model

xt+1 = Fxt +gut−d+1 +wt , (1)

yt = hT xt + vt , (2)

where {wt} and {vt} are sequences of independent random
vector and scalar variables with zero mean and covariances
Ewtw

T
s = Σwδt,s, Evtvs = σ2

v δt,s, respectively. The case d = 1
in (1) implies that system has a natural one-step delay in con-
trol channel and its transfer function is G(z) = hT (zI −F)−1g.
The delay d = 1,2,3, . . . is given as multiplicity of sampling
period Ts.

The system (1), (2) can be transformed to

xp
t+1 = Fxp

t +gut +wp
t , (3)

yt = hT xp
t−d+1 + vt , (4)

where xp
t = xt+d−1 and the Kalman filter estimate of xp

t is
given by

x̂p
t/t = F p

[
x̂T

t/t ,ut−d+1, · · · ,ut−1

]T
, (5)

where F p =
[
Fd−1,Fd−2g,Fd−3g, · · · ,Fg,g

]
and the filtered

estimate x̂t/t in terms of prediction x̂t/t−1 follows from

x̂t/t = x̂t/t−1 + k f ŷp
t , (6)

where ŷp
t = yt −hT x̂t/t−1 is an output error. The Kalman predic-

tor for xt+1 in steady-state is given by

x̂t+1/t = Fx̂t/t−1 +gut−d+1 + kpŷp
t (7)

and its gain is

kp = FPf h
[
hT Pf h+σ2

v
]−1

, (8)

where Pf is the solution of Riccati equation

Pf = FPf FT +Σw −FPf h
[
hT Pf h+σ2

v
]−1

hT Pf FT . (9)

The filter gain is

k f = Pf h
[
hT Pf h+σ2

v
]−1

, (10)

so kp = Fk f in view of (8) and (10). Finally, combining (6) and
(7) one gets

x̂t/t−1 = Fx̂t−1/t−1 +gut−d+1 . (11)

The LQG cheap control law

ut = kT
c x̂p

t/t (12)

aims to minimize the cost function

J = E
∞

∑
t=0

y2
t , (13)

so the optimal gain kc is

kT
c =−

[
gT Pcg

]−1
gT PcF (14)

and Pc is the solution to Riccati equation

Pc = FT PcF −FT Pcg
[
gT Pcg

]−1
gT PcF +Q. (15)

In accordance with (13), the weighting matrix Q is taken as
Q= hhT . The control law (12) in view of (5) can be decomposed
as follows

ut = kT
c Fd−1x̂t/t + kT

c

t−1

∑
i=t−d+1

Ft−i−1gui = u f
t +ud

t (16)

where u f
t is the part of control related to feedback from Kalman

filter and ud
t = kT

c ∑t−1
i=t−d+1 Ft−i−1gui is the part resulting from

the number of delay steps.

2.1. Stable minimum-phase systems. The system (1), (2) is
assumed to be stabilizable, detectable and MPH.

It can be shown e.g. in [28,30] that for d = 1 the gain kc takes
very simple form

kT
c =−

(
hT g

)−1
hT F (17)

under the condition that hT g �= 0 i.e. the the relative degree
r of the system transfer function G(z) equals 1 (note that the
transfer function G(z) is determined for natural one step de-
lay d = 1). This means that the corresponding transfer func-
tion of continuous-time system is strictly proper assuming zero-
order hold discretization with sample period Ts. Discretizing the
proper continuous-time systems, the relative degree r of G(z)
would be 0 and there would be a direct link between yt and
ut in (2). This case is analyzed further in subsection 2.4. It is
also worthy noting that if the relative degree of continuous-time
transfer function is greater than 1 the excessive discretization
zeros would be outside (or on) the unit circle.

The transfer function G f (z) of filter-based compensator de-
fined by (6) and (12) can be manipulated into the form (see for
example [28]),

G f (z) = zkT
c
[
zI −

(
I − k f hT )(F +gkT

c
)]−1

k f =

= zkT
c
[
zI −F −gkT

c
]−1

k f , (18)

where the right hand side is derived using (17) and d = 1. In
that case the perfect recovery can take place, that is

∆(z) = Ξ(z)−G(z)G f (z) = 0, (19)

where the filter’s loop transfer function Ξ(z) is

Ξ(z) = hT Φ(z)Fk f (20)

and Φ(z) = (zI −F)−1.
Time-delay in control channel of the system (1), (2) can alter-

natively be characterized by assuming that delay is incorporated
into the transfer function G(z) so that the new system model has
the Markov parameters fulfilling the following properties

hT g = hT Fg = · · ·= hT Fd−2g = 0, hT Fd−1g �= 0 (21)

for d ≥ 1; usually the notation md = hT Fd−1g is adopted.
The transfer function of the new system model is Gm(z) =

z−(d−1)G(z) and the relative degree r of G(z) equals 1. In case
when the relative degree of G(z) is r > 1 then the Markov pa-
rameters fulfill (21) replacing d by r.

In [33], [20] it was shown that for MPH systems the error
function ∆(z) for the optimal gain

kT
c =−m−1

d hT Fd (22)

has the form

∆(z) = hT
(

I − z−(d−1)Fd−1
)

Φ(z)Fk f (23)

for d ≥ 1. In general ∆(z) �= 0, so the perfect recovery cannot be
obtained except the case d = 1 where ∆(z)= 0, what corresponds
to (19). For d ≥ 2 the error function is derived as

∆(z) = hT E(z)k f , (24)

where the matrix E(z) is given by

E(z) =
d−1

∑
i=1

z−iFi

so it is a series which is bounded for stable matrix F and any
value of time-delay. The error function ∆(z) can be interpreted
as a delay-dependent measure of recovery degree in frequency
domain.

As already mentioned, assuming that G(z) has the relative
degree r ≥ 2, the Markov parameters correspond to (21) by
taking d = r. The feedback gain follows then from (22) and the
relative degree r is equivalent to the number of delay steps in
the system.

2.2. Stable nonminimum-phase systems. It is known that
if the system (1), (2) is NMPH then the perfect recovery is
in general not possible. Similarly, it is interesting to see what
happens when the LTR procedure is applied for this system with
included time-delay. Usually, it is recommended to apply LTR
for NMPH systems because the partial recovery could be then
achieved [33], see [34] for continuous-time systems. The result
for MPH systems can be modified for the NMPH systems after
the appropriate factorization of Φ(z) [33]. For every NMPH
system the all-pass factorization is possible

G(z) = hT Φ(z)g = Ga(z)Gmph(z) = hT
mGa(z)Φ(z)g , (25)

where Ga(z) is all-pass and Gmph(z) is MPH stable transfer
function. Partial recovery (∆(z) �= 0) for time-delayed system is
then possible with LQG control gain

kT
c =−

(
hT

mFd−1g
)−1

hT
mFd , (26)

where hm can be easily obtained as a function of system param-
eters.

The recovery error is now

∆(z) =
(

hT − z−(d−1)Ga(z)hT
mFd−1

)
Φ(z)Fk f . (27)
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In accordance with (13), the weighting matrix Q is taken as
Q= hhT . The control law (12) in view of (5) can be decomposed
as follows

ut = kT
c Fd−1x̂t/t + kT

c

t−1

∑
i=t−d+1

Ft−i−1gui = u f
t +ud

t (16)

where u f
t is the part of control related to feedback from Kalman

filter and ud
t = kT

c ∑t−1
i=t−d+1 Ft−i−1gui is the part resulting from

the number of delay steps.

2.1. Stable minimum-phase systems. The system (1), (2) is
assumed to be stabilizable, detectable and MPH.

It can be shown e.g. in [28,30] that for d = 1 the gain kc takes
very simple form

kT
c =−

(
hT g

)−1
hT F (17)

under the condition that hT g �= 0 i.e. the the relative degree
r of the system transfer function G(z) equals 1 (note that the
transfer function G(z) is determined for natural one step de-
lay d = 1). This means that the corresponding transfer func-
tion of continuous-time system is strictly proper assuming zero-
order hold discretization with sample period Ts. Discretizing the
proper continuous-time systems, the relative degree r of G(z)
would be 0 and there would be a direct link between yt and
ut in (2). This case is analyzed further in subsection 2.4. It is
also worthy noting that if the relative degree of continuous-time
transfer function is greater than 1 the excessive discretization
zeros would be outside (or on) the unit circle.

The transfer function G f (z) of filter-based compensator de-
fined by (6) and (12) can be manipulated into the form (see for
example [28]),

G f (z) = zkT
c
[
zI −

(
I − k f hT )(F +gkT

c
)]−1

k f =

= zkT
c
[
zI −F −gkT

c
]−1

k f , (18)

where the right hand side is derived using (17) and d = 1. In
that case the perfect recovery can take place, that is

∆(z) = Ξ(z)−G(z)G f (z) = 0, (19)

where the filter’s loop transfer function Ξ(z) is

Ξ(z) = hT Φ(z)Fk f (20)

and Φ(z) = (zI −F)−1.
Time-delay in control channel of the system (1), (2) can alter-

natively be characterized by assuming that delay is incorporated
into the transfer function G(z) so that the new system model has
the Markov parameters fulfilling the following properties

hT g = hT Fg = · · ·= hT Fd−2g = 0, hT Fd−1g �= 0 (21)

for d ≥ 1; usually the notation md = hT Fd−1g is adopted.
The transfer function of the new system model is Gm(z) =

z−(d−1)G(z) and the relative degree r of G(z) equals 1. In case
when the relative degree of G(z) is r > 1 then the Markov pa-
rameters fulfill (21) replacing d by r.

In [33], [20] it was shown that for MPH systems the error
function ∆(z) for the optimal gain

kT
c =−m−1

d hT Fd (22)

has the form

∆(z) = hT
(

I − z−(d−1)Fd−1
)

Φ(z)Fk f (23)

for d ≥ 1. In general ∆(z) �= 0, so the perfect recovery cannot be
obtained except the case d = 1 where ∆(z)= 0, what corresponds
to (19). For d ≥ 2 the error function is derived as

∆(z) = hT E(z)k f , (24)

where the matrix E(z) is given by

E(z) =
d−1

∑
i=1

z−iFi

so it is a series which is bounded for stable matrix F and any
value of time-delay. The error function ∆(z) can be interpreted
as a delay-dependent measure of recovery degree in frequency
domain.

As already mentioned, assuming that G(z) has the relative
degree r ≥ 2, the Markov parameters correspond to (21) by
taking d = r. The feedback gain follows then from (22) and the
relative degree r is equivalent to the number of delay steps in
the system.

2.2. Stable nonminimum-phase systems. It is known that
if the system (1), (2) is NMPH then the perfect recovery is
in general not possible. Similarly, it is interesting to see what
happens when the LTR procedure is applied for this system with
included time-delay. Usually, it is recommended to apply LTR
for NMPH systems because the partial recovery could be then
achieved [33], see [34] for continuous-time systems. The result
for MPH systems can be modified for the NMPH systems after
the appropriate factorization of Φ(z) [33]. For every NMPH
system the all-pass factorization is possible

G(z) = hT Φ(z)g = Ga(z)Gmph(z) = hT
mGa(z)Φ(z)g , (25)

where Ga(z) is all-pass and Gmph(z) is MPH stable transfer
function. Partial recovery (∆(z) �= 0) for time-delayed system is
then possible with LQG control gain

kT
c =−

(
hT

mFd−1g
)−1

hT
mFd , (26)

where hm can be easily obtained as a function of system param-
eters.

The recovery error is now

∆(z) =
(

hT − z−(d−1)Ga(z)hT
mFd−1

)
Φ(z)Fk f . (27)
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Again, in the case d = 1, the recovery error is

∆(z) =
(
hT −hT

mGa(z)
)

Φ(z)Fk f , (28)

so is not zero due to NMPH system.
Similarly to (24) one can derive from (27) that for d ≥ 2

∆(z) = hT E(z)k f +(hT −hT
mGa(z))Enmph(z)k f , (29)

where the matrix Enmph(z) is given by

Enmph(z) =
∞

∑
i=d

z−iFi

so compared with (24) an additional term appears which re-
sults from NMPH feature of the system.This term becomes un-
bounded for unstable matrix F .

By inspecting (27) it is easy to see [33], that the error function
∆(z) is identically zero, i.e. full recovery takes place, if the
loop transfer function Ξ(z) (20) to be recovered, satisfies the
following conditions
• Ξ(z) = Ga(z)hT

mΦ(z)Fk f ,

• hT Fk f = hT F2k f = · · ·= hT Fdk f = 0.
This means that the observer loop has the same NMPH structure
and at least as many delay steps as the system. If this is not
fulfilled one may conclude in the light of above considerations
that for stable both MPH and NMPH discrete-time state-space
systems with input delay the recovery error ∆(z) is finite and
depends explicitly on the system matrix and the value of delay,
so for its exact calculation the delay d must be known.

2.3. Unstable systems. In general, there are no conditions
preserving global stability of unstable systems with delay, so
the existing techniques aim to find out the value of destabiliz-
ing delay ddest. It is known that standard Smith predictor-based
controllers are not suitable for unstable open-loop systems, how-
ever there are modifications such that unstable systems could be
stabilizable, see as an example a scheme proposed in [26] for
integrating and unstable systems described by SISO transfer
functions.

An implementation form of LQG control which is free
from unstable hidden modes was proposed in [12] for Kalman
predictor-based controller ut = kT

c Fdx̂t/t−1. Adopting the result
of [12], the final form for control law is

ut = kT
c T (z)gut + kT

c Fd−1 (I +Φ(z)kphT )−1 Φ(z)×

×
(

kpyt + z−d+1gut

)
= u f ir

t +up
t , (30)

where T (z) = (I−Fd−1z−d+1)Φ(z)) is the finite response term
and for implementation of control signal ut , the finite response
signal u f ir

t is calculated as follows

u f ir
t = kT

c

t−1

∑
i=t−d+1

Ft−i−1gui . (31)

It can be seen that u f ir
t coincides with ud

t in (16) for Kalman
filter-based controller. The above approach can be interpreted as
a modified control system of Smith predictor structure which is
suited to cope with unstable systems. The predictor term up

t of
control signal (30) is

up
t = kT

c Fd (I +Φ(z)kphT )−1 Φ(z)
(

kpyt + z−d+1gut

)
. (32)

On the other hand, the derivation of the filter term u f
t in (16)

yields

u f
t = kT

c Fd−1
[(

I + k f hT )(I +Φ(z)kphT )−1 Φ(z)×

×
(

kpyt + z−d+1gut

)]
+ k f yt (33)

which is slightly different from the predictor term up
t given by

(32).
The error function (24) is not suitable for unstable systems.

Alternatively, the sensitivity approach can be applied by defining
the sensitivity error function ∆s(z) = ∆so(z)−∆sc(z), where the
observer sensitivity ∆so(z) = [1+ hT ΦFk f ]

−1 and the closed-
loop sensitivity ∆sc(z)= [1+G(z)G f (z)]−1 are both stable. Sim-
ilarly to (24), the error function ∆s(z) can be manipulated to
∆s(z) = hT Es(z)k f where the matrix Es(z) depends on system
parameters, so the value maxω |∆s(z)| might be a good measure
of recovery.

2.4. Proper systems. Taking care of discontinuity of the sys-
tem output at sampling instants [1], the model (1), (2) takes a
form

xt+1 = Fxt +gut−d+1 +wt , (34)

yt+1 = hT xt+1 + eut−d + vt , (35)

where e ≥ 0 and the model transfer function Gm(z) =
G(z)z−(d−1) + ez−d is causal and strictly proper. The transfer
function G(z) can be considered as a nominal model. The Riccati
equation takes now the form of generalized equation (15), i.e.

Pc = FT PcF −
(
FT Pcg+ eh

)[
gT Pcg+ e2]−1×

×
(
gT PcF + ehT )+Q (36)

and assuming d = 1, the feedback gain is

kT
c =−

[
gT Pcg+ e2]−1 (

gT PcF + ehT ) . (37)

The control law follows then from (36), (37) for Pc = 0 what
requires the weighting matrix Q = hhT . This gives

kT
c =−e−1hT . (38)

It is easy to see that the same feedback gain kT
c can be deduced

directly from (35), however for implementing the causal control
law ut = kT

c x̂t the Kalman filter

x̂t+1 = Fx̂t +gut + k f (yt+1 − ŷt+1) (39)

is used, where ŷt+1 = hT x̂t+1 + eut and the corresponding
Kalman filter gain is as in (10).

To check the recovery, the compensator transfer function G f
(yt → ut) derived using (39), and for d = 1, gives the following
form

G f (z) = zkT
c
[
z
(
I + k f hT )− (

F +gkT
c
)
+ ek f kT

c
]−1

k f . (40)

Obviously, the above transfer function differs essentially from
(18). In fact, the term inside square brackets in (40) is a matrix
pencil and solution of its eigenvalue problem is a difficult numer-
ical task. Moreover, taking into account Gm(z) = G(z)+ ez−1,
one may see that the term Gm(z)G f (z) makes the recovery anal-
ysis of (19) complicated.

For comparison, a direct application of Kalman filter based
on (6), (7), to system (34), (35), is considered taking yt+1− ŷt+1
as an input to the filter where ŷt+1 = hT x̂t+1/t + eut and the
corresponding Kalman filter gain is as in (10). Then the transfer
function of the compensator can be derived as

G f (z) = zkT
c
[
zI −

(
I − k f hT )(F +gkT

c
)
+ ek f kT

c
]−1

k f (41)

which shows the difference from (40) however, the above form
of G f (z) corresponds to (18). Specifically, for e = 0, the above
transfer function is equivalent to (18), and recovery analysis is
feasible for e > 0.

The LTR problem was also considered in [19] however, the
loop recovery was analyzed based on the sensitivity matrix at
the system input. The skewed sampling model was considered
with output sampling equation taken in the form

yt+1 = hT xt + eut + vt , (42)

where e ≥ 0 and the model transfer function is Gm(z) =
z−1(G(z)+ e) which is strictly proper. The corresponding Ric-
cati equation is given by (36), and the feedback gain given by
(37). In this case the control signal is also given by (38).

For state estimation the Kalman filter (39) is used with ŷt+1 =
hT x̂t + eut and the corresponding Kalman filter gain k f is given
by (10).

Obviously, the both models, i.e. (34), (35) and (42), (34) pre-
vent discontinuity of output signal at sampling instants, however
from LTR point of view the model (34), (35) is less useful. On
the other hand, in the case of delay-free (d = 1), and MPH
skewed sampling model (42), (34), the recovery, on the basis of
the result given in subsection 2.1, is possible.

In [19] it was shown that if Gm(z) is MPH then the sensitivity
matrix at the input converges asymptotically to the sensitivity
matrix at the system input under perfect observation. This con-
firms the convergence of the LTR procedure for MPH case. For
NMPH systems, even for delay-free case the full recovery is not
attainable.

It is known [23] that the cost function (13) is minimized if and

only if the cost Jr =E
∞

∑
t=0

y2
t+r is minimized where r is the relative

degree. This means that models described by output equations

(35), (42) do not deteriorate the performance of control given
by the feedback gain (38).

The compensator transfer function for the skewed sampling
model, assuming d = 1, has the following form

G f (z) = zkT
c
[
zI −

(
F +gkT

c
)
+ k f hT + ek f kT

c
]−1

k f . (43)

One may observe that for kT
c given by (38) the above transfer

function coincides with right hand part of (18). Taking into
account Gm(z) = z−1(G(z)+e), one may see that this is not the
case of full recovery in the sense of (19) because ∆ �= 0.

It is worthy noting that different forms of compensator transfer
functions (40), (41), (43) come from different Kalman filter
corresponding to the particular model Gm(z) of a proper system.

Alternatively, in order to make use of the results from subsec-
tion 2.1 applied to strictly proper system (1), (2), and assuming
d = 1, the following extended model

xe
t+1 = Fexe

t +gert +we
t , (44)

yt+1 = heT xe
t + ve

t , (45)

can be adopted, where xe
t =

(
xT

t ,ut
)T is an extended state vec-

tor and Fe =

[
F g
0T −1

]
, ge = (0T ,1)T , heT = (hT ,e) and

the optimal controls follow from recursion ut+1 =−ut + rt , this
means that control signal ut can be retrieved from vt . It is worthy
noting that equation (45) corresponds to output sampling equa-
tion (42). The Riccati equation and control gain are analogous
to (15), (14), so the matrix solution to Riccati equation is now
Pe

c = Q = heheT , moreover, the condition heT ge > 0 is fulfilled.
Systems (34), (35) and (44), (45) are, for a given initial con-

dition, equivalent from control point of view. Moreover, the
dynamics of the Kalman filter remains the same, however the
question is whether equality (19) will hold, even for delay d = 1.

To show the difference between both cases the feedback gain
for strictly proper extended model (44), (45) with e > 0, is
derived. It is known that the control Riccati equation is now

keT
c =−

(
e−1hT F,e−1hT g−1

)
, (46)

where decomposition keT
c =

(
keT

cx ,k
e
cu
)

is used. Noting the fol-
lowing property of the extended model with nonsingular ma-
trix F

ke
cu − keT

cx F−1g−1 = 0, (47)

one may conclude that

kT
c = keT

cx F−1, (48)

that corresponds to (38). In the special case of e = hT g, the gain
keT

c = (kT
c ,0) where kT

c is given by (17), and the recovery takes
place as described in subsection 2.1.

The following transfer functions for extended model can be
found:
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is used, where ŷt+1 = hT x̂t+1 + eut and the corresponding
Kalman filter gain is as in (10).

To check the recovery, the compensator transfer function G f
(yt → ut) derived using (39), and for d = 1, gives the following
form

G f (z) = zkT
c
[
z
(
I + k f hT )− (

F +gkT
c
)
+ ek f kT

c
]−1

k f . (40)

Obviously, the above transfer function differs essentially from
(18). In fact, the term inside square brackets in (40) is a matrix
pencil and solution of its eigenvalue problem is a difficult numer-
ical task. Moreover, taking into account Gm(z) = G(z)+ ez−1,
one may see that the term Gm(z)G f (z) makes the recovery anal-
ysis of (19) complicated.

For comparison, a direct application of Kalman filter based
on (6), (7), to system (34), (35), is considered taking yt+1− ŷt+1
as an input to the filter where ŷt+1 = hT x̂t+1/t + eut and the
corresponding Kalman filter gain is as in (10). Then the transfer
function of the compensator can be derived as

G f (z) = zkT
c
[
zI −

(
I − k f hT )(F +gkT

c
)
+ ek f kT

c
]−1

k f (41)

which shows the difference from (40) however, the above form
of G f (z) corresponds to (18). Specifically, for e = 0, the above
transfer function is equivalent to (18), and recovery analysis is
feasible for e > 0.

The LTR problem was also considered in [19] however, the
loop recovery was analyzed based on the sensitivity matrix at
the system input. The skewed sampling model was considered
with output sampling equation taken in the form

yt+1 = hT xt + eut + vt , (42)

where e ≥ 0 and the model transfer function is Gm(z) =
z−1(G(z)+ e) which is strictly proper. The corresponding Ric-
cati equation is given by (36), and the feedback gain given by
(37). In this case the control signal is also given by (38).

For state estimation the Kalman filter (39) is used with ŷt+1 =
hT x̂t + eut and the corresponding Kalman filter gain k f is given
by (10).

Obviously, the both models, i.e. (34), (35) and (42), (34) pre-
vent discontinuity of output signal at sampling instants, however
from LTR point of view the model (34), (35) is less useful. On
the other hand, in the case of delay-free (d = 1), and MPH
skewed sampling model (42), (34), the recovery, on the basis of
the result given in subsection 2.1, is possible.

In [19] it was shown that if Gm(z) is MPH then the sensitivity
matrix at the input converges asymptotically to the sensitivity
matrix at the system input under perfect observation. This con-
firms the convergence of the LTR procedure for MPH case. For
NMPH systems, even for delay-free case the full recovery is not
attainable.

It is known [23] that the cost function (13) is minimized if and

only if the cost Jr =E
∞

∑
t=0

y2
t+r is minimized where r is the relative

degree. This means that models described by output equations

(35), (42) do not deteriorate the performance of control given
by the feedback gain (38).

The compensator transfer function for the skewed sampling
model, assuming d = 1, has the following form

G f (z) = zkT
c
[
zI −

(
F +gkT

c
)
+ k f hT + ek f kT

c
]−1

k f . (43)

One may observe that for kT
c given by (38) the above transfer

function coincides with right hand part of (18). Taking into
account Gm(z) = z−1(G(z)+e), one may see that this is not the
case of full recovery in the sense of (19) because ∆ �= 0.

It is worthy noting that different forms of compensator transfer
functions (40), (41), (43) come from different Kalman filter
corresponding to the particular model Gm(z) of a proper system.

Alternatively, in order to make use of the results from subsec-
tion 2.1 applied to strictly proper system (1), (2), and assuming
d = 1, the following extended model

xe
t+1 = Fexe

t +gert +we
t , (44)

yt+1 = heT xe
t + ve

t , (45)

can be adopted, where xe
t =

(
xT

t ,ut
)T is an extended state vec-

tor and Fe =

[
F g
0T −1

]
, ge = (0T ,1)T , heT = (hT ,e) and

the optimal controls follow from recursion ut+1 =−ut + rt , this
means that control signal ut can be retrieved from vt . It is worthy
noting that equation (45) corresponds to output sampling equa-
tion (42). The Riccati equation and control gain are analogous
to (15), (14), so the matrix solution to Riccati equation is now
Pe

c = Q = heheT , moreover, the condition heT ge > 0 is fulfilled.
Systems (34), (35) and (44), (45) are, for a given initial con-

dition, equivalent from control point of view. Moreover, the
dynamics of the Kalman filter remains the same, however the
question is whether equality (19) will hold, even for delay d = 1.

To show the difference between both cases the feedback gain
for strictly proper extended model (44), (45) with e > 0, is
derived. It is known that the control Riccati equation is now

keT
c =−

(
e−1hT F,e−1hT g−1

)
, (46)

where decomposition keT
c =

(
keT

cx ,k
e
cu
)

is used. Noting the fol-
lowing property of the extended model with nonsingular ma-
trix F

ke
cu − keT

cx F−1g−1 = 0, (47)

one may conclude that

kT
c = keT

cx F−1, (48)

that corresponds to (38). In the special case of e = hT g, the gain
keT

c = (kT
c ,0) where kT

c is given by (17), and the recovery takes
place as described in subsection 2.1.

The following transfer functions for extended model can be
found:
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• Gm(z) = (G(z)+e)(z+1)−1 when rt is an input or Gm(z) =
G(z)+ e when ut is an input,

• Ξm(z) = Ξ(z),
• and the compensator transfer function G f (z)

G f (z) = zkeT
cx
[
zI −

(
I − ke

f xhT )(F +gkeT
cx (z+1)+

+ eke
f xkeT

cx
)]−1

ke
f x =

= zkT
c
[
zI −

(
I − k f hT )(F − e−1(z+1)ghT−

− k f hT )]−1
k f . (49)

The last term in (49) is derived for kT
c given by (38) and e > 0.

Moreover, the following notations are used: ke
cu = ke

f u = 0, with

the decomposition ke
f =

[
keT

f x ,k
e
f u

]T
. This means that k f = ke

f x

and kT
c = keT

cx .
Obviously, full recovery is only possible for e= 0, then noting

that rt = (z+ 1)ut , the transfer function G f (z) (49) coincides
with G f (z) in (18).

Hence, the recovery in the sense of (19) is not possible for
any e > 0, however, for small enough e the following holds

∆(z) = Ξ(z)− (G(z)+ e)G f (z) =−eG f (z)≈ 0. (50)

From above equation one can consider the model (44), (45) as
most suitable for analysis of recovery error w.r.t. parameter e.

To analyze the case of any delay d ≥ 1 the formula (22)
was used for extended model (44), (45) including delay d. The
resulting control gain

keT
c =−

(
hT

d−2

∑
i=0

Fig(−1)d−2−i + e(−1)d−1

)−1

×

×

(
hT Fd , hT

d−1

∑
i=0

Fig(−1)d−1−i + e(−1)d

)
(51)

is not asymptotically convergent as d →∞, because of the eigen-
value −1 of matrix Fe. It is worthy noting that for d = 1 the
above formula is the same as (46), and additionally, if e = 0 then
it coincides with (17).

2.5. Stability comments. The delay-dependent LMI condi-
tions for robust stability of noise-free system (1) with unknown
time-varying delay dt belonging to the interval dl ≤ dt ≤ du are
given in [32] and [11] where the lower dl and upper du bounds are
known. The system considered in [11] is under state-feedback
prediction-based controller ut = kT

c x̂t+h/t and compared to the
time-delayed state feedback controller ut = kT

c xt−dt
with a given

gain kc and a given prediction horizon h.
This approach is adopted for comparison study when the un-

known delay d is constant, i.e. dl = du, and x̂t+h/t with horizon
h can be obtained on the base of (7) replacing d by h. The sta-
bility criterion given as LMI is used to determine the maximum
achievable delay ddest that guarantees stability for unstable de-
terministic system – for some positive small enough scalars ε1,

ε2 as the tuning parameters, see Corollary 2 in [11]. This delay
value can serve as an indication on what the value of ddest in
corresponding stochastic system, can be.

To be specific, consider the ARMAX model given by

yt = G(z−1)ut−d+1 +Ge(z−1)et , (52)

where G(z−1) =
B(z−1)

A(z−1)
, Ge(z−1) =

C(z−1)

A(z−1)
, and at the same

time G(z) = hT (zI −F)−1g, Ge(z) = hT (zI −F)−1ke + 1 with
A(z−1),B(z−1) and C(z−1) polynomials in the operator z−1,
i.e. A(q−1) = 1 + a1z−1 + ...+ anz−n,B(z−1) = b1z−1 + ...+
bnz−n,C(z−1) = 1+ c1z−1 + ...+ cnz−n and {et} assumed to
be a sequence of independent variables with zero mean and
variance σ2

e .
Model (52) has an equivalent state-space representation,

xt+1 = Fxt +gut−d+1 + keet , (53)

yt = hT xt + et , (54)

where g = [b1, ...,bn]
T , ke = [c1 − a1, ...,cn − an]

T , hT =

[1,0, ...,0] and F =

[
−a

In−1

0T

]
with a = [a1, ...,an]

T .

The above model can be transformed to a model with uncor-
related noise. To get this the augmented vector pt =

[
xT

t ,yt
]T is

introduced which allows for the new state-space equation

pt+1 = F̃ pt + g̃ut−d+1 +θ t , (55)

where F̃ = EA∗, g̃ = E
[
gT ,0

]T , θ t = E
[
0T ,et+1

]T and E =[
I 0

hT 1

]
, A∗ =

[
F∗ ke

0T 0

]
. Now one can formulate the

following proposition: the stability criterion for the closed-loop
stability of ARMAX system with Kalman filter-based controller
has the same form as LMI condition given in [11] for predictor-
based controller in the case of deterministic system.

To show this, it is enough to derive the predictor form from
(55) and replace d by h, so the result is

p̂t+h = F̃h pt +
h−i−1

∑
i=0

F̃h−i−1g̃ut−h+1. (56)

It is easy to see that the predictor (56) has the same form as
in [11] and together with the controller ut = k̃T

c ˆ̃pt+h/t constitute
the base for derivation of LMI condition that is formulated as
follows: for any k̃c such that the matrix F̃ + g̃k̃c is Hurwitz, and
for dl = du = h, there exist a feasible solution to a given LMI.

As mentioned earlier, the stabilizable and detectable system
with arbitrarily large delay in the control input can be asymptot-
ically stabilized by either linear state or output feedback as long
as the open-loop system is not asymptotically unstable [25].

Related result is given in [10] (refer also to [9, 27]), where
it is proven that the achievable delay margin (corresponding to
ddest in this note) for system G(z) and stabilizing controller is

strictly greater than zero if and only if the system G(z) has no
negative real unstable poles. In particular, the system has delay
margin equal to zero if and only if the system matrix F has a
real unstable pole at (−∞,−1].

For illustration consider an example of simple unstable open-
loop system analyzed in [25],

xt+1 = f xt +ut−d+1

for f > 1 and delay d = 1,2, ... with controller ut = kcxt . Using
the root locus method it was shown that for large enough delay
d the closed-loop system is not asymptotically stable for any
choice of kc. Taking into account the controller (22) one gets kc =
− f for any delay d, and the following characteristic equation

zd − f zd−1 + f = 0

for closed-loop system. It is easy to verify that except the delay-
free case d = 1 when the closed-loop pole is z = 0 for any f > 1,
the closed-loop system is unstable for any d ≥ 2. Concluding,
the controller (22) is not suitable for this unstable open-loop
system for every time-delay d ≥ 2.

The additive uncertain system with input time-delay and pos-
sible unstable poles was considered in [21], where it was shown
that achievable robustness margin decreases to zero as the time-
delay value increases.

3. LTR for ARMAX model

ARMAX model given by equations (53), (54) can be regarded as
a special case of noise-correlated stochastic state-space models
[3]. These equations can take the following representation

xt+1 = F∗xt +gut−d+1 + keyt , (57)

yt = hT xt + et , (58)

where F∗ = F − kehT and kp = ke as an equivalence condition
between state-space (1), (2) and ARMAX (53), (54) models.
In the considered steady-state case, the Kalman filter x̂t/t and
the Kalman predictor x̂t/t−1 estimates derived from (57), (58)
coincide asymptotically, i.e. x̂t/t−1 → x̂t/t → x̂t . The Kalman
filter equation takes then a simple form

x̂t+1 = F∗x̂t +gut−d+1 + keyt . (59)

In order to use the LQG approach to ARMAX model (52), one
possible way is to replace the polynomial B(z−1) and vector g
by (n−d+1)-th order polynomial Bd(z−1) and n-th vector gd =

[bd , ...,bn−d+1,0...0]T , respectively and neglecting the delay in
control channel.

Then, for the model equivalent to (53), (54), the optimal
control law has the following form [2, 24]

ut =−
(

gT
d Sdgd

)−1
gT

d Sd (F∗x̂t + keyt) , (60)

where Sd =
d−1

∑
j=0

F jT hhT F j (for MPH systems) and x̂t follows

from (59). Again, it is assumed that the delay d in system (57),
(58) is characterized by the Markov parameters (21).

Using Sd , md in (60) and taking into account (59), the con-
troller transfer function can be derived as follows

G f (z) = m−1
d

{
hT Fd−1F∗ [zI −G∗

dF∗]−1 ·

· G∗
d

(
I +gdhT Fd−1

)
ke

}
, (61)

where G∗
d = I −m−1

d gdhT Fd−1.
Particularly, for d = 1, from (60), ut reads

ut =−m−1
1 hT (F∗x̂t + keyt). (62)

Again, assuming d = 1 in system (1), (2) with the optimal
control law (12), (17), it is easy to see that asymptotically, the
filter equation derived from (7) is the same as (59), so the con-
sidered control law coincides with (62). Moreover, the filter’s
loop transfer function Ξ(z) is the same. This means that in MPH
ARMAX system the full recovery is attainable despite the noise
correlation. One may conclude that LTR property does not de-
pend on the particular model amongst the covariance equivalent
ones. Generally, this is not the case for any d, however the trans-
fer functions of MV ARMAX and LQG state-space controllers
are identical.

It is interesting to remark that the control law (60) can also be
obtained using the uncorrelated-noise system (55), i.e. solving
the standard LQG problem for this system and replacing xt by x̂t .

Additionally, one can remark that the optimal gain (22) ob-
tained for uncorrelated-noise system can also be derived from
(60) by substituting Sd , putting ke = 0 and taking in account the
Markov parameters (21).

Obviously, the advantage of this modeling is the simple im-
plementation of LQG control without need of explicit solution
to Riccati equation.

4. Simulation study

After ZOH discretization of three different second-order
continuous-time systems, the following discrete-time models

Gi(z−1)z−d+1 =
Bi(z−1)

Ai(z−1)
z−d+1, i = 1,2,3, in z−1 operator, with

time-delay d are obtained for sampling period Ts = 0.5:
• stable MPH system G1(z−1) with

B1(z−1) =−0.3262z−1 −0.1224z−2,
A1(z−1) = 1−0.8297z−1 +0.1535z−2,

• stable NMPH system G2(z−1) with
B2(z−1) =−0.1612z−1 +0.2856z−2,
A2(z−1) = 1−0.9744z−1 +0.223z−2

having one NMPH zero at 1.772, an all-pass transfer func-

tion Ga(z) =
z−1.772

1−1.772z
and according to (25) and (26)

hT
m = (0.5452,1.3077), kT

c = (−0.8391,−1.9091),
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strictly greater than zero if and only if the system G(z) has no
negative real unstable poles. In particular, the system has delay
margin equal to zero if and only if the system matrix F has a
real unstable pole at (−∞,−1].

For illustration consider an example of simple unstable open-
loop system analyzed in [25],

xt+1 = f xt +ut−d+1

for f > 1 and delay d = 1,2, ... with controller ut = kcxt . Using
the root locus method it was shown that for large enough delay
d the closed-loop system is not asymptotically stable for any
choice of kc. Taking into account the controller (22) one gets kc =
− f for any delay d, and the following characteristic equation

zd − f zd−1 + f = 0

for closed-loop system. It is easy to verify that except the delay-
free case d = 1 when the closed-loop pole is z = 0 for any f > 1,
the closed-loop system is unstable for any d ≥ 2. Concluding,
the controller (22) is not suitable for this unstable open-loop
system for every time-delay d ≥ 2.

The additive uncertain system with input time-delay and pos-
sible unstable poles was considered in [21], where it was shown
that achievable robustness margin decreases to zero as the time-
delay value increases.

3. LTR for ARMAX model

ARMAX model given by equations (53), (54) can be regarded as
a special case of noise-correlated stochastic state-space models
[3]. These equations can take the following representation

xt+1 = F∗xt +gut−d+1 + keyt , (57)

yt = hT xt + et , (58)

where F∗ = F − kehT and kp = ke as an equivalence condition
between state-space (1), (2) and ARMAX (53), (54) models.
In the considered steady-state case, the Kalman filter x̂t/t and
the Kalman predictor x̂t/t−1 estimates derived from (57), (58)
coincide asymptotically, i.e. x̂t/t−1 → x̂t/t → x̂t . The Kalman
filter equation takes then a simple form

x̂t+1 = F∗x̂t +gut−d+1 + keyt . (59)

In order to use the LQG approach to ARMAX model (52), one
possible way is to replace the polynomial B(z−1) and vector g
by (n−d+1)-th order polynomial Bd(z−1) and n-th vector gd =

[bd , ...,bn−d+1,0...0]T , respectively and neglecting the delay in
control channel.

Then, for the model equivalent to (53), (54), the optimal
control law has the following form [2, 24]

ut =−
(

gT
d Sdgd

)−1
gT

d Sd (F∗x̂t + keyt) , (60)

where Sd =
d−1

∑
j=0

F jT hhT F j (for MPH systems) and x̂t follows

from (59). Again, it is assumed that the delay d in system (57),
(58) is characterized by the Markov parameters (21).

Using Sd , md in (60) and taking into account (59), the con-
troller transfer function can be derived as follows

G f (z) = m−1
d

{
hT Fd−1F∗ [zI −G∗

dF∗]−1 ·

· G∗
d

(
I +gdhT Fd−1

)
ke

}
, (61)

where G∗
d = I −m−1

d gdhT Fd−1.
Particularly, for d = 1, from (60), ut reads

ut =−m−1
1 hT (F∗x̂t + keyt). (62)

Again, assuming d = 1 in system (1), (2) with the optimal
control law (12), (17), it is easy to see that asymptotically, the
filter equation derived from (7) is the same as (59), so the con-
sidered control law coincides with (62). Moreover, the filter’s
loop transfer function Ξ(z) is the same. This means that in MPH
ARMAX system the full recovery is attainable despite the noise
correlation. One may conclude that LTR property does not de-
pend on the particular model amongst the covariance equivalent
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Additionally, one can remark that the optimal gain (22) ob-
tained for uncorrelated-noise system can also be derived from
(60) by substituting Sd , putting ke = 0 and taking in account the
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Obviously, the advantage of this modeling is the simple im-
plementation of LQG control without need of explicit solution
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4. Simulation study
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continuous-time systems, the following discrete-time models

Gi(z−1)z−d+1 =
Bi(z−1)

Ai(z−1)
z−d+1, i = 1,2,3, in z−1 operator, with

time-delay d are obtained for sampling period Ts = 0.5:
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B1(z−1) =−0.3262z−1 −0.1224z−2,
A1(z−1) = 1−0.8297z−1 +0.1535z−2,
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B2(z−1) =−0.1612z−1 +0.2856z−2,
A2(z−1) = 1−0.9744z−1 +0.223z−2

having one NMPH zero at 1.772, an all-pass transfer func-

tion Ga(z) =
z−1.772

1−1.772z
and according to (25) and (26)

hT
m = (0.5452,1.3077), kT

c = (−0.8391,−1.9091),
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• unstable system G3(z−1) with
B3(z−1) = 1.352z−1 −0.439z−2,
A3(z−1) = 1−5.088z−1 +2.718z−2.

Other systems can be constructed as follows Gi, j(z−1)z−d+1 =

Bi(z−1)

A j(z−1)
z−d+1, i, j = 1,2,3 for i �= j and Gi(z−1) = Gi,i(z−1) for

i = j.
System parameters needed for simulation calculations are ob-

tained from given above transfer functions, according to repre-
sentation of (52).

In computer tests different configurations of system delay d
and its model dm taken for the controller implementation were
tested. In other words the under-modeling dm < d and over-
modeling dm > d cases were simulated.

Obviously, LQG/LTR method with controllers (22), (26) as
well as LMI approach [11] ensure stability for all under- and
over-modeling configurations of time-delays in case of stable
systems both MPH and NMPH (in particular G1(z−1), G2(z−1)).
For unstable systems (in particular G3(z−1)) the global closed-
loop stability can not be assured even in case of perfect delay
matching d = dm, however certain ddest can be established also
in case of stochastic system characterized by the noise variance
σ2

e but the control system is not robust because the stability can
be obtained only if there is no modelling error.

As already mentioned in section 2.5, the determination of the
delay ddest by means of the LMI stability condition given in [11]
holds for noise-free deterministic system under the prediction-
based controller with feedback gain kc (14). This value of the
delay may give an indication on what the value of ddest in corre-
sponding stochastic system can be. Thus, it is supposed that the
value of ddest in deterministic case can be regarded as a bound
of ddest in corresponding stochastic case when noise variance
tends to zero for any delay d > 1.

Calculations based on the considered LMI condition for the
unstable system G3 were performed. For scalars ε1 = ε2 = 10−6

(tuning parameters), the obtained value of destabilizing time-
delay is ddest = 14.

In Fig. 1, the plots of ddest versus variance σ2
e are shown

for unstable systems G13, G23 for MPH and NMPH cases with
controllers (22) and (26), respectively. It was found that for
σ2

e = 0 the obtained average values are ddest = 23,22 for MPH
and NMPH case, respectively. This shows the conservatism of

Fig. 1. Destabilizing values ddest versus noise variance σ2
e ≥ 10−1,

solid line mph, dashed line nmph.

the LMI approach. Obviously, in both cases the stability occurs
only for perfect modeling d = dm.

Plot of output and control variables for unstable G3 MPH
noise-free system with non-zero initial conditions, d = dm = 14
and for controller (22), is given in Fig. 2.

Fig. 2. Output and control variables, a) output, b) control, G3 mph,
d = dm = 14.

Figs. 3, 4 present plots of singular values of the error function
∆(z) in frequency domain over the range

(
0, π

Ts

)
for time-delays

Fig. 3. Singular values [dB] a) d = 3, b) d = 6, c) d = 11, solid line
mph G1, dashed line nmph G21.
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d = dm = 2,5,10, where Ts = 0.5. The plots for systems G1(z−1)
and G21(z−1) and controllers (22), (26), respectively are shown
in Fig. 3. The corresponding plots for G2(z−1) compared to
G12(z−1) are shown in Fig. 4. Note that the system matrix F in
both cases remains unchanged.

Fig. 4. Singular values [dB] a) d = 3, b) d = 6, c) d = 11, solid line
mph G12, dashed line nmph G2.

5. Conclusions

LQG control of discrete-time SISO system with delayed control
in the context of LTR effect is presented and shortly surveyed.
The analytical expressions for recovery error function for stable
MPH and NMPH systems with constant input delay are given.

Finding destabilizing value of time-delay in case of unstable
open-loop system is another important question. To this end,
second-order unstable MPH and NMPH stochastic ARMAX
systems were taken into consideration and the results compared
with the result based on LMI robust stability condition [11] for

corresponding deterministic system. This was done by simula-
tion tests for various delays using LQG controllers (22) and (26)
for ARMAX model. The case of more general delayed stochastic
systems ensuring the mean-square stability needs more research.
The problem with discontinuity of output signal at sampling in-
stants in case of proper systems needs special modelling. In this
regard two models: the left side limit sampling model [1] as well
as skewed sampling model [19] are considered presenting the
corresponding compensator transfer functions which are much
different from transfer function of strictly proper system. In this
respect using of classical Kalman filter allows for improvement.
In general, there is a lack of full LTR property for proper sys-
tems.

Specifically, the control laws with LTR feature for both input-
delayed state-space and noise-correlated ARMAX models are
analyzed. Because of equivalence between state-space LQG and
ARMAX MV control laws, there is a full recovery in the delay-
free (d = 1) case. Obviously, occurrence of any time-delay and
noise correlation in any configuration deteriorates the recovery
in any discrete-time system.
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MPH and NMPH systems with constant input delay are given.

Finding destabilizing value of time-delay in case of unstable
open-loop system is another important question. To this end,
second-order unstable MPH and NMPH stochastic ARMAX
systems were taken into consideration and the results compared
with the result based on LMI robust stability condition [11] for

corresponding deterministic system. This was done by simula-
tion tests for various delays using LQG controllers (22) and (26)
for ARMAX model. The case of more general delayed stochastic
systems ensuring the mean-square stability needs more research.
The problem with discontinuity of output signal at sampling in-
stants in case of proper systems needs special modelling. In this
regard two models: the left side limit sampling model [1] as well
as skewed sampling model [19] are considered presenting the
corresponding compensator transfer functions which are much
different from transfer function of strictly proper system. In this
respect using of classical Kalman filter allows for improvement.
In general, there is a lack of full LTR property for proper sys-
tems.

Specifically, the control laws with LTR feature for both input-
delayed state-space and noise-correlated ARMAX models are
analyzed. Because of equivalence between state-space LQG and
ARMAX MV control laws, there is a full recovery in the delay-
free (d = 1) case. Obviously, occurrence of any time-delay and
noise correlation in any configuration deteriorates the recovery
in any discrete-time system.
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