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Abstract 
 

The paper presents a production scheduling problem in a foundry equipped with two furnaces and one casting line, where the line is a 

bottleneck and furnaces, of the same capacity, work in parallel. The amount of produced castings may not exceed the capacity of the line 

and the furnaces, and their loads determine metal type from which the products are manufactured on the casting line. The purpose of 

planning is to create the processing order of metal production to prevent delays in the delivery of the ordered products to the customers. 

The problem is a mix of a lot-sizing and scheduling problems on two machines (the furnaces) run in parallel. The article gives a 

mathematical model that defines the optimization problem, and its relaxed version based on the concept of a rolling-horizon planning. The 

proposed approaches, i.e. commercial solver and Iterated Local Search (ILS) heuristic, were tested on a sample data and different problem 

sizes. The tests have shown that rolling horizon approach gives the best results for most problems, however, developed ILS algorithm 

gives better results for the largest problem instances with tight furnace capacity. 
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1. Introduction 
 

In this article we examine the problem of production planning 

in a foundry working in the mode of make-to-order (MTO), which 

supplies its customers with many types of iron castings. The 

problem of production planning is to determine the lot size of 

castings produced from required alloys in each period of the finite 

planning horizon, which is divided into smaller subperiods (e.g. 

shifts). The decision maker must take into account two main 

criteria: on-time deliveries and costs minimization of tardiness 

or/and earliness. In order to solve this problem, commercial solvers 

are usually used to find solution for mixed-integer programming 

(MIP) models. 

In our previous papers we investigated the production systems 

consisting of one furnace-one moulding line [1] and one furnace-

two moulding lines [2], where the furnace was a bottleneck. This 

time we study a planning process in the foundry equipped with 

two furnaces and one moulding line, which is a bottleneck. This 

situation is confirmed by industrial observations: many 

enterprises try to eliminate bottlenecks by expanding their 

production capacities, which in turn causes other devices to 

become bottlenecks. To the best of our knowledge the considered 

here combined lot-sizing and scheduling problem has not been 

studied so far. Prior works have not addressed the problem where 

all the considered assumptions are fulfilled [3, 4, 5, and 6]. 

Of course, different variants of the operation of two furnaces 

system are possible; in this case, the simplest option, consisting of 

two furnaces with the same nominal capacity working in parallel, 

was tested. It is possible, therefore, to produce castings made 

from two different alloys in a single subperiod, and furnaces do 

not have to be equally loaded. 

The aim of the article is to present effective methods of 

production planning in the system of two furnaces and a single 

casting line. Section 2 introduces the MIP model for the problem 

under consideration. Section 3 gives details of the proposed 
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methods. The computational experiments are described in Section 4 

and the conclusions are presented in Section 5. 

 

 

2. MIP lot-sizing and scheduling model 
 

The MIP model presented in this section is an extension of 

Araujo et al. lot sizing and scheduling model for automated 

foundry [3]. The model presented herein takes into account the 

assumption that the metal can be produced in two furnaces 

working in parallel, i.e. castings from two different alloy types 

may be produced in the same period. Additional constraint 

ensures that load of each furnace must not be less than a specified 

quantity. We use the following notation: 

Indices 

i = 1,…, I – produced castings; k = 1,…, K –  produced alloy 

types, 

t = 1,…, T – planning horizon (days); n = 1,…, N*T – casting lots, 

where N is the number of casts during the day, 

f = 1, 2  – furnaces’ index. 

 

Parameters 

dit – ordered number of casting i in a day t; wi - weight of casting 

i, 

ak
i = 1, if a casting i is produced from alloy k, otherwise 0, 

Cf – loading capacity of furnace f, 

Lf
min – minimum utilization of furnace f, 

hi
–, hi

+ - tardiness (–) and earliness (+) cost of casting i,  

s - setup cost resulting from a single change of alloy type. 
 

 

Variables 

Iit
–, Iit

+ – number of casting i that must be stored (+) or its 

deficiency (–) at the end of each day t, 

zk
fn = 1, if there is a setup resulting from a change to alloy k in 

furnace f,  otherwise 0, 

yk
fn = 1, if cast of alloy k is planned to be melted in furnace f in  

lot n, otherwise 0, 

xin – number of castings i planned for manufacturing in lot n. 

 

Using such notation the problem of planning and scheduling 

of alloy casts and production of castings can be defined as 

follows: 

Minimize ∑∑(ℎ𝑖
−

𝑇

𝑡=1

𝐼

𝑖=1

𝐼𝑖𝑡
− + ℎ𝑖

+𝐼𝑖𝑡
+) + 𝑠 ⋅∑∑∑𝑧𝑓𝑛

𝑘

𝑁⋅𝑇

𝑛=1

𝐾

𝑘=1

2

𝑓=1

 (1) 
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𝑘 = 0,1,  𝑓 = 1,2, 𝑛 = 1,… ,𝑁𝑇,  𝑘 = 1,… . , 𝐾 (7) 

 

The objective function (1) minimizes inventory costs of the 

castings produced before the due date (earliness), tardiness costs 

of the production delivered after deadline and setup costs 

resulting from alloy change. Constraint (2) balances the inventory 

and deficiency of the castings with a daily demand for them. 

Constraint (3) limits the total weight of the planned castings to the 

capacity of the furnaces. Simultaneously it keeps the minimum 

utilizations of the furnaces above a predefined value. Constraint 

(4) limits the production of castings to the capacity of a moulding 

line. Constraint (5) assigns 1 to zk
fn, if an alloy type for a cast 

planned for furnace f differs from the previous one melted in the 

same furnace. Finally, constraint (6) allows for production of only 

one alloy cast in a single lot and a single furnace.  

The presented model can thus be considered as a variant of a 

generalised lot-sizing and scheduling problem (GLSP) that is well 

recognised in literature. For such a standard problem, typical 

methods used by MIP solvers like branch and bound methods 

with additional constraints or relaxations usually provide 

satisfactory results. Since the model proposed by the authors 

combines both planning lot-sizing of castings and sequencing of 

casts, it requires a non-standard approach.  

Since our initial experiments showed that for larger instances of 

the problem, the solution provided by CPLEX solver deviated 

from the theoretical lower bound by over 60% a heuristic method 

able to achieve more satisfactory results has been developed. 

Another method considered by the authors to increase the 

efficiency of the CPLEX was the adaptation of the method 

proposed by Araujo et al. in [3]. In this method a rolling horizon 

planning [7, 8] is used in which only the plan for a current day is 

calculated keeping all restrictions, while for the remaining days a 

relaxed version of the model is computed. Values of variables 

representing the plan for previous days are fixed. Such approach 

is called fix-and-relax. In the fix and relax method all variables xin 

and yk
fn for the lots that do not belong to the fixed day are relaxed. 

Variable xin, representing the number of castings i produced in lot 

n for relaxed periods, contains continuous values instead of 

integer ones, and variable yk
ft for the relaxed periods contains 

integer values representing the aggregated number of lots in 

which a given alloy is produced.  

Thus constraint (3) is used only for the day that is currently 

planned (tf) and for the remaining days it must be changed as 

follows: 

 

𝐿𝑓𝑚𝑖𝑛𝐶𝑦𝑓𝑡
𝑘 ≤∑𝑤𝑖

𝐼

𝑖=1

𝑥𝑖𝑛𝑎𝑖
𝑘 ≤ 𝐶𝑦𝑓𝑡

𝑘   

 𝑓 = 1,2, 𝑘 = 1,… , 𝐾,  𝑡 = 1,… , 𝑇, 𝑡 ≠ 𝑡𝑓 

(8) 

 

Similarly, constraint (5) for the days following the currently 

planned day can be redefined as follows: 

 

∑𝑦𝑓𝑡
𝑘 = 𝑁

𝐾

𝑘=1

,  𝑓 = 1,2, 𝑡 = 1,… , 𝑇, 𝑡 ≠ 𝑡𝑓 (9) 
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In order to obtain the final solution, the calculation of the 

rolling-horizon model is repeated T times. Each time the values of 

variables xin and yk
fn computed for the days preceding the 

currently computed day are fixed in the model. 

 

 

3. Solution methods 
 

In this research we used the same approaches that has been 

described in [2]. Our goal was to find whether a simple heuristic 

can be efficient, when compared to the results achieved by 

CPLEX Solver. Additional goal was to assess the benefits from 

using rolling horizon (RH) method with CPLEX solver as the 

relaxation technique. 

We launched presented two variants of model in the latest version 

of IBM CPLEX Optimization Studio (12.9). As a heuristic approach 

we use ILS (Iterated Local Search) introduced by Stützle in his PhD 

dissertation [9]. ILS is a simply procedure allowing for a 

perturbation move to escape from a local extremum [10].  

The ILS algorithm is similar to the one proposed in [2]; in 

particular, we used the same evolutionary based algorithm as a local 

search and the same move in the perturbation phase. The modified 

representation (Table 1) consists of two parts (segments): table y 

representing alloy types that are produced in furnaces no. 1 and 2, and 

table x representing the quantity of castings that are produced in the 

following batches. The decoding mechanism is simple: as the types of 

produced alloy are known, the quantities of castings, related to alloy 

type, are multiplied by casting weights giving total load of each 

furnace. If the same type of alloy is produced in both furnaces, then 

the total load is divided in half taking into account that the castings’ 

quantities are integer numbers.  

 

Table 1. 

Representation of the solution used in proposed ILS heuristic 

Variables/lot 1   n   NT 

alloy type, f=1 k11 … k1n … k1NT 

alloy type, f=2 k21 … k2n … k2NT 

number of castings, i=1  x11 … x1n … x1NT 

 … … … … … 

 xi1 … xin … xiNT 

 … … … … … 

number of castings, i=I  xI1 … xIn … xINT 

 

In order to satisfy constraints (3) and (4) we used a penalty 

function: the value 100,000 was added to the goal function (1) for 

any batch where these constraints were not respected.  

 

 

4. Computational experiments 
 

 

4.1. Test problems 
 

Three sizes of lot sizing and scheduling problems were 

created: 10 castings made from 2 different alloys, 50 castings 

made from 10 alloys, and finally 100 castings and 20 alloys. The 

properties of these problems are presented in Table 2. The values for 

demand, weight and delaying cost were determined using uniform 

distribution within a given range. 

Ten instances of the problem for each size were generated. 

The line capacity lC was obtained using the formula representing 

the total sum of the weights of ordered castings:  

 

NT

wd

lC
i

I

i

T

t

it




 1 1  (10) 

 

Table 2. 

Test problems characteristics. 

Parameter Value 

number of castings (I), number of alloys (K) (10,2); (50,10); (100,20) 

number of days (T) 5 

number of subperiods (N) 10 

demand (dit) [10, 60] 

weight of casting (wi) 
line capacity (lC) 

furnaces capacity Cmax [% of nominal C] 

[2, 50] 
[5000, 5500] 

[100, 110, 120, 130, 140] 

setup penalty (s) (1000); (200); (100) 

delaying cost (hi
–) 

holding cost (hi
+) 

[3.00, 9.00] 
wi * 0.02 + 0.05 

 

Base furnaces capacity C was set to lC/2. In order to examine 

the influence of the bottleneck level on system performance, each 

instance was computed for five variants of the furnace capacity 

tightness Cmax – from very tight 1.0*C to very loose 1.4*C (this 

parameter simultaneously determines an increasing level of line 

bottleneck). To ensure comparability of the results for problems 

of different sizes, three values of setup penalty for alloy type 

change between two subperiods were set to (1000, 200, 100), 

inversely proportional to the numbers of alloys in examined 

instances (2, 10, 20). Also, the minimal utilization of furnaces 

capacity during alloy melting process was set to 60% in each 

subperiod. 

 

 

4.2. Results of the experiments 
 

ILS algorithm was run for 5 times for each instance of the 

problem and the best result was chosen as the solution of the 

problem. The computational experiments had two purposes: first, 

to analyze the effect of the furnace capacity on the cost function 

and the utilization of the line was investigated, and second, to 

compare the effectiveness of the proposed heuristic was compared 

with the CPLEX solver (working alone and with RH fix-and-relax 

approach). 

A single run of all approaches took 3, 5 and 10 minutes for 

problems (10,2), (50,10) and (100,20), respectively. The runs 

were executed using an Intel Core i7, 16 GB RAM, four cores 

working at 3.2 GHz, and Windows 10. The results are collected in 

Tables 3, 4, and 5. The tables show the mean solutions disparity 

of ILS heuristic and CPLEX solver compared to the best results 

(Best) among the three considered approaches. The disparity is 

calculated as: 

Disparity =
(Method solution − Best)

Method solution
 (11) 
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Table 3. 

Solution % disparity from Best for CPLEX solver 

#/Cmax 100 110 120 130 140 

(10,2)      

Avg. 6.27 0.00 0.00 31.91 1.44 

St. dev. 19.84 0.00 0.00 36.04 4.56 

(50,10)      

Avg. 44.25 49.88 49.29 58.95 68.96 

St. dev. 10.36 11.46 16.27 11.43 21.14 

(100,20)      

Avg. 32.22 34.45 38.90 61.21 51.19 

St. dev. 8.80 7.51 11.07 9.75 17.61 

Avg. 27.58 28.11 29.40 50.69 40.53 

St. dev. 20.96 22.54 24.20 25.62 32.96 

 

Table 4. 

Solution % disparity from Best for ILS heuristic 

#/Cmax 100 110 120 130 140 

(10,2)      

Avg. 20.11 28.49 42.45 16.10 33.13 

St. dev. 8.25 18.85 18.79 20.48 15.02 

(50,10)      

Avg. 16.90 23.82 24.28 34.73 37.27 

St. dev. 7.95 6.38 9.42 7.27 6.85 

(100,20)      

Avg. 2.87 0.60 13.86 28.02 30.79 

St. dev. 5.77 1.88 6.86 10.37 4.00 

Avg. 13.29 17.64 26.86 26.28 33.73 

St. dev. 10.44 16.67 17.21 15.54 9.85 

 

Table 5. 

Solution % disparity from Best for CPLEX+RH approach 

#/Cmax 100 110 120 130 140 

(10,2)      

Avg. 10.16 31.45 46.25 34.58 46.13 

St. dev. 13.23 25.58 30.15 26.65 18.14 

(50,10)      

Avg. 0.28 0.00 0.00 0.00 0.00 

St. dev. 0.87 0.00 0.00 0.00 0.00 

(100,20)      

Avg. 5.37 11.63 0.00 0.00 0.00 

St. dev. 5.49 9.86 0.00 0.00 0.00 

Avg. 5.27 14.36 15.42 11.53 15.38 

St. dev. 8.98 20.19 27.82 22.26 24.32 

 

The disparity for heuristics is calculated individually for each 

problem instance, and since for some problem classes one 

heuristic is the best only for some instances, while for the other 

ones another heuristic gives better results, so the average value of 

disparity presented in the tables may be greater than zero. 

We also collected the furnaces and line utilizations as the ratio 

of sum of castings’ weights scheduled to the overall furnaces/line 

capacity in N*T subperiods. The results are presented in Tables  

6-8.  

Table 6. 

Furnaces and line utilizations for CPLEX solver 

#/Cmax 100 110 120 130 140 

(10,2)      

F no. 1 

 
0.9917 0.8885 0.8544 0.7601 0.7104 

F no. 2 0.9923 0.9181 0.8053 0.7773 0.7175 

Line 0.9920 0.9936 0.9958 0.9993 0.9995 

(50,10)      

F no. 1 

 
0.9568 0.8797 0.8014 0.7475 0.7055 

F no. 2 0.9639 0.8886 0.8414 0.7504 0.6886 

Line 0.9603 0.9726 0.9857 0.9736 0.9758 

(100,20)      

F no. 1 
 

0.9458 0.8800 0.8089 0.7415 0.6960 

F no. 2 0.9452 0.8684 0.7996 0.7460 0.7023 

Line 0.9455 0.9616 0.9651 0.9669 0.9788 

Average      

F no. 1 

 
0.9648 0.8827 0.8216 0.7497 0.7040 

F no. 2 0.9671 0.8917 0.8154 0.7579 0.7028 

Line 0.9659 0.9759 0.9822 0.9799 0.9847 

 

Table 7. 

Furnaces and line utilizations for ILS heuristic 

#/Cmax 100 110 120 130 140 

(10,2)      

F no. 1 

 
0.9682 0.8899 0.8258 0.7554 0.7158 

F no. 2 0.9638 0.8902 0.8191 0.7650 0.6977 

Line 0.9660 0.9791 0.9869 0.9883 0.9895 

(50,10)  

 
 

    

F no. 1 
 

0.9757 0.8876 0.8156 0.7612 0.7082 

F no. 2 0.9747 0.8917 0.8246 0.7633 0.7077 

Line 0.9752 0.9868 0.9896 0.9910 0.9911 

(100,20)      

F no. 1 

 
0.9717 0.8966 0.8304 0.7606 0.7049 

F no. 2 0.9715 0.9058 0.8270 0.7640 0.7149 

Line 0.9716 0.9816 0.9881 0.9910 0.9914 

Average      

F no. 1 

 
0.9719 0.8913 0.8239 0.7591 0.7097 

F no. 2 0.9700 0.8959 0.8236 0.7641 0.7068 

Line 0.9709 0.9825 0.9882 0.9901 0.9907 

 

Rolling horizon approach performed unquestionably the best. 

In case of Cmax=1.0*C, the difference between average RH and 

ILS solution is 8.0 pp and between average RH and CPLEX is 

22.3 pp. Moreover, if the bottleneck level increases, the 

differences also increase: it's because RH is not very sensitive to 

the bottleneck level. However, it is worth noticing that the 

difference varied depending on the problem size and for (10,2) 

problem the CPLEX alone is the best approach. The gap between 

the solutions achieved by CPLEX and the solutions provided by 

the two other proposed approaches increases with the number of 

castings, the number of alloys and the bottleneck level. Not 

counting the smallest instances with 10 castings and 2 alloys, for 

the remaining cases with 50 and 100 castings the results achieved 

by CPLEX are worse on average by few dozen percent. For the 

larger instances of the problem CPLEX solver was apparently 
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unable to sufficiently reduce the solution space of the problem 

and then efficiently use built in tools to improve the solution. 

Running the solver for up to 30 minutes brought only slight 

improvement of the solutions (from 1 to 3%). 

 

Table 8. 

Furnaces and line utilizations for CPLEX+RH approach 

#/Cmax 100 110 120 130 140 

(10,2)      

F no. 1 

 
0.9950 0.9085 0.8379 0.7286 0.6901 

F no. 2 0.9874 0.8452 0.7552 0.7390 0.6795 

Line 0.9912 0.9645 0.9559 0.9540 0.9588 

(50,10)  

 
 

    

F no. 1 

 
0.9819 0.8992 0.8118 0.7527 0.7119 

F no. 2 0.9840 0.8852 0.8285 0.7656 0.6985 

Line 0.9830 0.9814 0.9842 0.9869 0.9873 

(100,20)      

F no. 1 
 

0.9627 0.8838 0.8194 0.7655 0.7028 

F no. 2 0.9621 0.8898 0.8269 0.7608 0.7126 

Line 0.9624 0.9755 0.9878 0.9921 0.9908 

Average      

F no. 1 

 
0.9799 0.8972 0.8231 0.7489 0.7016 

F no. 2 0.9778 0.8734 0.8035 0.7551 0.6969 

Line 0.9789 0.9738 0.9759 0.9776 0.9789 

 

 

The analysis of the results demonstrated that the increase in 

the maximum furnaces capacity Cmax increases the level of the 

line utilization and process economy (goal value decreases). 

Obviously, the furnaces utilization decreases proportionally to this 

factor. The average utilization of the line is very high: 96% for 

Cmax=C, and 99% for Cmax=1.4*C. This is the effect of increasing 

flexibility in the operation of furnaces. Moreover, almost even 

utilization of two furnaces can be observed, which proves the 

correct operation of the proposed approaches. 

It is interesting to compare the tested production system with 
one furnace-one line system. We used the same instances to 

examine the differences. Table 9 shows the best solutions 
disparity of ILS heuristic and CPLEX solver compared to the best 

solutions obtained for two furnaces system (Best). The disparity is 
calculated according to equation (11). Table 10 presents also the 

furnace and line utilizations. 

If one furnace system is considered, all approaches give 

similar results, but for larger levels of line bottleneck ILS gives 

slightly better results than competitors. The disparity from best 

results is worse by few dozen percentage points and the utilization 

of the line is significantly smaller (1–2 pp) than in the case of the 

two-furnace system, which is due to the lower flexibility of the 

whole system. In this case, increasing the capacity of the furnace 

does not have the effect of increasing the use of the line. 
It is also obvious that using two furnaces is safer than only 

one - in the case of a failure, the production can be continued 
(with limited utilization of moulding line). 

 
 

 
 

Table 9. 

Solution % disparity from Best for one furnace system 

#/Cmax 100 110 120 130 140 

(10,2)      

CPLEX 

 
42.34 49.82 63.85 54.01 54.69 

RH 44.48 58.35 73.17 68.06 68.08 

ILS 50.84 53.89 66.78 57.61 58.04 

(50,10)  
 

 

    

CPLEX 

 
25.50 40.33 45.12 46.31 44.70 

RH 19.00 36.80 45.70 49.58 45.56 

ILS 22.28 34.52 39.43 41.31 38.22 

(100,20)      

CPLEX 
 

39.19 50.02 61.99 62.48 62.38 

RH 31.64 36.18 47.84 52.44 50.92 

ILS 32.36 35.21 45.97 49.67 47.60 

Average      

CPLEX 

 
34.56 52.13 59.01 56.71 55.92 

RH 31.71 53.06 62.18 62.38 60.67 

ILS 35.16 50.63 57.57 55.53 54.12 

 

Table 10. 

Average furnace and line utilizations for one furnace system 

#/Cmax 100 110 120 130 140 

Furnace      

CPLEX 

 
0.9653 0.8764 0.8022 0.7455 0.6942 

RH 0.9694 0.8722 0.7938 0.7317 0.6829 

ILS 0.9593 0.8750 0.8047 0.7459 0.7011 

Line      

CPLEX 
 

0.9653 0.9640 0.9627 0.9691 0.9719 

RH 0.9694 0.9595 0.9525 0.9512 0.9561 

ILS 0.9593 0.9626 0.9657 0.9697 0.9741 

 

 

5. Conclusions 
 

This article presents a mathematical programming model for 

the complex problem of production planning in a foundry with 

two furnaces and one casting line. The model is a variant of the 

generalized lot sizing problem, extended by the bottleneck line 

and presence of two furnaces. It has been shown that such a 

model is very difficult to solve because it contains a large number 

of decision variables (several thousand for the problem of average 

size). The number of variables can be reduced by applying the 

concept of rolling horizon. In this approach, variables are 

calculated accurately for one period (day) only, and for the 

following days variables are calculated only roughly to meet 

constraints. However, as it has been shown, such a relaxed 

problem usually does not allow an optimal solution to be reached. 

Nevertheless, such an approach can provide a good approximation 

of the optimal solution in a short calculation time, giving better 

results than CPLEX itself or simple ILS metaheuristics. 
The considered problem can be a good benchmark for the 

development of various types of algorithms, including 
computational intelligence heuristics. We plan to extend our 

approach to the case of three furnaces-two lines system in which 



48  A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  2 0 ,  I s s u e  1 / 2 0 2 0 ,  4 3 - 4 8  

planning is a much more difficult problem than the one 
considered here, and at the same time encountered in Polish 

casting practice. It would be also valuable to develop a better 
(specialized) local search algorithm, as the current one does not 

give repeatable results. 
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