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THE INFLUENCE OF AXIAL LOAD ON ELASTIC BUCKLING OF
SHELLS OF REVOLUTION

In this paper, the authors consider the influence of axial load on the stability
of shells of revolution subjected to external pressure. Shells of different geometry
are investigated with emphasis to barrelled shells. The variable quantities are length
L and meridional radius of curvature R1 of a shell. The constant parameters are:
thickness of the shell h, mass ms and reference radius r0. The material of shells
is steel. Numerical calculations were performed in the ABAQUS system. All the
shells considered in this paper were subjected to axial compression to determine the
force corresponding to the loss of stability in such conditions. A part of this force is
then used to preload shell before the buckling analysis in the conditions of external
pressure is started. The buckling shapes for shells of different geometry are presented
with and without the influence of axial load. The ability of controlling the buckling
strength and shape is discussed.

Nomenclature
E – Young’s modulus
F – axial force
h – thickness of a shell,
L – length of a shell
ms – mass of a shell
n – natural number
p – external pressure
R1;R2 – principal radii of curvature of a shell
r0 – radius of a reference cylindrical shell
ν – Poisson’s ratio
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θ, θ1 – angle coordinate
ρs – mass density

1. Introduction

The main factor that influences the stability of a shell structure is its
geometry. Among the shells of revolution, the most favourable shape, in
the case of external pressure conditions, is a sphere. Obviously a shell with
this kind of geometry is neither easy to manufacture nor practical from the
viewpoint of usability; for example, it is impractical in the case of storage
or transport. Cylindrical shells do not have these disadvantages, but they are
not able to transmit very high load in the direction normal to the midsurface.
An alternative solution that combines advantages of spherical and cylindrical
shells are barrelled shells whose buckling strength is up to 40 times higher
than that of equivalent cylindrical shells when subjected to external pressure.
That was proved by Błachut and Wang in [3] and by Błachut in [4]. There
are many other works that confirm the importance of geometry in the field
of shell structures design. An example can be the paper by Banichuk [2] in
which the author is looking for an optimal shape of a shell of revolution with
minimum mass as a criterion. Other authors, like Pontov and Dinkler [7] or
Gupta and Venkatesh [5], investigate the influence of geometrical parameters
of the existing shells on theirs strength and stability.

In this paper, the authors consider a barrelled shell subjected to ex-
ternal pressure only. An additional axial load is applied to show that this
way one may increase the buckling strength of the shell. The investigation
consists of three steps, described in the subsection 3.1, in which the whole
family of shells of constant mass is subjected to different load conditions:
axial compression (case 1), external pressure (case 2) and combination of
both above-mentioned ones. The differences in buckling shapes for different
load conditions are shown. The influence of initial axial compression on the
stability of shell is presented in the graph.

All numerical calculations are made in the ABAQUS system. Models
with perfect geometry are considered. The first mode from the buckling
analysis is taken into account as the one that gives the critical value of the
load. Numerical results obtained form the ABAQUS system are compared
with the Shirshov’s theory of the local stability of shells presented in [8].

2. Experimental model

The investigation was carried out on a family of shells of revolution. The
geometry of a half of a shell is presented in Fig. 1. The parameter used to



THE INFLUENCE OF AXIAL LOAD ON ELASTIC BUCKLING OF SHELLS OF REVOLUTION 95

control the geometry is θ1, which influences the length L and the radius R1 of
the shell, which means that with decreasing the value of θ1 both parameters,
L and R1, also decrease. Variable θ1 is an angle coordinate that varies in the
interval (θ1 ≥ θ ≥ π/2) and is related to L and R1 according to the expression
L = 2Rcosθ1. The geometric relation that characterizes the principal radii of
curvature of a shell of revolution is:

∂

∂θ
(R2 sin θ) = R1 cos θ. (1)

Fig. 1. Geometry of a barrelled shell

The radius r is expressed by:

r = r0 + R1 (sin θ − sin θ1) . (2)

Mass of the shell is:

ms = 4πR2
1tρs

[(π
2
− θ1

) ( r0

R1
− sin θ1

)
+ cos θ1

]
, (3)

where: ρs – mass density. Other denotations as in Fig. 1.
The constant parameters are: thickness h, mass ms and radius r0, which is
the radius of the cylindrical shell that was taken as a reference shell. The
parameters characterizing this reference shell are: length L = 3000 mm,
radius r0 = 500 mm, thickness h = 1.5 mm and mass ms = 111 kg. In this
case θ1 = π/2.

The following are the parameters of steel taken as the material of shells:
Young’s modulus E = 2.05 · 105 MPa, Poisson’s ratio ν = 0.3, mass density
ρs = 7.85 g/cm3.
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Numerical calculations were made in the ABAQUS system. The shell
was supported at both ends along the edge, like in Fig. 2, where longitudinal
movement and rotation about an axis tangent to the shell edge are allowed.
Additionally, the movement along the axis of revolution is taken away in
the midlength of the shell. During eigenvalue extraction analysis, one used
a S4R5 shell element with four nodes and five degrees of freedom in each
node: 80 elements along the model and 200 elements on a circumference.

Fig. 2. Boundary conditions

3. Results of investigation

3.1 Procedure

The goal of the investigation was to present the influence of axial preload
of barrelled shell under external pressure on its stability. So, in the first step,
each shell was subjected to axial compression to determine the value of
the buckling load Fcr in such conditions. After that, a curve was created
that presents the influence of the geometry of the shell on the value of
critical load pcr in external pressure conditions. As the critical load, one
assumed the value corresponding to the first buckling mode. In the last step
a part of the value of the force Fcr (10% and 30%) was used to preload the
structure and after that the buckling analysis was started in the conditions of
external pressure. A similar curve as that in the previous step was created
for preloaded shells.
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3.2 Results

As it was mentioned above, in the first step it was necessary to determine,
for each shell, the value of critical load in the conditions of axial compression.
The boundary conditions in the numerical model were as shown in Fig. 2
case 1. The eigenvalue buckling prediction analysis was carried out and the
load corresponding to the lowest eigenvalue was taken as the critical load
Fcr .

In the next step, one investigated the influence of the radius of curvature
R1 on the critical external pressure. Curve 1 in Fig. 3. shows the relationship
between these two quantities. The result is consistent with the intuitive notion
that the smaller radius R1, the higher critical load pcr . Extreme points of the
curve correspond to the spherical and cylindrical shell, respectively.

Fig. 3. Relationship between the geometry of a barrelled shell and the critical external pressure

Similar curve can be obtained (curve 2 in Fig. 3) using Shirshov’s ex-
pression for critical load for closed shells of revolution, which is derived on
the basis of local stability of shells:

pcr =
2E√

3(1 − ν2)

h2

R2(2R1 − R2)
. (4)

This expression is valid for shells with R1 > R2. If one excludes spherical
and cylindrical shells, the difference between the results obtained form the
ABAQUS system and those from Shirshov’s theory is about 30%.
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The last step was to check how the axial preload influences the stability
of shells of revolution subjected to external pressure. In this analysis, one
could distinguish two cases. In the first case, a part of critical force Fcr (10%
and 30%) was applied to develop initial stresses in a shell by compression
conditions. After that, buckling analysis was started with external pressure
load. The results can be seen in Fig. 4. The initial compression of the shell
with 10% of the critical force Fcr increases the critical pressure pcr by about
7% in most cases. Similarly, 30% of the critical force increases the critical
pressure by about 20%. The situation is different when barrels with geometry
close to a cylindrical one are considered. Here, the preload force decreases
the critical pressure. Of course, there is a point (see: view “A” on Fig. 4) in
which the axial load does not influence the critical pressure.

Fig. 4. The influence of the initial preload on the critical external pressure

In the second case, a similar analysis was carried out, but this time the
shell was initially subjected to tension conditions using 10% of the Fcr . As
it can be seen from Fig. 4, the result is exactly opposite to that obtained in
the case of initial compression.

Since the initial preloading force influences the value of the critical pres-
sure, it also influences the buckling shape. Two examples will be considered
now. For the values of parameter θ1 higher than 0.77, the buckling shape is
like that in Fig. 5. The waves appear mainly in the central part of the shell.
The application of an initial axial compression does not change the buckling
shape, but circumferential waves are concentrated more closely in the middle
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part of the shell. The number of waves n in the first case equals 30 and in
the second n = 31.

Fig. 5. Buckling shape for θ1 = 0.9; (a) external pressure only, (b) external pressure with initial
preload 0.3 Fcr

When the parameter θ1 takes a value lower than 0.77, that is for shells
with geometry close to the spherical one (R1 → R2), and a proper spherical
shell, the waves appeared not in the centre of the shell, but on the edges
of it. In this situation, the initial preload is more significant. As it can be
seen in Fig. 6, the waves that appeared on the edges of the shell move to
the middle of it when an adequate axial force is applied. The situation is
explained in Fig. 6 by von Mises stress distribution across the meridian of
the shell. One can see that, in the external pressure conditions without axial
load, the highest stresses are near the edge of the shell. The preloading force
changes this distribution by moving the maximum stresses to the center and
decreasing its value.

Fig. 6. Buckling shape and von Mises stresses for θ1 = 0.7; (a) external pressure only, (b) external
pressure with initial preload 0.3 Fcr
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4. Conclusion

As it was demonstrated in this paper, one can influence the buckling
strength of the barrelled shells subjected to external pressure by applying an
axial load. This influence can be either positive or negative, depending on
the direction of this load (compression or tension) and on the geometry of
the shell, as it can be seen in Fig. 4. The critical load pcr may be increased
by about 20% by applying the axial force of magnitude of 0.3Fcr , where Fcr
is the axial force for which the shell looses its stability. In the case of shells
with geometry close to the spherical one, by applying an axial load one can
not only increase the critical pressure, but also change the buckling shape
(see Fig. 6).

The importance of the investigation on shell’s stability is confirmed by
a number of publications listed in review works by Teng [9] and Arbocz
[1]. It is then reasonable to extend this investigations also onto the area of
imperfect model, which for spherical shells was made by Pedersen et al. [6],
and post-buckling analysis like that in the work by Teng and Hong [10],
in which the authors showed that more than one buckling mode should be
considered to obtain accurate results.

Manuscript received by Editorial Board, November 28, 2007;
final version, January 07, 2008.
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Wpływ siły wzdłużnej na sprężyste wyboczenie powłok obrotowych

S t r e s z c z e n i e

W pracy niniejszej rozważany jest wpływ siły osiowej na stateczność powłok obrotowych
poddanych działaniu ciśnienia zewnętrznego. Badaniu poddane zostały powłoki o różnej geometrii
z naciskiem na powłoki baryłkowe. Wielkościami zmiennymi są długość L i południkowy promień
krzywizny R1 powłoki. Wielkości stałe to: grubość powłoki h, masa ms i promień odniesienia r0.
Materiałem powłok jest stal. Badania numeryczne przeprowadzone zostały w systemie ABAQUS.
Wszystkie rozważane powłoki zostały poddane osiowemu ściskaniu dla określenia siły odpowiada-
jącej utracie stateczności w tych warunkach. Część tej siły została następnie użyta jako ob-
ciążenie wstępne przed przystąpieniem do analizy stateczności w warunkach działania ciśnienia
zewnętrznego.

Jako rezultat badań przedstawione zostały postacie wyboczenia powłok o różnym kształcie,
powstałe przy uwzględnieniu działania sił wzdłużnych oraz bez ich uwzględniania. Przedysku-
towana została możliwość sterowania odpornością konstrukcji na wyboczenie i kształtem wybocze-
nia.




