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PREDICTION OF BLAST-INDUCED GROUND VIBRATION USING 
GENE EXPRESSION PROGRAMMING (GEP), ARTIFICIAL NEURAL NETWORKS (ANNS), 

AND LINEAR MULTIVARIATE REGRESSION (LMR)

In this paper, an attempt was made to find out two empirical relationships incorporating linear mul-
tivariate regression (LMR) and gene expression programming (GEP) for predicting the blast-induced 
ground vibration (BIGV) at the Sarcheshmeh copper mine in south of Iran. For this purpose, five types of 
effective parameters in the blasting operation including the distance from the blasting block, the burden, 
the spacing, the specific charge, and the charge per delay were considered as the input data while the 
output parameter was the BIGV. The correlation coefficient and root mean squared error for the LMR 
were 0.70 and 3.18 respectively, while the values for the GEP were 0.91 and 2.67 respectively. Also, for 
evaluating the validation of these two methods, a feed-forward artificial neural network (ANN) with 
a 5-20-1 structure has been used for predicting the BIGV. Comparisons of these parameters revealed that 
both methods successfully suggested two empirical relationships for predicting the BIGV in the case 
study. However, the GEP was found to be more reliable and more reasonable. 
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1. Introduction

Despite all achievements and significant developments that have taken place in drilling 
and rock cutting industries, the blasting operation is still the main important method for grind-
ing and displacing the rocks in the mining activities [1]. Moreover, some of the most significant 
environmental issues such as flyrock, air blast, noises, back breaks, and blast-induced ground 
vibration (BIGV) causing by the blasting operations. Among these undesirable side effects, the 
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BIGV is recognized as an adverse phenomenon that results from escaping some of the explosive 
energy, 40%, through the surface soil and the bedrock. Due to its’ vast effects on above-ground 
and below-ground structures, neighboring rock masses, roads, slopes, railways, buried pipelines, 
and transmission lines, it is worth developing appropriate predictive methods of the BIGV to 
minimize the further environmental risks [2]. Investigation of the frequency and peak particles 
(PPV) plays a critical role in the BIGV studies. Hence, predicting the BIGV and the PPV are 
given careful considerations during the last decades and as a consequence, several analytical, 
mathematical, statistical, and intelligent methods have been presented and developed. 

Khandelwal and Singh presented the application of neural network (NN) for predicting the 
GV and vibration frequency considering all parameters affecting the rock mass, blasting proper-
ties, and blast design. To evaluate the presented methodology, they further compared their predic-
tion results to conventional statistical procedures using the artificial neural networks (ANNs). 
For this purpose, their network was trained with a total of 150 datasets containing 458 epochs 
before being tested by 20 datasets. They also applied a comprehensive statistical analysis. The 
comparison results between the NN and the statistical analysis revealed that NN could predict 
the PPV in a better way [1]. The ANN was also applied by Monjezi et al. to evaluate the BIGV 
resulting from a blasting operation in building a dame, Siah-Bisheh, in the north of Iran [3]. 
Dindarloo used gene expression programming (GEP) to predict the PPV. They used nine types 
of different variables as input data for predicting the vibration frequencies at different distances 
to the blast face. The high value of the coefficient of determination, as well as low value of 
the mean absolute prediction error (MAPE), verified the efficiency of employing the GEP in 
predicting the reliable PPV measurements [4]. Hajihasani et al. presented a hybrid algorithm 
of ANN coupled with particle swarm optimization (PSO) for the BIGV and the air blast. Their 
results showed that the proposed model can be considered as a powerful method in predicting 
the BIGV and the air blast [5]. Armaghani et al. used a combination of the adaptive neuro-fuzzy 
inference system (ANFIS) and the ANNs for predicting the BIGV in mines. For this purpose, 
they considered the measured values of blasting parameters and the resultant the BIGV for a total 
of 109 blasting operations in the Johor Granite Mine (Malaysia). They found that the ANFIS 
could provide the best performance for predicting the BIGV, as compared to other prediction 
methods [6]. Faradanbeh et al. presented a GEP-based prediction model for estimating the BIGV 
in a granite mine in Malaysia. For this purpose, they evaluated 102 blasting operations and 
measured the blasting parameters. To find out the capability of the GEP model for predicting the 
GV, a nonlinear multivariate regression (NMR) was also applied on the same dataset, with the 
results highlighting the higher accuracy of the GEP model [2]. In another research, Hasanipanah 
et al. checked the applicability of genetic algorithm (GA) for proposing a new prediction model 
for estimating the BIGV in the vicinity of Bakhtiari Dam (Iran). With a comparison between the 
GA and multiple empirical prediction models, it was concluded that the GA had better results 
in this case [7]. Faradanbeh and Monjezi investigated the prediction and minimization of BIGV 
in Golgohar Iron Mine applying the GEP and cuckoo optimization algorithm (COA). They sug-
gested that the development of the COA model could significantly reduce the PPV values [8]. 
Sheykhi et al. presented a hybrid model incorporating support vector regression (SVR) and fuzzy 
C-means Clustering (FCM) for predicting the BIGV. The model was developed based on the 
blasting data collected at Sarcheshmeh copper mine (Iran). The results revealed that the SVR 
technique was more efficient and more accurate than the existing empirical equation and that 
the data clustering plays an effective role in the accurate prediction of BIGV [9]. 
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Although the literature review showed that artificial intelligence (AI) techniques have in-
tensively been developed and proposed for estimating BIGV [10-12], their efficiency is different. 
Furthermore, the BIGV and its effects are different because of depending on the blast design 
parameters, geological conditions as well as the location of each mine. The most advantage of 
the previous studies is to consider the effect of different parameters of the drilling pattern on the 
BIGV. But few studies have attempted to minimize this phenomenon in addition to predicting it. 
Considering the losses and damages caused by the BIGV and its importance from the viewpoint 
of many researchers, the undesirable BIGV mechanism and its influential parameters in the 
Sarcheshmeh copper mine has been studied in this paper. For achieving this aim, a mathematical 
relationship was proposed by using the GEP. 

2. Methodology

In this paper, the BIGV has been predicted by using the linear regression, artificial neural 
networks and the GEP, which are discussed in the following subsections.

2.1. Linear Regression Model

The general linear model (GLM) or multivariate regression is a statistical linear model 
which is written as equation (1):

 C = Bx + ε (1)

Where: 
 C — is a dependent value;
 x — is an independent value;
 ε — error of the model.

This method is applied when one dependent variable is determined by only one independ-
ent variable.

2.1.1. Linear multivariate Regression Model

The linear multivariate regression (LMR) is a generalization of simple linear regression 
to the case of more than one independent variable, and a special case of general linear models, 
restricted to one dependent variable. In this paper, the dependent variable which assumed as PPV 
may depend on n independent variables (x). Equation (2) expresses a LMR with n regression 
variables [13]:

 n nC x  (2)

where:
 ε — error of the model;

j = 0, 1, …, n and βj are the regression coefficients.

In fact, the prediction process using this model resembles a super plane in an n-dimensional 
space of the regression variables xj. On the other hand, one may consider prediction models of 
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more complex structures (nonlinear) than those expressed by Equation (3). For instance, in the 
following model [13]:

 
xC x x e x x  (3)

In order to simplify the analysis of the above equation, which is nonlinear, one can simply 
substitute its variables with linear variables. Accordingly, taking z1 = x1, z2 = x2

3, z3 = e x3, and 
z4 = x1x2. Equation (4) will take the following form to predict the PPV values:

 C z z z z  (4)

2.2. Gene expression programming (GEM)

The gene expression programing (GEP) refers to a methodology for developing computer 
programs and mathematical modeling based on evolutionary computations inspired by the natural 
evolution phenomena. This method was coined by Ferreira in 1999 and officially released in 
2001 [14]. The GEP integrated the ideas of the two preceding legacy algorithms in an attempt 
to cover their weaknesses. In this methodology, the genotype of the chromosomes possesses 
a linear structure, similar to the case with GA. On the other hand, the phenotype of the chro-
mosomes exhibits a tree structure with variable length and size, similar to the case with genetic 
programing (GP). Karva code is the language of choice for GEP, and multiple genes are used to 
capture the multiple structures of chromosomes and the ability to generate subtrees, providing 
the algorithm with better compatibility and performance [14]. The flowchart of the GEP is shown 
in Figure 1. According to this figure, the algorithm begins with random generation of an initial 
population (chromosomes). The generated population is then expressed followed by evaluating 
each individual based on an evaluation function, with a selection process then performed based 
on the evaluation results. Applying particular modifications to the selected individuals, a new 
population of selected individuals with new characteristics is generated. The new population will 
then repeat the mentioned procedure and this process continue until an appropriate solution is 
achieved (Fig. 1) [14]. Because of the many advantages of the GEP, this method is used to solve 
the optimization problems in various sciences such as mining, economics, etc. [15-17].

2.3. Artificial Neural Networks (ANNs)

ANNs have different layers including input, hidden and output layers in their structure. 
Each layer consists of one to several neurons according to the position of the layer. The number 
of neurons in the input layer denotes the number of parameters that are used for the prediction 
while the number of neurons in the output layer represents the number of variables to be predicted. 
The appropriate number of neurons in hidden layers will generally be obtained during a trial and 
error process. Neurons of a layer are linked to the neighboring layer neurons by interconnection 
weights. Initial interconnection weights are randomly generated. Pairs of inputs and outputs are 
fed to the ANNs where inputs are multiplied by interconnection weights and then the products 
are added together to obtain the corresponding predicted output(s). The predicted output is then 
compared to the related actual output, which has already been fed to the network; the error is 
propagated backward to find the value of the weights that minimize differences between the 
actual output and the predicted output in the output layer. When a back-propagation algorithm is 
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Fig. 1. Flowcharts of GEP and LMR

applied, methods exist to terminate training, such as measuring MSE and the number of learn-
ing courses (epochs). Another validation method after each learning epoch is called the early 
stopping method [18]. This method can prevent a network from over-learning (or over-fitting). 
In this paper, the MSE method was used to prevent over-fitting. To make use of the early stop-
ping method, the database was divided into three subsets: training, validation, and test datasets.
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3. Case study

Blast induced ground vibration was studied in one of the most important and largest copper 
mines in Iran. The Sarcheshmeh copper ore mine is situated 160 km southwest of Kerman city, 
Kerman province, in 55º 15’ 13” longitude and 29º 57’ 00” latitude. This mine is at 2500 m above 
sea level (Fig. 2). Geological reserve of the mine has been estimated to exceed 1.2 billion tons of 
sulfuric copper ore with an average grade of 0.7%. The mine is located in a cold desert climate 
region with an average precipitation of 550 mm per year. The temperature varies from –15° in 
winter to +32° in summer. The production units of the copper complex include the mine, the 
concentration, the melting, and refining, and the casting and leaching units. There are multiple 
copper exploitation sites, most of which are being operated as open-pit mines. Some of the mines 
have been active for the past 40 years. In some parts, the surface soil naturally contains high 
concentrations of copper and other heavy metals, such as zinc and lead. In this region, due to the 
open-pit mining of copper, blasting operation is used for grinding purposes, which is known to 
cause such consequences as GV, air vibration, over break, and fly rock. Accordingly, it is very 
important to investigate the blast-induced consequences, including BIGV, in the region.

Fig. 2. A view to the Sarcheshmeh Copper Mine

The ore body is oval shaped, covering an elliptical area of 2300 m × 1200 m from the 
southeast to the northwest, with an average depth of 1612 m [19]. The geology of the deposit is 
dominated by Eocene basic to intermediate volcanic rocks including trachybasalt, trachyandesite, 
and/or andesite. Mineralization at Sarcheshmeh deposit mainly forms stockworks and veins that 
are equally distributed between Eocene volcanic and Oligo-Miocene quartz diorite, quartz mon-
zonite, and granodiorite units. There is a complex of series of magmatically related intrusives 
emplaced in the Tertiary Volcanics a short distance from the edge of an older near-batholithsized 
granodiorite mass [20]. The most significant sulfide minerals of the deposited include chalcocite, 
chalcopyrite, kaolinite, bornite, and molybdenite. The oxidized zone of the deposit is mainly 
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comprised of copperite, malachite and azurite. The pyrite is the most significant band mineral 
matter in the region. Figure 3 shows the geological map of the Sarcheshmeh deposit [21].

Fig. 3. Geological Map of the Sarcheshmeh porphyry copper mine [20]

The height and slope of working benches are 14 m and 62.5º, respectively. The angle of 
overall slope ranges from 32º to 34º. The diameter and depth of blast holes are mostly 0.200 and 
15 m, respectively. ANFO is used as the main explosive. Pattern geometry is staggered. Drilling 
cuttings are used as stemming material [21]. In order to determine the amount of the BIGV in this 
mine, five main input parameters were selected from 113 blasting patterns, i.e. distance to blasting 
block, burden, spacing, specific charge, and charge per delay. The range of the input and output 
parameters is listed in Table 1. The box diagrams for the input data are also shown in Figure 4.

TABLE 1

Range of the datasets used for the model development

Parameter Symbol Change interval Parameter type
Charge per Delay (Kg/ms) A 1332-10985

Input data
Distance to blasting block (m) F 133.02-2845.02

Burden (m) B 3-7.5
Spacing (m) S 4-11

Specifi c charge (Kg/m3) P 0.116-0.226
Peak Particle Velocity (mm/s) PPV 0.49-39.15 Output data
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(A)

(C)

(B)

(D)

(E)

Fig. 4. Box diagrams of the input data: (A) distance to blasting block (m); (B) charge per delay (Kg/ms); 
(C) burden (m); (D) specific charge (Kg/m3), and (E) spacing (m)

Afterward, to find the best statistical relationship between input and output data, the dataset 
has randomly been divided into training and validation data. For this, 70% of the data consid-
ered as training data while the rest of the data, 30%, was applied for validation of the suggested 
statistical relationship.

4. Statistical Analyses

4.1. Determining the statistical relationships

After describing the data, the best statistical relationships between each the input and the 
output data have been suggested by using the Table curve v.5.01 software which is one of the 
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most powerful statistical software for curve and surface fitting the data. These relationships have 
been selected based on their R-squared coefficients. The best statistical relationships, 15, have 
been presented in Table 2. Indeed, this analysis provides an opportunity to consider the inter-
relationship between the input and output data in the further proposed relationship.

TABLE 2

Relationships between input variables and PPV

Relationship between parametersEquation Row 

PPV f (A)x
A

1

PPV f (F)x
F

2

PPV f (B)x3 = e–B3

PPV f (P)
Px

P
4

PPV f (S)x5 = eS5

PPV f (A  F)
A Fx

A F
6

PPV f (A  B)x7 = B2 × ln(B) + B2.57

PPV f (A  P)x
A A

8

PPV f (A  S)
Sx S

S
9

PPV f (F  B)
Fx B

F
10

PPV f (F  P)x P P
F

11

PPV f (F  S)
F Sx

F S
12

PPV f (B  P)x13 = B2 × ln(B) + B2.513

PPV f (B  S)
Sx S

S
14

PPV f (P  S)
Sx S

S
15

4.2. Suggesting a statistical relationship for prediction of PPV

After finding the best relationships between the input and the output data, each of the rela-
tionships has been considered as independent variables while the output was PPV. For finding the 
best relationship for prediction of PPV, comprehensive statistical analyses have been conducted 
by applying the IBM SPSS statistics software v.25 based on the LMR method. For this, the 
back-propagation method has been used to identify the best multivariate regression relationship 
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among the selected relationships. More than 8 relationships have been taken after these analyses 
(Table 3). To find out the best relationship, three statistical parameters were chosen as the best 
criteria: (1) R-square; (2) Adjusted R-square and (3) Root mean squared error (RMSE). The 
principal goal of this process was to specify a statistical relationship exhibiting the maximum 
values of R-square and adjusted R-square and the minimum value of RMSE. For this, all relation-
ships were compared (See table 3). Comparison of the statistical parameters of the relationships, 
describing that the relationship no.5 is the best statistical relationship for predicting PPV. This 
relationship yields value of 0.714, 0.689, and 3.18 for the statistical parameters of R-square, 
adjusted R-Square, and RMSE respectively. 

TABLE 3

Comparison of the statistical parameters of the models obtained using LMR

Model R Square Adjusted R Square RMSE
1 0.714 0.668 3.68
2 0.714 0.673 3.66
3 0.714 0.677 3.63
4 0.714 0.682 3.61
5 0.714 0.689 3.18
6 0.712 0.686 3.57
7 0.707 0.687 3.58
8 0.705 0.688 3.56

Therefore, the best statistical relationship taken from the LMR is expressed as equation (5):

 PPV C C x C x C x C x C x C x C x  (5)

where C0 – C7 denote the constants of the equation, with their values reported in Table 4.

TABLE 4

The values of the coefficients C0 to C7

C0 C1 C2 C3 C4 C5 C6 C7

–2.099 0.159 1.227 –4.479 –1.202 4.353 –0.527 1.768

Eventually, the best statistical relationship for predicting PPV which is a function of the 
distance to the blasting block, burden, spacing, specific charge, and charge per delay is expressed 
as follows (Eq. (6)):

 

B

S PPPV S
S P

B B B e
A

A FP P
F A F

 (6)
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Figure 5 demonstrates a histogram for the analysis of the modeling error. The modeling error 
distribution function is a normal function, confirming the regression test has been done correctly.

Fig. 5. Histogram for the analysis of the modeling error

5. GEP Model

In the present study, a GEP code was used to obtain the final relationship between the input 
data and the output data, PPV. The GEP modeling goes through five main steps; in this respect, 
the first step is to select a fitness evaluation function. In this study, the R-squared, RMSE, and 
MSE have been used as fitness function, and the best results were obtained with MSE as the fit-
ness evaluation function. The relationships for expressing each of the fitness evaluation functions 
are shown in the following equations nos. (7) to (9):

 

N

ipred imes
i

MSE X X
N

 (7)

 

N

ipred imes
i

RMSE X X
N

 (8)

 

N

imes ipred
i

N

imes
i

X X
R

X X
 (9)

Where, Xipred is the predicted PPV and Ximes is the measured PPV.
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The second step is to select sets of terminals and functions to form chromosomes. The 
terminals were selected according to the model inputs and outputs. The inputs included the 
distance to the blasting block, burden, spacing, specific charge, and charge per delay, and the 
output parameter was the ground vibration. Following with the research, the most appropriate 
functions for obtaining the final equation have been determined in such a way to come with the 
best equation. The functions used in the modeling included {F = + , – , * , / , sqrt , x^2 , x^3 , 
x^(1/3) , 1/x , exp(x) , ln(x)}. The third step is related to the chromosome structure selection. As 
the fourth step, one should select the type of linking function; here we used a multiplication func-
tion to link the parameters. Finally, in the step 5, one should generate a set of genetic operators 
and rates. The parameters set in the software are tabulated in Table 5. 

TABLE 5

The values of the parameters used for the GEP models

GEP parameters
Model

1 2 3 4 5
Fitness function MSE MSE MSE R-square RMSE
Inversion rate 0.00546 0.00546 0.00546 0.00546 0.00546

IS transportation rate 0.00546 0.00546 0.00546 0.00546 0.00546
RIS transportation rate 0.00546 0.00546 0.00546 0.00546 0.00546

One-point recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277
Two-point recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277

Gene size 17 19 15 17 17 
Head size 8 9 7 8 8
Tail size 9 10 8 9 9

Mutation rate 0.00138 0.00138 0.00138 0.00138 0.00138
Number of Chromosome 30 35 30 30 30

Number of genes 3 5 7 3 3
Gene recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277
Gene transportation rate 0.00277 0.00277 0.00277 0.00277 0.00277

Training %70 %70 %70 %70 %70
Validation %30 %30 %30 %30 %30

Number of generation 10000 10000 10000 10000 10000

Lastly, the values of R-square and other parameters were obtained for the models built 
based on Table 5, which were known to have the best outputs among the investigated models. 
The results are shown in Table 6.

TABLE 6

Values of performance indicators for building the GEP models

Model Fitness function
Training Testing 

R2 RMSE R2 RMSE
1 MSE 0.68 3.36 0.91 2.67
2 MSE 0.66 3.53 0.87 3.68
3 MSE 0.67 3.39 0.84 3.06
4 R-Square 0.77 3.47 0.62 3.07
5 RMSE 0.65 3.49 0.88 2.72
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According to Table 6, among the models constructed using the GEP, model 1 was the optimal 
one because of its higher R-squared value and lower RMSE, as compared to the other final four 
models. Model 1 was built based on a total of 80 data points as the training subset, with 33 datasets 
used to validate the model. Using the GEP algorithm, the expression tree corresponding to final 
model for predicting the PPV is shown in Figure 6, and Equation (10) presents the final relation 
extracted from the tree. Coefficients of this equation are listed in Table 7.

(A) (B)

(C)

Fig. 6. The expression tree corresponding to model 1

 

ppv
A S S C

S P A C F A
A

C CF C
C C

 (10)

where C1 – C9, denote the constants of the equation, with their values reported in Table 7.
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TABLE 7

The values of the coefficients C0 to C9

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

0.0 –4.78 0.0 0.0 –5.67 –6.34 0.0 4.54 7.36 –3.43

Eventually, the best GEP relationship for predicting PPV which is a function of the distance 
to the blasting block, burden, spacing, specific charge, and charge per delay is expressed as fol-
lows (Eq. (11)):

 

ppv
A S S

S P A F A
A

F

 (11)

6. ANNs prediction

For finding the ability of GEP in predicting the PPV, the obtained results were compared 
with the results of the artificial neural network algorithm. As described before, this algorithm is 
so accurate and many researchers used it for predicting the various problems. For this purpose, 
a multi-layer perceptron (MLP) network was used. Although for reaching an appropriate archi-
tecture, MLP networks with one and two hidden layers were examined, it should be noted that 
a single hidden layer with enough neurons is generally sufficient to resolve a practical complex. 

As mentioned before, five variables (burden, charge per delay, distance to blasting block, 
specific charge, and spacing) were considered as input parameters. As a result, the input layer of 
ANN structure had five neurons. However, the only variable that had to be predicted was the PPV, 
which meant that the output layer required only one neuron. To determine the optimal number 
of neurons in the hidden layer, after multiple instructions and tests of the network by various 
numbers of neurons in the hidden layer, 20 neurons were distinguished using a feed-forward 
ANN applying batch gradient descent with momentum back-propagation learning algorithm on 
the basis of RMSE. Therefore, the final structure of ANN was obtained as 5-20-1 (Fig. 7). The 
architecture of the obtained ANNs is presented in Table 8.

TABLE 8

Architecture of ANN model

Transfer Function Model R2 RMSE
LOGSIG–LOGSIG–POSLIN (L-L-P) 5-20-1 0.88 2.81
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7.  Discussion

7.1. Validation

As mentioned, the main aim of this paper was to present two new relationships for predict-
ing the PPV based on the parameters including the distance to the blasting block, the burden, 
the spacing, the specific charge, and the charge per delay. To propose the relationships, firstly, 
the data collected from the Sarcheshmeh copper mine were used to establish a database between 
the input and output data. Then, the best relationships between the PPV and each input were 
investigated by comprehensive statistical analyses. Subsequently, the GEP and LMR algorithms 
were applied to suggest the best relationships for predicting the PPV. Along with these algorithms, 
the ANN was also used to investigate the efficiency of the algorithms. The obtained results of 
these three methods were then compared based on the R-squared and RMSE values for training 
and validation stages. The GEP, LMR, and ANNs algorithms returned R-square values of 0.68, 
0.71, and 0.67 for the training dataset respectively while they were 0.91, 0.70, and 0.89 for the 
validation dataset, as compared to the actually measured data, respectively (Figure 8). Moreover, 
the GEP, the LMR, and the ANNs algorithms gave RMSE values of 2.67, 3.18, and 2.81 for the 
validation dataset respectively. These results also prove that the GEP provides better results for 
the prediction of the PPV.

Figure 9 shows a cross plot of the measured data versus predicted values of PPV using the 
GEP, the ANN and the LMR algorithms. Based on this figure, the best predictions were obtained 
using the GEP algorithm. The amount of mean absolute error (MSE), absolute relative error (ARE), 
average absolute relative error (AARE) and root mean square error (RMSE), were compared for 
GEP, LMR and ANNs in Figure 10.

Fig. 7. the ANNs architecture with 5-20-1 (back propagation network)
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Fig. 8. The values of R-squared for: (A) GEP algorithm, (B) LMR algorithm, and (C) ANNs algorithm

7.2. Sensitivity analysis

A useful concept has been proposed to identify the significance of each “cause” factors (the 
input data) on the “effect factor” (the output). This enables us to hierarchically recognize the most 
sensitive factors affecting the PPV. For achieving this aim, the tornado graph was conducted. In 
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the tornado sensitivity analysis, the range of the correlations is between –1 and +1. Figure 11 
shows the tornado analysis for the PPV. As it is shown in this figure, the distance to blasting 
block and the charge per delay are the most effective parameters on the PPV. It is obvious that 
unlike the distance to blasting block, with increasing the amount of the charge in each delay, the 
PPV increases dramatically.

Fig. 9. Comparison of the measured PPV versus predicted PPV using the GEP, ANNs, and LMR

Fig. 10. Comparison of the statistical parameters for predictions of LMR, ANNs, and GEP models
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Fig. 11. Sensitivity analysis with using the tornado diagram 

Based on the nature of the blasting operation, eliminating the BIGV is not possible, but for 
decreasing this phenomenon it is recommended that the following activities were considered:

– As the distance to the blasting block is the most effective parameter on the PPV, the 
buildings should be constructed behind the affected area.

– Using suitable delay timing can efficiently decrease the PPV level. Delay timing decreases 
the maximum charge per each blasting sequence. In other words, suitable delay timing 
decreases the blasting volume from the whole block to a blast hole.

– As an obvious rule of thumb, it is important that the specific charge kept in the acceptable 
range. For this purpose, it is necessary to clean the front of the blasting face, leveling the 
surface, eliminating the water in the blast holes, etc.

8. Conclusions

The vibration is an inevitable consequence of blasting, which can impose damages to the 
structures, such as buildings, bridges, dams, tunnels, etc. Therefore, the blast-induced ground 
vibration (BIGV) and its propagation throughout the rock masses must be carefully regarded to 
eliminate (or at least minimize) the risk of damage to nearby structures. In the present study, an 
attempt was made to predict the ground vibration using the LMR, the ANNs and the GEP. For 
this purpose, the data on the distance to the blasting block, burden, spacing, specific charge, and 
charge per delay were considered as input parameters, with the actual values taken from the blasts 
at the Sarcheshmeh copper mine. Once finished with developing various models for predicting 
the PPV, some performance indicators were calculated to evaluate the proposed prediction mod-
els, including R-square, RMSE, and MSE. The results showed that the developed GEP could 
practically outperform the LMR. Taking MSE as the objective function, the obtained values of 
R-square and RMSE using the GEP algorithm for predicting the PPV indicated higher accuracy 
of this algorithm compared to the LMR and the ANNs. The obtained values of R-squared and 
RMSE corresponding to GEP were 0.91 and 2.67, respectively, while those of LMR were 0.70 
and 3.18, respectively. Also, the lower values of R-Squared and RMSE, 0.88 and 2.81, for the 
ANNs results proved that the GEP was more reliable and more reasonable. 
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