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Abstract. The problem of performing software tests using Testing-as-a-Service cloud environment is considered and formulated as an~online 
cluster scheduling on parallel machines with total f lowtime criterion. A mathematical model is proposed. Several properties of the problem, 
including solution feasibility and connection to the classic scheduling on parallel machines are discussed. A family of algorithms based on a new 
priority rule called the Smallest Remaining Load (SRL) is proposed. We prove that algorithms from that family are not competitive relative to each 
other. Computer experiment using real-life data indicated that the SRL algorithm using the longest job sub-strategy is the best in performance. 
This algorithm is then compared with the Simulated Annealing metaheuristic. Results indicate that the metaheuristic rarely outperforms the SRL 
algorithm, obtaining worse results most of the time, which is counter-intuitive for a metaheuristic. Finally, we test the accuracy of prediction of 
processing times of jobs. The results indicate high (91.4%) accuracy for predicting processing times of test cases and even higher (98.7%) for 
prediction of remaining load of test suites. Results also show that schedules obtained through prediction are stable (coefficient of variation is 
0.2–3.7%) and do not affect most of the algorithms (around 1% difference in f lowtime), proving the considered problem is semi-clairvoyant. 
For the Largest Remaining Load rule, the predicted values tend to perform better than the actual values. The use of predicted values affects the 
SRL algorithm the most (up to 15% f lowtime increase), but it still outperforms other algorithms.
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Notation

Below is the summary of notation used throughout the paper:
	 n, m	 –	 number of jobs, number of machines
	 q	 –	 number of families of jobs
	 J, M	 –	 the set of jobs, the set of machines
	 B 	 –	 the set of families of jobs
	 Bu	 –	 the u-th family of jobs
	 rj	 –	 ready (arrival) time of job j
	 bj	 –	 the family to which job j belongs
	 pj	 –	 processing time of job j
	 tj	 –	 type of job j
	 zj	 –	 file transfer time for job j
	 sjk	 –	 setup time from job j to job k
	 Sj, Cj	 –	 starting and completion time of job j
	 Aj	 –	 the machine to which job j was assigned

ware testing, leading to the birth of the so-called Testing-as-a-
Service (or TaaS) cloud computing model [3].

Software tests are often composed of a number of test suites, 
each test suite testing a single functionality of the developed 
software. Test suites are in turn sets (clusters) of test cases, each 
meant to test the functionality in a different way. Test suites are 
run on a set of computers (i.e. in a cloud environment). Test 
cases from a given test suite can be executed in any order. More-
over, in some fields, like telecommunications and simulations, 
the time to perform a single test case can be long, taking tens 
of seconds on average.

One type of testing that employs test suites is continuous 
integration (CI) testing. In such a setting the testing process is 
performed several times every day, yielding a large number of 
test cases that have to be run in short timespan. One character-

	 S, C	 –	 vector of jobs starting and completion times
	 A	 –	 the vector of job-to-machine assignments
	 (S, A)	 –	 solution (schedule)
	 π i	 –	 vector of jobs to be processed on machine i
	 π i( j)	 –	 the j-th job to be processed on machine i
	 π 	 –	 the order of processing of jobs on machines
	 Fj(π), Fj(S, A)	 –	 flowtime of job j in processing order π  or schedule 

(S, A)
	Fu(π), Fu(S, A)	 –	� f lowtime of family of jobs u in processing order π 

or schedule (S, A)
	 p ̂ j	 –	 predicted value of pj
	 Ht, Ht(x)	 –	� vector of processing times of past executions of 

jobs with type t and x-th most recent execution 
time in Ht

1.	 Introduction

The process of software testing is an essential stage in software 
development process, consuming around 50 to 60% of the total 
software development costs [1]. Due to the rapid growth of 
the IT industry and the size of software, the testing process is 
becoming more complex. At the same time, cloud computing is 
becoming a rapidly growing paradigm in many areas, including 
scheduling [2]. As a result, in recent years cloud environments 
have been employed to facilitate the process of large-scale soft-
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ent and may require different parameters or processing times
prediction strategies. Thus, we base our approach on a real-
life TaaS system and use real-life data about test suites and test
cases encountered during operation of that system. Therefore,
our approach is partially a case study, though we also feel that it
could be applied to similar TaaS systems or even more general
discrete optimization problems (more on that in Section 8.)

The remainder of this paper is organized as follows. Section 2
contains problem formulation. Sections 3 and 4 discuss proper-
ties of the problem and several online algorithms, respectively.
Section 5 contains online algorithms comparison based on data
from a real-life TaaS system. Section 6 discusses metaheuristic
algorithm approach, including a computer experiment. In Sec-
tion 7 we show the results of predicting processing times of
test cases and test suites. Section 8 contains discussion of sev-
eral aspects and application of our approach and results. Finally,
Section 9 contains the conclusions.

2. Problem formulation

In this section we formulate the optimization problem under
consideration. All values are integers unless otherwise stated.

Let J = {1, 2, . . . , n} be a set of n jobs. Each job j has
ready (arrival) time, processing time and type denoted r j,
p j and t j, respectively. The set J is partitioned into q sets
B1, B2, . . . , Bq, called families of jobs, with Bu denoting the
u-th family of jobs. For each job j let b j denote to which family
j belongs:

∀ j ∈ J : b j = u ⇐⇒ j ∈ Bu. (1)

Next, let M = {1, 2, . . . , m} be a set of m identical (parallel)
machines, meaning that any machine can process any job. By
s jk we will denote the setup time a machine has to undergo
before processing job k if the last job processed on that machine
was job j. Also, let s0k denote a special situation, when no job
was processed on the given machine prior to the processing of
job k. The setup time s jk is defined as follows:

s jk =

{
zk if j = 0∨b j �= bk,

0 otherwise,
(2)

where z j is a job-specific value called file transfer time.
Finally, we assume that jobs belonging to the same family of

jobs have the same type and file transfer size:

∀ j,k ∈ J : b j = bk =⇒ t j = tk , (3)

∀ j,k ∈ J : b j = bk =⇒ z j = zk . (4)

Let us consider how the introduced elements match the con-
cepts in a real-life software testing system. Families of jobs are
meant to represent test suites. Jobs, in turn, are representing ex-
ecutions of test cases. The type of job is meant to identify the
particular test case. If two jobs have the same type then they
are different executions of the same test case. This represents
a situation when the same test case is executed more than once

(common in software testing). Also, two jobs of the same type
might have different processing times, representing a situation
when the test case was modified between executions. The set
of machines represents the computers on which the test cases
are executed. Finally, setup times represent the time needed to
transfer the files necessary for a given test case to the target ma-
chine. However, all test cases in a given test suite need the same
set of files. Thus, if j �= 0 and b j = bk, then there is no need to
copy any files and s jk = 0. Otherwise, the setup time depends
on how long it takes to transfer the files for that particular test
suite, thus s jk = zk. To sum it up, in general the setup time de-
pends on both j and k, but if those jobs are from the same family
of jobs, then setup time depends only on k.

The task is to assign to each job its starting time and machine
on which it should be processed to minimize a certain goal
function. Let S = (S1,S2, . . . ,Sn) and A = (A1,A2, . . . ,An) be
vectors of job starting times and job-to-machine assignments,
respectively. Thus, job j will be processed on machine A j start-
ing at time S j. The pair (S,A) will be called a schedule. For
convenience we can also define vector of job completion times
C =(C1,C2, . . . ,Cn). Below we present an example instance and
schedule for the considered problem.

Example 1. Let us consider a problem instance with 7 jobs
J = {1,2,3,4,5,6,7}, 4 machines M = {1,2,3,4} and 3 fam-
ilies of jobs: B1 = {1,2}, B2 = {3,4,5}, B3 = {6,7}. The
ready times of jobs are: r1 = r2 = 0, r3 = r4 = r5 = 4, r6 =
r7 = 9. The processing times of jobs are p1 = p6 = p7 = 2,
p2 = p3 = 6, p4 = 7, p5 = 8. For simplicity let us ignore setup
times and job types. For this instance a possible schedule (S,A)
could be:

S = (0,0,4,4,4,9,10), (5)

A = (1,2,1,3,4,2,1). (6)

The schedule for this instance is presented in Fig. 1 with differ-
ent colors denoting jobs from different families of jobs.

Fig. 1. Example schedule with 7 jobs, 4 machines and 3 families
of jobs

Not all schedules are feasible. Schedule is feasible if the fol-
lowing constraints are met: (1) a job can be processed by at
most one machine at a time, (2) a machine can process at most
one job at a time, (3) job j needs to be processed for time p j
without interruption (implying that Cj = S j + p j), (4) process-
ing of a job cannot start before its ready time, (5) setup time has
to be performed before processing of each job. Let us notice that
the schedule presented in Example 1 is feasible.
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istic of such a system is the time that passes from when the test 
suites were ordered for testing to when all test cases of that test 
suite were completed. This value is called “response time” or 
flowtime. From a practical point of view, it is thus important to 
schedule the execution of all test cases on available computers 
to optimize the flowtime of all test suites. This allows the users 
to get their response earlier and, in turn, increase productivity.

The idea of a TaaS can be traced back to a paper by Yu et al. 
[3] where a TaaS framework was proposed. Since then several 
papers concerning such systems have been published. For exam-
ple, a paper by Yu et al. [4] described the architecture of a TaaS 
system and its complexity. The paper discussed practical issues 
concerning setting and managing a TaaS and proposed meth-
ods of clustering tasks and simple priority-based algorithms to 
optimize user waiting time. A paper by Sathe and Kulkarni [5] 
discussed cost-effectiveness and importance of TaaS systems. 
A paper by Lampe and Rudy analyzed a real-life TaaS system to 
construct probabilistic models of its workload with good accu-
racy [6]. Finally, Lee et al. considered a TaaSlike system for 
load and cross-browser testing for website development. The 
authors proposed a system for delivering heterogeneous web 
testing tools [7]. The results indicate that the system reduces the 
effort required for testing compared to conventional methods. 
Further information about challenges and applications of TaaS 
systems can be found in [8].

The problem of optimizing testing schedule for TaaS and 
similar systems was also a topic of several papers. Binder pro-
posed an approach to optimizing the order of test cases inside 
a test suite through integer programming [9]. Some authors 
considered multi-objective approach to scheduling software 
tests as well, considering criteria like average response time, 
machine utility and test coverage [10, 11]. A paper by Lampe 
proposed a fuzzy approach, modeling test cases processing 
times with fuzzy numbers [12]. Alie et al. proposed a TaaS 
system for mobile applications, resulting in reduced testing time 
and improved resource utilization [13].

Optimization of software testing schedule can be viewed as 
a specific case of online scheduling for various computing sys-
tems like clouds, clusters and grids. A large number of papers 
on this topic have been published over the last several years. 
Gog et al. [14] formalized the problem as a min-cost maxflow 
optimization over a graph. The results using Google trace data 
showed a considerable improvement in placement latency and 
response time. A paper by Rasley et al. [15] discussed advan-
tages and disadvantages of both distributed and centralized 
schedulers. Delgado et al. proposed Hawk scheduler, using both 
centralized and distributed scheduler for long and short jobs, 
respectively [16]. Ousterhout et al. considered a system with 
millions of very short jobs and obtained near-optimal schedules. 
Lastly, Lee et al. [17] presented a survey on the online problem 
of minimizing makespan with machines eligibility.

One of the practical issues in online scheduling is the esti-
mation of job processing times which are usually unknown. 
Delgado et al. [18] proposed a hybrid scheduler that was tested 
under Google trace dataset and showed high resistance to mis-
estimation of task duration. A number of papers [15, 19] ana-
lyze publicly available trace datasets from Google or Microsoft 

and conclude there is a lot of repetitiveness of tasks (over 60% 
of tasks are recurring). Moreover, a simple analysis of data 
of a real-life TaaS system revealed that on average tasks were 
repeated hundreds of times [10]. This indicates that estimation 
of processing times is possible for TaaS systems.

A number of papers deal specifically with algorithms for 
online scheduling. One of the most effective algorithms for 
minimizing total flowtime of jobs is the Shortest Remaining 
Processing Time (SRPT) algorithm, for which strong bounds 
were proven [20]. The SRPT algorithm was thus used in sev-
eral papers [6, 15, 18]. Research of lower and upper bounds 
and competitive ratio is common with online algorithms. For 
example, Dósa et al. showed tight lower bounds for twoma-
chine semi-online problem with machine speeds [21]. While 
fast and simple rule-based algorithms are common, several 
approaches to online scheduling using metaheuristic methods 
appeared as well. Iordache et al. combined genetic algorithms 
with lookup services to provide a fault-tolerant, scalable and 
efficient solution for optimizing task assignment for a decen-
tralized grid scheduling [22]. Similarly, Xhafa et al. employed 
cellular memetic algorithms to schedule jobs for a grid system 
[23]. The results obtained using known benchmarks showed 
very high quality. In general, metaheuristics are often viewed as 
viable methods for many optimization problems ranging from 
various assignment and distribution problems (see for example 
paper on rich portfolio optimization by Kizys et al. [24]) to job 
shop scheduling (see for example paper on its multi-criteria by 
Rudy and Żelazny [25]). Thus, intuition suggests this approach 
should be also viable for the problem considered in this paper. 
More information on the use of metaheuristics for scheduling 
in cloud computing and similar systems can be found in [26].

In this paper our purpose is to model the problem of reducing 
the response time of the software testing process as a certain 
online scheduling problem with the total flowtime goal func-
tion. The problem is online because the scheduling algorithm 
becomes aware of a test suite only when it arrives. Moreover, the 
time it takes to execute a given test case is not known for cer-
tain. However, a single test case is usually executed many times 
throughout the development process. Even though the content of 
the test case or the tested code may change between executions, 
as one of our contributions, we will show that this still allows 
us to predict the execution time of test cases with high accuracy.

From the above literature overview we conclude that while 
there exist several approaches to TaaS-like systems, they often 
focus on practical implementations, taking into account too 
many factors, making our understanding of the core problem 
(scheduling of test cases and test suites) largely incomplete. 
Furthermore, there exist many general theoretical approaches 
(including lower and upper bounds) to online scheduling for 
cluster and distribute systems, but we feel those approaches, 
while sometimes applicable, are too general and cannot take full 
advantage of the specificity of the considered problem.

Our purpose is to focus on the single aspect of the problem: 
scheduling. This will allow us to use the theory of scheduling 
to formulate properties for the problem and some algorithms, 
increasing our understanding of the problem. Finally, we realize 
the problem is case-specific, as each software project is differ-
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ent and may require different parameters or processing times
prediction strategies. Thus, we base our approach on a real-
life TaaS system and use real-life data about test suites and test
cases encountered during operation of that system. Therefore,
our approach is partially a case study, though we also feel that it
could be applied to similar TaaS systems or even more general
discrete optimization problems (more on that in Section 8.)

The remainder of this paper is organized as follows. Section 2
contains problem formulation. Sections 3 and 4 discuss proper-
ties of the problem and several online algorithms, respectively.
Section 5 contains online algorithms comparison based on data
from a real-life TaaS system. Section 6 discusses metaheuristic
algorithm approach, including a computer experiment. In Sec-
tion 7 we show the results of predicting processing times of
test cases and test suites. Section 8 contains discussion of sev-
eral aspects and application of our approach and results. Finally,
Section 9 contains the conclusions.

2. Problem formulation

In this section we formulate the optimization problem under
consideration. All values are integers unless otherwise stated.

Let J = {1, 2, . . . , n} be a set of n jobs. Each job j has
ready (arrival) time, processing time and type denoted r j,
p j and t j, respectively. The set J is partitioned into q sets
B1, B2, . . . , Bq, called families of jobs, with Bu denoting the
u-th family of jobs. For each job j let b j denote to which family
j belongs:

∀ j ∈ J : b j = u ⇐⇒ j ∈ Bu. (1)

Next, let M = {1, 2, . . . , m} be a set of m identical (parallel)
machines, meaning that any machine can process any job. By
s jk we will denote the setup time a machine has to undergo
before processing job k if the last job processed on that machine
was job j. Also, let s0k denote a special situation, when no job
was processed on the given machine prior to the processing of
job k. The setup time s jk is defined as follows:

s jk =

{
zk if j = 0∨b j �= bk,

0 otherwise,
(2)

where z j is a job-specific value called file transfer time.
Finally, we assume that jobs belonging to the same family of

jobs have the same type and file transfer size:

∀ j,k ∈ J : b j = bk =⇒ t j = tk , (3)

∀ j,k ∈ J : b j = bk =⇒ z j = zk . (4)

Let us consider how the introduced elements match the con-
cepts in a real-life software testing system. Families of jobs are
meant to represent test suites. Jobs, in turn, are representing ex-
ecutions of test cases. The type of job is meant to identify the
particular test case. If two jobs have the same type then they
are different executions of the same test case. This represents
a situation when the same test case is executed more than once

(common in software testing). Also, two jobs of the same type
might have different processing times, representing a situation
when the test case was modified between executions. The set
of machines represents the computers on which the test cases
are executed. Finally, setup times represent the time needed to
transfer the files necessary for a given test case to the target ma-
chine. However, all test cases in a given test suite need the same
set of files. Thus, if j �= 0 and b j = bk, then there is no need to
copy any files and s jk = 0. Otherwise, the setup time depends
on how long it takes to transfer the files for that particular test
suite, thus s jk = zk. To sum it up, in general the setup time de-
pends on both j and k, but if those jobs are from the same family
of jobs, then setup time depends only on k.

The task is to assign to each job its starting time and machine
on which it should be processed to minimize a certain goal
function. Let S = (S1,S2, . . . ,Sn) and A = (A1,A2, . . . ,An) be
vectors of job starting times and job-to-machine assignments,
respectively. Thus, job j will be processed on machine A j start-
ing at time S j. The pair (S,A) will be called a schedule. For
convenience we can also define vector of job completion times
C =(C1,C2, . . . ,Cn). Below we present an example instance and
schedule for the considered problem.

Example 1. Let us consider a problem instance with 7 jobs
J = {1,2,3,4,5,6,7}, 4 machines M = {1,2,3,4} and 3 fam-
ilies of jobs: B1 = {1,2}, B2 = {3,4,5}, B3 = {6,7}. The
ready times of jobs are: r1 = r2 = 0, r3 = r4 = r5 = 4, r6 =
r7 = 9. The processing times of jobs are p1 = p6 = p7 = 2,
p2 = p3 = 6, p4 = 7, p5 = 8. For simplicity let us ignore setup
times and job types. For this instance a possible schedule (S,A)
could be:

S = (0,0,4,4,4,9,10), (5)

A = (1,2,1,3,4,2,1). (6)

The schedule for this instance is presented in Fig. 1 with differ-
ent colors denoting jobs from different families of jobs.

Fig. 1. Example schedule with 7 jobs, 4 machines and 3 families
of jobs

Not all schedules are feasible. Schedule is feasible if the fol-
lowing constraints are met: (1) a job can be processed by at
most one machine at a time, (2) a machine can process at most
one job at a time, (3) job j needs to be processed for time p j
without interruption (implying that Cj = S j + p j), (4) process-
ing of a job cannot start before its ready time, (5) setup time has
to be performed before processing of each job. Let us notice that
the schedule presented in Example 1 is feasible.
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We want to consider only feasible schedules. To this end,
let π = (π1,π2, . . . ,πm) be a vector, where πi is the (possibly
empty) vector of jobs to be processed on machine i. The jobs in
πi will be processed in the order they appear in the vector, i.e.
πi( j) is the j-th job to be processed on the i-th machine. Vector
π must meet the following conditions:

πi( j) ∈ J , (7)

i �= l ∨ j �= k =⇒ πi( j) �= πl(k), (8)
m

∑
i=1

|πi|= n. (9)

This ensures that π contains only jobs and each job appears in
π exactly once. Also, note that vectors πi can have different
lengths, thus π is not a matrix. π will be called a processing
order and will serve as the decision variable.

The schedule (S,A) can be derived from the processing order
π using the equations below:

Sπi( j) = max{rπi( j),Cπi( j−1)}+ sπi( j−1)πi( j),

j = 1,2, . . . , |πi|, i ∈ M , (10)

Cπi( j) = Sπi( j) + pπi( j) , j = 1,2, . . . , |πi|, i ∈ M , (11)

Aπi( j) = i, j = 1,2 . . . , |πi|, i ∈ M , (12)

with additional starting conditions πi(0) = 0 and C0 = 0.
A possible processing order for schedule from Example 1

would be π = (π1,π2,π3,π4), where π1 = (1,3,7), π2 = (2,6),
π3 = (4) and π4 = (5). Further in the paper we will provide
a proof that each π represents a single feasible schedule (S,A).

Let us now define the goal function to optimize. By Fj(π) we
denote the flowtime of job j according to some processing order
π . Fj(π) is defined as the difference between the completion
and ready time of j:

Fj(π) =Cj − r j. (13)

Similarly, we can define Fj(S,A) = Fj(π) if processing order π
represents schedule (S,A).

Next, by Fu(π) we denote flowtime of family of jobs Bu,
which is the maximum of flowtimes of jobs belonging to Bu:

Fu(π) = max
j∈Bu

Fj(π). (14)

Similarly, we can define Fu(S,A) = Fu(π).
Finally, let ΣF(π) be a total flowtime according to π and

defined as the sum of flowtimes over all families of jobs:

ΣF(π) =
q

∑
u=1

Fu(π). (15)

As before, ΣF(π) = ΣF(S,A) if π represents (S,A).
The goal is to find such processing order π∗ as to minimize

the total flowtime:

ΣF(π∗) = min
π

ΣF(π). (16)

Once again, ΣF(S∗,A∗) = ΣF(π∗). The processing order π∗

(schedule (S∗,A∗)) is called the optimal processing order (op-
timal schedule). In our Example 1 the total flowtime ΣF(π) =
F1(π)+F2(π)+F3(π) = 6+ 8+ 3 = 17. This is, in fact, the
optimal schedule for this instance.

The above problem will be called cluster scheduling prob-
lem on parallel machines with ready times and setup times con-
straint and total flowtime goal function. We will denote this
problem by Cm|r j,s jk|ΣF in the Graham’s notation (m can be
omitted if it is obvious). “Cluster” here means that jobs are
grouped into clusters (families). Unlike operations in problems
like the job shop problem, any job can be processed on any ma-
chine, there are no precedence constraints and many jobs of the
same family can be processed at the same time (on different
machines). Thus, it is not a typical multi-stage scheduling or
scheduling on identical parallel machines.

Finally, we will add two additional constraints, reflecting the
issues encountered in practice. First, the information about each
job j is unavailable to solving algorithms until time r j, making
this problem online. Second, job processing times p j are un-
certain. Further in the paper we will show that values p j can
be predicted with high accuracy and little effect on the result-
ing total flowtime, making this problem semi-clairvoyant. The
problem with those additional constraints will be denoted by
Cm|online-time-sclv,r j,s jk|ΣF .

3. Problem properties

In this section we will formulate several properties for the con-
sidered problem (or its variants). This will include properties
concerning processing orders π and schedules (S,A) they rep-
resent. For now we assume that the processing times of jobs are
known (i.e. the cluster scheduling problem is clairvoyant).

We start by defining another class of schedules. A feasible
schedule (S,A) is called semi-active if there does not exist an-
other feasible schedule (S′,A′) satisfying the conditions below:
1. Jobs in (S′,A′) are processed on the same machines as in

(S,A), i.e A′ = A.
2. Jobs assigned to machine i in schedule (S′,A′) are processed

in the same order as in schedule (S,A).
3. No job in (S′,A′) is processed later than the corresponding

job in (S,A), i.e. ∀ j ∈ J : S′j ≤ S j.
4. At least one job in (S′,A′) is processed earlier than the cor-

responding job in (S,A), i.e. ∃ j ∈ J : S′j < S j .
We will now show that all non-semi-actives schedules can be
ignored when solving the considered problem.

Property 1. If (S,A) is a feasible schedule that is not semi-
active, then there exists a semi-active schedule (S′,A′) such
that:

ΣF(S′,A′)≤ Σ f (S,A). (17)

Proof. Since (S,A) is feasible, but not semi-active, then we can
construct another feasible schedule (Ŝ, Â) with the same job-to-
machine assignments and the same job orders on each machine,
such that:

∀ j ∈ J : Ŝ j ≤ S j , (18)
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∃ j ∈ J : Ŝ j < S j . (19)

From this it follows that:

∀ j ∈ J : Ĉ j ≤Cj , (20)

∃ j ∈ J : Ĉ j <Cj . (21)

Job flowtime depends only on its completion time and ready
time. However, since ready times are the same for both (Ŝ, Â)
and (S,A) then:

∀ j ∈ J : Fj(Ŝ, Â)≤ Fj(S,A), (22)

similarly, we have:

∀u ∈ B : Fu(Ŝ, Â)≤ Fu(S,A), (23)

and consequently:

ΣF(Ŝ, Â)≤ ΣF(S,A). (24)

Now, if schedule (Ŝ, Â) is semi-active then (Ŝ, Â) = (S′,A′)
and the proof ends. If (Ŝ, Â) is not semi-active, then the above
steps can be repeated. Each time we can construct a new sched-
ule from the current not semi-active one, such that the comple-
tion time of at least one job decreases, while not increasing for
any job. As a result, the total flowtime does not increase. How-
ever, due to job starting times, job ready times and the number
of jobs being all integers, this process will eventually stop and
we will arrive at a feasible schedule that is semi-active, which
is the sought schedule (S′,A′). �

This property leads to the following immediate conclusion:

Corollary 1. If (S,A) is a feasible schedule that is not semi-
active, then (S,A) is not optimal.

This also means that if (S,A) is optimal, then it is semi-active.
Thus we do not want to consider schedules that are not semi-

active. Now we will show that schedule represented by any pro-
cessing order π is semi-active.

Property 2. If π is a processing order and (S,A) is a schedule
that π represents, then (S,A) is semi-active.

Proof. First, let us show that (S,A) is feasible. For this (S,A) has
to meet the 5 conditions mentioned in Section 2 for all jobs in
J . Let us recall that π contains each job from J exactly once.
We also know that (S,A) can be derived from π using Eqs. (10)–
(11). We will now show that those equations guarantee that the
5 mentioned feasibility conditions are met.

Eq. (10) ensures that Sπi( j) ≥ rπi( j) and thus no job is pro-
cessed before its ready time. Moreover, it guarantees that
Sπi( j) ≥ Sπi( j−1) and thus all jobs from πi will be processed in
order of their appearance in πi without overlapping with each
other. This equation also ensures that setup time is performed
before each job. Eq. (11) guarantees that Cπi( j) = Sπi( j) + pπi( j)
and thus each job will be processed for the exact required time
pπi( j) without interruption. Finally, Eq. (12) ensures that each

job is assigned to some machine and processed on that machine
only. Since the above applies to every job in J , the schedule
(S,A) is feasible.

Now, let us assume (S,A) is feasible but not semi-active. That
would mean we can create a new feasible schedule (S′,A′) from
(S,A) by shifting some job j to start earlier without: (1) chang-
ing job-to-machine assignments, (2) changing processing order
on any machine and (3) shifting any other job to start later. Job
starting times in (S,A) are determined by Eq. (10). Thus, shift-
ing j to earlier time on the machine without changing the job
order on that machine would mean one or more of the follow-
ing:
1. Setup time before j was not performed fully.
2. j started before its ready time.
3. j started before the previous job on the same machine com-

pleted.
4. The job k which is processed on the same machine, but be-

fore j was shifted left by at least the same amount as the
shift of job j.

The first 3 options would make the new schedule (S′,A′) infea-
sible. The last option would mean we would have to apply the
same reasoning to job k as well, going back to the starting point.
Eventually, one of the jobs we have shifted that way would fall
under one of the first 3 options, making (S′,A′) infeasible. Thus,
we cannot make job j start earlier on the same machine without
changing the job order on that machine. The only options are to
move job j to another machine or shift some of the other jobs to
a later time. Thus, (S′,A′) either does not hold at least one of the
conditions we assumed or is infeasible, leading to contradiction
in both cases. Thus, schedule (S,A) has to be semi-active. �

Thus, any processing order π will only ever generate sched-
ules that are not only feasible, but also semi-active. We will now
show that similar “converse” property is also true.

Property 3. If (S,A) is a semi-active schedule then there is
exactly one processing order π that represents (S,A).

Proof. We know (S,A) is feasible, so jobs on each machine are
processed in certain order and each job is assigned to exactly
one machine. From that it is trivial to construct candidate pro-
cessing order π that can represent (S,A). We need to prove that
no other processing order π ′ can represent (S,A) and that π does
not represent any other semi-active schedule (S′,A′).

The former case is trivial. Indeed, if π ′ �= π then either some
pair of jobs on some machine is processed in a different order
(making at least one jobs starting time not match what S re-
quires) or some job is performed on a different machine than
assignments A require. Thus, π ′ �= π does not represent (S,A).

The latter case is more complex. If (S′,A′) �= (S,A) then ei-
ther A′ �= A or S′ �= S. In the first case some job is performed on
different machine in (S′,A′) than in (S,A), so π cannot repre-
sent (S′,A′). In the second case some job j is started at different
time in (S′,A′) than in (S,A), but j is still processed on the same
machine in both schedules. If this is done by changing the or-
der of jobs on the considered machines in (S′,A′) compared to
(S,A) then π cannot represent (S′,A′). Thus, if (S′,A′) is rep-
resented by π then the shift of the job j has to happen without
changing the job order on its machine.
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∃ j ∈ J : Ŝ j < S j . (19)

From this it follows that:

∀ j ∈ J : Ĉ j ≤Cj , (20)

∃ j ∈ J : Ĉ j <Cj . (21)

Job flowtime depends only on its completion time and ready
time. However, since ready times are the same for both (Ŝ, Â)
and (S,A) then:

∀ j ∈ J : Fj(Ŝ, Â)≤ Fj(S,A), (22)

similarly, we have:

∀u ∈ B : Fu(Ŝ, Â)≤ Fu(S,A), (23)

and consequently:

ΣF(Ŝ, Â)≤ ΣF(S,A). (24)

Now, if schedule (Ŝ, Â) is semi-active then (Ŝ, Â) = (S′,A′)
and the proof ends. If (Ŝ, Â) is not semi-active, then the above
steps can be repeated. Each time we can construct a new sched-
ule from the current not semi-active one, such that the comple-
tion time of at least one job decreases, while not increasing for
any job. As a result, the total flowtime does not increase. How-
ever, due to job starting times, job ready times and the number
of jobs being all integers, this process will eventually stop and
we will arrive at a feasible schedule that is semi-active, which
is the sought schedule (S′,A′). �

This property leads to the following immediate conclusion:

Corollary 1. If (S,A) is a feasible schedule that is not semi-
active, then (S,A) is not optimal.

This also means that if (S,A) is optimal, then it is semi-active.
Thus we do not want to consider schedules that are not semi-

active. Now we will show that schedule represented by any pro-
cessing order π is semi-active.

Property 2. If π is a processing order and (S,A) is a schedule
that π represents, then (S,A) is semi-active.

Proof. First, let us show that (S,A) is feasible. For this (S,A) has
to meet the 5 conditions mentioned in Section 2 for all jobs in
J . Let us recall that π contains each job from J exactly once.
We also know that (S,A) can be derived from π using Eqs. (10)–
(11). We will now show that those equations guarantee that the
5 mentioned feasibility conditions are met.

Eq. (10) ensures that Sπi( j) ≥ rπi( j) and thus no job is pro-
cessed before its ready time. Moreover, it guarantees that
Sπi( j) ≥ Sπi( j−1) and thus all jobs from πi will be processed in
order of their appearance in πi without overlapping with each
other. This equation also ensures that setup time is performed
before each job. Eq. (11) guarantees that Cπi( j) = Sπi( j) + pπi( j)
and thus each job will be processed for the exact required time
pπi( j) without interruption. Finally, Eq. (12) ensures that each

job is assigned to some machine and processed on that machine
only. Since the above applies to every job in J , the schedule
(S,A) is feasible.

Now, let us assume (S,A) is feasible but not semi-active. That
would mean we can create a new feasible schedule (S′,A′) from
(S,A) by shifting some job j to start earlier without: (1) chang-
ing job-to-machine assignments, (2) changing processing order
on any machine and (3) shifting any other job to start later. Job
starting times in (S,A) are determined by Eq. (10). Thus, shift-
ing j to earlier time on the machine without changing the job
order on that machine would mean one or more of the follow-
ing:
1. Setup time before j was not performed fully.
2. j started before its ready time.
3. j started before the previous job on the same machine com-

pleted.
4. The job k which is processed on the same machine, but be-

fore j was shifted left by at least the same amount as the
shift of job j.

The first 3 options would make the new schedule (S′,A′) infea-
sible. The last option would mean we would have to apply the
same reasoning to job k as well, going back to the starting point.
Eventually, one of the jobs we have shifted that way would fall
under one of the first 3 options, making (S′,A′) infeasible. Thus,
we cannot make job j start earlier on the same machine without
changing the job order on that machine. The only options are to
move job j to another machine or shift some of the other jobs to
a later time. Thus, (S′,A′) either does not hold at least one of the
conditions we assumed or is infeasible, leading to contradiction
in both cases. Thus, schedule (S,A) has to be semi-active. �

Thus, any processing order π will only ever generate sched-
ules that are not only feasible, but also semi-active. We will now
show that similar “converse” property is also true.

Property 3. If (S,A) is a semi-active schedule then there is
exactly one processing order π that represents (S,A).

Proof. We know (S,A) is feasible, so jobs on each machine are
processed in certain order and each job is assigned to exactly
one machine. From that it is trivial to construct candidate pro-
cessing order π that can represent (S,A). We need to prove that
no other processing order π ′ can represent (S,A) and that π does
not represent any other semi-active schedule (S′,A′).

The former case is trivial. Indeed, if π ′ �= π then either some
pair of jobs on some machine is processed in a different order
(making at least one jobs starting time not match what S re-
quires) or some job is performed on a different machine than
assignments A require. Thus, π ′ �= π does not represent (S,A).

The latter case is more complex. If (S′,A′) �= (S,A) then ei-
ther A′ �= A or S′ �= S. In the first case some job is performed on
different machine in (S′,A′) than in (S,A), so π cannot repre-
sent (S′,A′). In the second case some job j is started at different
time in (S′,A′) than in (S,A), but j is still processed on the same
machine in both schedules. If this is done by changing the or-
der of jobs on the considered machines in (S′,A′) compared to
(S,A) then π cannot represent (S′,A′). Thus, if (S′,A′) is rep-
resented by π then the shift of the job j has to happen without
changing the job order on its machine.
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Thus, two more possibilities remain. If j started in (S′,A′)
earlier than in (S,A) then (S,A) would not be semi-active or
(S′,A′) would not be feasible and, thus, semi-active (either lead-
ing to contradiction). Lastly, if j started in (S′,A′) later than in
(S,A) then the same result would happen with (S′,A′) and (S,A)
swapping roles. Thus, π cannot represent (S′,A′) �= (S,A). �

The above results justify the use of processing orders instead
of dealing with schedules directly, as processing orders gen-
erate only feasible and semi-active solutions. Moreover, every
semi-active schedule can be considered this way and there is no
redundancy, i.e. function from the set of all processing orders
into all semi-active schedules is a bijection.

Let us now consider the relation between the cluster schedul-
ing problem on parallel machines and the classic schedul-
ing problem on parallel machines. Let Ck

m|r j,s jk|ΣF be
a Cm|r j,s jk|ΣF problem with an additional constraint that the
number of jobs in a family of jobs is bound by k:

∀u ∈ Bu : |Bu| ≤ k. (25)

Similarly, we define Ck
m|online-time-sclv,r j,s jk|ΣF . Then the

following property holds:

Property 4. Problem Cm|r j,s jk|ΣF is a generalization of prob-
lem Pm|r j,s jk|ΣF .

Proof. We will start by showing that problems Pm|r j,s jk|ΣF
and C1

m|r j,s jk|ΣF (or P and C1 for brevity) are equivalent. We
will do this by showing that any instance of the first problem
can be transformed to an instance of the second and that those
two problems have the same sets of possible schedules.

The set of machines is identical in both problems. For every
job j in P we create a family of jobs Bu in C1, such that Bu

has a single job. Thus, job j in P corresponds to job j in C1.
We then set the processing and ready times of the correspond-
ing jobs to be the same in both problems. Next step, the setup
times, is similar: for P we define setup time between jobs j and
k as s jk, which is the setup time between corresponding jobs in
C1. Thus, we can transform any instance of problem P into an
instance of problem C1.

Next, for problem P we define values S j, A j and Cj to match
those values in problem C1 for corresponding jobs. Thus, we
have constructed schedule (S,A) for P. It is easy to see that
every schedule feasible for problem P is also feasible for corre-
sponding problem C1.

The last step is equivalence of the goal functions for both
problems. For problem P the total flowtime is defined as:

ΣF(S,A) = ∑
j∈J

Cj − r j . (26)

For the problem C1 the total flowtime is:

ΣF(S,A) =
q

∑
u=1

Fu(S,A) = max
j∈Bu

(Cj − r j). (27)

However, since every family of jobs in C1 has only one job this
is simplified to:

ΣF(S,A) = ∑
j∈J

Cj − r j . (28)

Thus, the values of f (S,A) are the same for both problems. This
proves the problems P and C1 are equivalent.

Finally, we notice that every instance of problem
Ck

m|r j,s jk|ΣF is also an instance for problem Cm|r j,s jk|ΣF ,
hence the latter is generalization of the former. This, with
the equivalence of C1

m|r j,s jk|ΣF and Pm|r j,s jk|ΣF means
that problem Cm|r j,s jk|ΣF is a generalization of problem
Pm|r j,s jk|ΣF . �

Similar properties hold with the online and semi-clairvoyant
versions of the problem.

Property 5. Problem Cm|online-time-sclv,r j,s jk|ΣF is a gen-
eralization of problem Pm|online-time-sclv,r j,s jk|ΣF .

Proof. The proof is similar to the proof of Property 4. �

The consequences of the above properties will be useful in
the next section.

4. Algorithm properties

In this section we will discuss a family of online algorithms for
the cluster scheduling problem or some of its variants.

One of the most-well known algorithms for the classic
problem of scheduling on parallel machines is the Short-
est Remaining Processing Time algorithm or SRPT. If there
are uncompleted jobs, the algorithm schedules them on idle
machines starting with the job with the least processing
time remaining. For the preemptive version of the prob-
lem, i.e. Pm|online-time, pmnt,r j|ΣF , the SRPT algorithm

is an O
(

log
(

min
{ n

m
,P
}))

-approximation algorithm, where

P =
max p j

min p j
[20]. SRPT is also the best, up to a con-

stant factor, online algorithm for this problem. For the non-
preemptive case, i.e. Pm|online-time,r j|ΣF , the SRPT is an
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log
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}))

-approximation algorithm.

We will now propose a new rule-based online algorithm,
serving as the SRPT counterpart for the considered cluster
scheduling problem. For this we first define the remaining load
of family of jobs Bu as the sum of processing times of all un-
started jobs in Bu. Now, we define the Smallest Remaining
Load (or SRL) algorithm as follows.

Whenever a machine i becomes idle (including at time 0) we
determine the set of all families of jobs that have at least one
unstarted job. If the set is not empty, then we choose from it
the family of jobs with the smallest remaining load. From that
family of jobs we choose an arbitrary job and schedule it on
machine i. The following property holds.

Property 6. The lower bound on the competitive ratio of
the SRL algorithm for the problem Cm|online-time,r j|ΣF is

O
(√

n
m

log
(

min
{ n

m
,P
}))

.
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Thus, two more possibilities remain. If j started in (S′,A′)
earlier than in (S,A) then (S,A) would not be semi-active or
(S′,A′) would not be feasible and, thus, semi-active (either lead-
ing to contradiction). Lastly, if j started in (S′,A′) later than in
(S,A) then the same result would happen with (S′,A′) and (S,A)
swapping roles. Thus, π cannot represent (S′,A′) �= (S,A). �

The above results justify the use of processing orders instead
of dealing with schedules directly, as processing orders gen-
erate only feasible and semi-active solutions. Moreover, every
semi-active schedule can be considered this way and there is no
redundancy, i.e. function from the set of all processing orders
into all semi-active schedules is a bijection.

Let us now consider the relation between the cluster schedul-
ing problem on parallel machines and the classic schedul-
ing problem on parallel machines. Let Ck

m|r j,s jk|ΣF be
a Cm|r j,s jk|ΣF problem with an additional constraint that the
number of jobs in a family of jobs is bound by k:

∀u ∈ Bu : |Bu| ≤ k. (25)

Similarly, we define Ck
m|online-time-sclv,r j,s jk|ΣF . Then the

following property holds:

Property 4. Problem Cm|r j,s jk|ΣF is a generalization of prob-
lem Pm|r j,s jk|ΣF .

Proof. We will start by showing that problems Pm|r j,s jk|ΣF
and C1

m|r j,s jk|ΣF (or P and C1 for brevity) are equivalent. We
will do this by showing that any instance of the first problem
can be transformed to an instance of the second and that those
two problems have the same sets of possible schedules.

The set of machines is identical in both problems. For every
job j in P we create a family of jobs Bu in C1, such that Bu

has a single job. Thus, job j in P corresponds to job j in C1.
We then set the processing and ready times of the correspond-
ing jobs to be the same in both problems. Next step, the setup
times, is similar: for P we define setup time between jobs j and
k as s jk, which is the setup time between corresponding jobs in
C1. Thus, we can transform any instance of problem P into an
instance of problem C1.

Next, for problem P we define values S j, A j and Cj to match
those values in problem C1 for corresponding jobs. Thus, we
have constructed schedule (S,A) for P. It is easy to see that
every schedule feasible for problem P is also feasible for corre-
sponding problem C1.

The last step is equivalence of the goal functions for both
problems. For problem P the total flowtime is defined as:

ΣF(S,A) = ∑
j∈J

Cj − r j . (26)

For the problem C1 the total flowtime is:

ΣF(S,A) =
q

∑
u=1

Fu(S,A) = max
j∈Bu

(Cj − r j). (27)

However, since every family of jobs in C1 has only one job this
is simplified to:

ΣF(S,A) = ∑
j∈J

Cj − r j . (28)

Thus, the values of f (S,A) are the same for both problems. This
proves the problems P and C1 are equivalent.

Finally, we notice that every instance of problem
Ck

m|r j,s jk|ΣF is also an instance for problem Cm|r j,s jk|ΣF ,
hence the latter is generalization of the former. This, with
the equivalence of C1

m|r j,s jk|ΣF and Pm|r j,s jk|ΣF means
that problem Cm|r j,s jk|ΣF is a generalization of problem
Pm|r j,s jk|ΣF . �

Similar properties hold with the online and semi-clairvoyant
versions of the problem.

Property 5. Problem Cm|online-time-sclv,r j,s jk|ΣF is a gen-
eralization of problem Pm|online-time-sclv,r j,s jk|ΣF .

Proof. The proof is similar to the proof of Property 4. �

The consequences of the above properties will be useful in
the next section.

4. Algorithm properties

In this section we will discuss a family of online algorithms for
the cluster scheduling problem or some of its variants.

One of the most-well known algorithms for the classic
problem of scheduling on parallel machines is the Short-
est Remaining Processing Time algorithm or SRPT. If there
are uncompleted jobs, the algorithm schedules them on idle
machines starting with the job with the least processing
time remaining. For the preemptive version of the prob-
lem, i.e. Pm|online-time, pmnt,r j|ΣF , the SRPT algorithm

is an O
(
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-approximation algorithm, where
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max p j

min p j
[20]. SRPT is also the best, up to a con-

stant factor, online algorithm for this problem. For the non-
preemptive case, i.e. Pm|online-time,r j|ΣF , the SRPT is an
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-approximation algorithm.

We will now propose a new rule-based online algorithm,
serving as the SRPT counterpart for the considered cluster
scheduling problem. For this we first define the remaining load
of family of jobs Bu as the sum of processing times of all un-
started jobs in Bu. Now, we define the Smallest Remaining
Load (or SRL) algorithm as follows.

Whenever a machine i becomes idle (including at time 0) we
determine the set of all families of jobs that have at least one
unstarted job. If the set is not empty, then we choose from it
the family of jobs with the smallest remaining load. From that
family of jobs we choose an arbitrary job and schedule it on
machine i. The following property holds.

Property 6. The lower bound on the competitive ratio of
the SRL algorithm for the problem Cm|online-time,r j|ΣF is
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Proof. Let us consider the C1
m|online-time,r j|ΣF problem. We

know this problem is equivalent to the Pm|online-time,r j|ΣF
problem. It is also easy to see that the SRL algorithm for
C1

m|online-time,r j|ΣF behaves exactly like the SRPT algorithm
behaves for the Pm|online-time,r j|ΣF problem. Thus, the lower
bound for the SRL algorithm for the C1

m|online-time,r j|ΣF is
O
(√ n

m log
(
min

{ n
m ,P

}))
.

Moreover, it is well-known that if an online problem πG
is generalization of an online problem π then the compet-
itive ratio of πG is at least as large as that of problem π .
Thus, the competitive ratio of the SRL algorithm for the
Cm|online-time,r j|ΣF problem will be at least as large as it is
for the C1

m|online-time,r j|ΣF problem. �

We also can extend this property to the variant of the problem
with setup times:

Corollary 2. The lower bound on the competitive ratio of the
SRL algorithm for the problem Cm|online-time,r j,s jk|ΣF is
O
(√ n

m log
(
min

{ n
m ,P

}))
.

Proof. This follows because every instance of prob-
lem Cm|online-time,r j|ΣF is an instance of problem
Cm|online-time,r j,s jk|ΣF with s jk = 0. �

The SRL algorithm always schedules an unstarted job from
the incomplete family of jobs u with the Smallest Remaining
Load. However, u usually has more than one unstarted job.
Thus, the SRL algorithm for the Cm|online-time,r j,s jk|ΣF is,
in fact, a two-level algorithm. On the upper level we choose the
family of jobs u. On the lower level we choose an unstarted job
from that family. In essence, one can construct multiple ver-
sions of the SRL algorithm. Let SRLw denote the version of the
SRL algorithm that chooses an unstarted job according to some
strategy w. We will now show that many of such SRLw algo-
rithms are not competitive against each other. For that we will
need to define a class of algorithms under consideration.

Definition 1. The pair (SRLv,SRLw) of two algorithms for
the Cm|online-time,r j,s jk|ΣF problem is called divergent if and
only if there exist instances IA and IB such that:
1. IA has one family of jobs with two jobs with ready times 0

and processing times A1 and A2.
2. IB has one family of jobs with two jobs with ready times 0

and processing times B1 and B2.
3. A1 > 1 and B1 > 1.
4. A2 > A1 and B2 > B1.
5. A2 −A1 and B1 are arbitrary large.
6. When run on instance IA (IB) the SRLv algorithm will sched-

ule the job with processing time A1 (B1) first, while SRLw
will schedule job with processing time A2 (B2) first.

One example of two SRLw algorithms that are divergent is
the one which schedules shortest remaining job first (SRLSJ)
and the one which schedules longest remaining job first
(SRLLJ) when A1 = 2, A2 = c, B1 = c, B2 = c + 1, where c
is some arbitrary large integer.

Now we can formulate the following theorem for the relative
competitiveness of divergent algorithms.

Theorem 1. Let (SRL1,SRL2) be a pair of divergent algo-
rithms for the Cm|online-time,r j,s jk|ΣF problem. Let SRL1(I)
and SRL2(I) be the solution (total flowtime) obtained for the
given problem instance I by both algorithms, respectively. Then
for any r ∈ R+ there exist instances I1 and I2 such that:

SRL1(I1)

SRL2(I1)
≥ r, (29)

SRL2(I2)

SRL1(I2)
≥ r. (30)

Proof. It is sufficient to prove the theorem for specific case of
the Cm|online-time,r j,s jk|ΣF problem. Thus, we assume m= 1
and s jk = 0.

Let us start with the first case. We construct instance I1
to have q + 1 families of jobs as follows. The first family is
made like the family from instance IB from Definition 1 (this
is possible as SRL1 and SRL2 are divergent). The remaining
q families have one job each. Those jobs have ready times
B2,B2 +1, . . . ,B2 +q−1 and processing time 1.

For instance, I1 algorithm SRL1 will schedule job B1 first.
Since B1 < B2 the job will complete before family 2 is ready
and thus job B2 will be scheduled. Thus, the first family will
have the flowtime of B1 +B2. However, the second family will
be started at time B1+B2 and will complete at time B1+B2+1.
Its flowtime will thus be B1 + 1. Similar situation will happen
for all q− 1 remaining families and they will have the same
flowtime. The total flowtime SRL1(I1) will thus be:

SRL1(I1) = q(B1 +1)+B1 +B2 . (31)

Let us now consider algorithm SRL2. The algorithm will first
schedule job B2 which will complete at time B2. The second
family will then arrive with one job with processing time 1.
The algorithm will choose to schedule that new family, since
the only other choice is to schedule the remaining job B1 of the
first family. But since both algorithms operate on the general
SRL principle and B1 > 1, that option is forbidden. Thus, the
job of the new family will start at time B2, complete at time
B2+1 and will have flowtime of 1. When that family completes,
similar will happen for subsequent q− 1 families, all will end
up having flowtime of 1. After they all have been completed,
finally the job B1 of the first family will be scheduled. It will
start at time B2 + q and complete at time B1 + B2 + q. Since
the ready time of the first family was 0, its flowtime will be
B1 +B2 +q. The total flowtime SRL2(I1) will thus be:

SRL2(I1) = q+B1 +B2 +q. (32)

We can now compute the ratio of flowtimes from expres-
sions (31) and (32) when the number of families q is large:

lim
q→∞

SRL1(I1)

SRL2(I1)
= lim

q→∞

q(B1 +1)+B1 +B2

2q+B1 +B2
=

B1 +1
2

. (33)

It is easy to see that the above expression approaches infinity
when B1 → ∞. Thus, for any r ∈ R+ we can find such values q
and B1 that:
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Proof. Let us consider the C1
m|online-time,r j|ΣF problem. We

know this problem is equivalent to the Pm|online-time,r j|ΣF
problem. It is also easy to see that the SRL algorithm for
C1

m|online-time,r j|ΣF behaves exactly like the SRPT algorithm
behaves for the Pm|online-time,r j|ΣF problem. Thus, the lower
bound for the SRL algorithm for the C1

m|online-time,r j|ΣF is
O
(√ n

m log
(
min

{ n
m ,P

}))
.

Moreover, it is well-known that if an online problem πG
is generalization of an online problem π then the compet-
itive ratio of πG is at least as large as that of problem π .
Thus, the competitive ratio of the SRL algorithm for the
Cm|online-time,r j|ΣF problem will be at least as large as it is
for the C1

m|online-time,r j|ΣF problem. �

We also can extend this property to the variant of the problem
with setup times:

Corollary 2. The lower bound on the competitive ratio of the
SRL algorithm for the problem Cm|online-time,r j,s jk|ΣF is
O
(√ n

m log
(
min

{ n
m ,P

}))
.

Proof. This follows because every instance of prob-
lem Cm|online-time,r j|ΣF is an instance of problem
Cm|online-time,r j,s jk|ΣF with s jk = 0. �

The SRL algorithm always schedules an unstarted job from
the incomplete family of jobs u with the Smallest Remaining
Load. However, u usually has more than one unstarted job.
Thus, the SRL algorithm for the Cm|online-time,r j,s jk|ΣF is,
in fact, a two-level algorithm. On the upper level we choose the
family of jobs u. On the lower level we choose an unstarted job
from that family. In essence, one can construct multiple ver-
sions of the SRL algorithm. Let SRLw denote the version of the
SRL algorithm that chooses an unstarted job according to some
strategy w. We will now show that many of such SRLw algo-
rithms are not competitive against each other. For that we will
need to define a class of algorithms under consideration.

Definition 1. The pair (SRLv,SRLw) of two algorithms for
the Cm|online-time,r j,s jk|ΣF problem is called divergent if and
only if there exist instances IA and IB such that:
1. IA has one family of jobs with two jobs with ready times 0

and processing times A1 and A2.
2. IB has one family of jobs with two jobs with ready times 0

and processing times B1 and B2.
3. A1 > 1 and B1 > 1.
4. A2 > A1 and B2 > B1.
5. A2 −A1 and B1 are arbitrary large.
6. When run on instance IA (IB) the SRLv algorithm will sched-

ule the job with processing time A1 (B1) first, while SRLw
will schedule job with processing time A2 (B2) first.

One example of two SRLw algorithms that are divergent is
the one which schedules shortest remaining job first (SRLSJ)
and the one which schedules longest remaining job first
(SRLLJ) when A1 = 2, A2 = c, B1 = c, B2 = c + 1, where c
is some arbitrary large integer.

Now we can formulate the following theorem for the relative
competitiveness of divergent algorithms.

Theorem 1. Let (SRL1,SRL2) be a pair of divergent algo-
rithms for the Cm|online-time,r j,s jk|ΣF problem. Let SRL1(I)
and SRL2(I) be the solution (total flowtime) obtained for the
given problem instance I by both algorithms, respectively. Then
for any r ∈ R+ there exist instances I1 and I2 such that:

SRL1(I1)

SRL2(I1)
≥ r, (29)

SRL2(I2)

SRL1(I2)
≥ r. (30)

Proof. It is sufficient to prove the theorem for specific case of
the Cm|online-time,r j,s jk|ΣF problem. Thus, we assume m= 1
and s jk = 0.

Let us start with the first case. We construct instance I1
to have q + 1 families of jobs as follows. The first family is
made like the family from instance IB from Definition 1 (this
is possible as SRL1 and SRL2 are divergent). The remaining
q families have one job each. Those jobs have ready times
B2,B2 +1, . . . ,B2 +q−1 and processing time 1.

For instance, I1 algorithm SRL1 will schedule job B1 first.
Since B1 < B2 the job will complete before family 2 is ready
and thus job B2 will be scheduled. Thus, the first family will
have the flowtime of B1 +B2. However, the second family will
be started at time B1+B2 and will complete at time B1+B2+1.
Its flowtime will thus be B1 + 1. Similar situation will happen
for all q− 1 remaining families and they will have the same
flowtime. The total flowtime SRL1(I1) will thus be:

SRL1(I1) = q(B1 +1)+B1 +B2 . (31)

Let us now consider algorithm SRL2. The algorithm will first
schedule job B2 which will complete at time B2. The second
family will then arrive with one job with processing time 1.
The algorithm will choose to schedule that new family, since
the only other choice is to schedule the remaining job B1 of the
first family. But since both algorithms operate on the general
SRL principle and B1 > 1, that option is forbidden. Thus, the
job of the new family will start at time B2, complete at time
B2+1 and will have flowtime of 1. When that family completes,
similar will happen for subsequent q− 1 families, all will end
up having flowtime of 1. After they all have been completed,
finally the job B1 of the first family will be scheduled. It will
start at time B2 + q and complete at time B1 + B2 + q. Since
the ready time of the first family was 0, its flowtime will be
B1 +B2 +q. The total flowtime SRL2(I1) will thus be:

SRL2(I1) = q+B1 +B2 +q. (32)

We can now compute the ratio of flowtimes from expres-
sions (31) and (32) when the number of families q is large:

lim
q→∞

SRL1(I1)

SRL2(I1)
= lim

q→∞

q(B1 +1)+B1 +B2

2q+B1 +B2
=

B1 +1
2

. (33)

It is easy to see that the above expression approaches infinity
when B1 → ∞. Thus, for any r ∈ R+ we can find such values q
and B1 that:
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SRL1(I1)

SRL2(I1)
≥ r. (34)

Let us now consider the second case. We construct instance
I2 similarly to instance I1, except the first family is like family
IA from Definition 1 and the jobs of the remaining families have
ready times A1, A1+1, . . . , A1+q−1.

This time SRL1 algorithm will schedule A1 and when that job
is completed, the second family will arrive. Since A2 > 1 the
job of that new family will be scheduled first. Thus, that and
subsequent families will end up having flowtime of 1. When
those q families complete, the job A2 of the first family will
be scheduled at time A1 + q and will complete at time A1 +
A2 +q for the flowtime of A1 +A2 +q. Thus, the total flowtime
SRL1(I2) for this case is:

SRL1(I2) = 2q+A1 +A2 . (35)

Finally, SRL2 algorithm will start by scheduling job A2 first.
When that job is completed at time A2, then the algorithm will
start to schedule the job from the newly arrived family, which
will thus start at A2 and complete at A2 + 1 for a flowtime of
A2 −A1 +1. Similar will happen for the remaining families. At
last, the job A1 will be scheduled at time A2 +q and completed
at A1 +A2 +q for a flowtime of A1 +A2 +q. The total flowtime
SRL2(I2) will be:

SRL2(I2) = q(A2 −A1 +1)+A1 +A2 . (36)

As before, we compute the ratio of flowtimes for large q:

lim
q→∞

SRL2(I2)

SRL1(I2)
= lim

q→∞

q(A2 −A1 +1)+A1 +A2

2q+A1 +A2

=
A2 −A1 +1

2
.

(37)

Once again, the expression approaches infinity when A2 −
A1 → ∞. Thus, for any r ∈ R+ we can find such values q, A1
and A2 that:

SRL2(I2)

SRL2(I2)
≥ r. (38)

�

The above theorem proves divergent algorithms are not r-
competitive relative to each other for any r. This also means
that divergent algorithms are not r-competitive for any r:

Corollary 3. Let (SRL1,SRL2) be a pair of divergent algo-
rithms for the Cm|online-time,r j,s jk|ΣF problem. Let SRL1(I)
and SRL2(I) be the solution (total flowtime) obtained for the
given problem instance I by both algorithms, respectively. Also
let OPT(I) be the optimal total flowtime for instance I. Then for
any r ∈ R+ there exist instances I1 and I2 such that:

SRL1(I1)

OPT(I1)
≥ r, (39)

SRL2(I2)

OPT(I2)
≥ r. (40)

Proof. The first inequality follows because from Theorem 1
we know SRL1(I1) can be r times greater than SRL2(I1) and
SRL2(I1)≥ OPT(I1). The second inequality is similar. �

5. Algorithms comparison

In the previous section we discuss theoretical properties
and competitiveness of some online algorithms for the
Cm|online-time,r j,s jk|ΣF problem and its variants. In this sec-
tion we perform a set of computer experiments in order to sup-
port the previously stated properties and show the average per-
formance of online algorithms in a more practical setting.

All experiments were performed as simulations on a machine
with Intel Core i708650U 1.9GHz CPU, 16 GiB of RAM work-
ing under 64-bit Linux (5.3.0 kernel). Algorithms were imple-
mented in C++ and compiled with gcc/g++. The testing envi-
ronment for running experiment was prepared using a mix of
C++ and Linux scripts (written in Bash).

The first experiment considers five different variants of the
SRL algorithm. Thus, all five algorithms choose some unstarted
job from the family of jobs with the smallest sum of processing
times of unstarted jobs. However, they differ in which job from
that family is chosen:
1. SRLLJ – (Longest Job) chooses the job with the longest pro-

cessing time.
2. SRLSJ – (Shortest Job) chooses the job with the shortest

processing time.
3. SRLAVG – (Average) chooses the job with processing time

closest to the average processing time of remaining jobs.
4. SRLRAVG – (Reverse Average) the reverse of SRLAVG.

Chooses the job that SRLAVG would choose last.
5. SRLRAND – (Random) chooses random job.

In order to observe the differences between the algorithms
better, we restricted the setting to a single family of jobs, two
machines and assumed no setup times. The number of jobs in
a family was drawn from a discrete uniform distribution from 2
to 20 (U {2,20}), while job processing times were drawn from
a U {1,100} distribution. 100000 such random instances were
tested. Each total flowtime was normalized compared to the
worst algorithm for the given instance. Thus, value of 0.5 for in-
stance I means the algorithm provided twice as good total flow-
time as the worst algorithm for I. The average and maximum
values over 100000 instances for each algorithm are shown in
Table 1. The values of maximum confirm that each of the con-

Table 1
Average and maximum normalized flowtimes for several variants of

the SRL algorithm

Algorithm Average Maximum

SRLLO 0.863 1.000

SRLSO 0.984 1.000

SRLAVG 0.900 1.000

SRLRAVG 0.918 1.000

SRLRAND 0.910 1.000
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SRL1(I1)

SRL2(I1)
≥ r. (34)

Let us now consider the second case. We construct instance
I2 similarly to instance I1, except the first family is like family
IA from Definition 1 and the jobs of the remaining families have
ready times A1, A1+1, . . . , A1+q−1.

This time SRL1 algorithm will schedule A1 and when that job
is completed, the second family will arrive. Since A2 > 1 the
job of that new family will be scheduled first. Thus, that and
subsequent families will end up having flowtime of 1. When
those q families complete, the job A2 of the first family will
be scheduled at time A1 + q and will complete at time A1 +
A2 +q for the flowtime of A1 +A2 +q. Thus, the total flowtime
SRL1(I2) for this case is:

SRL1(I2) = 2q+A1 +A2 . (35)

Finally, SRL2 algorithm will start by scheduling job A2 first.
When that job is completed at time A2, then the algorithm will
start to schedule the job from the newly arrived family, which
will thus start at A2 and complete at A2 + 1 for a flowtime of
A2 −A1 +1. Similar will happen for the remaining families. At
last, the job A1 will be scheduled at time A2 +q and completed
at A1 +A2 +q for a flowtime of A1 +A2 +q. The total flowtime
SRL2(I2) will be:

SRL2(I2) = q(A2 −A1 +1)+A1 +A2 . (36)

As before, we compute the ratio of flowtimes for large q:

lim
q→∞

SRL2(I2)

SRL1(I2)
= lim

q→∞

q(A2 −A1 +1)+A1 +A2

2q+A1 +A2

=
A2 −A1 +1

2
.

(37)

Once again, the expression approaches infinity when A2 −
A1 → ∞. Thus, for any r ∈ R+ we can find such values q, A1
and A2 that:

SRL2(I2)

SRL2(I2)
≥ r. (38)

�

The above theorem proves divergent algorithms are not r-
competitive relative to each other for any r. This also means
that divergent algorithms are not r-competitive for any r:

Corollary 3. Let (SRL1,SRL2) be a pair of divergent algo-
rithms for the Cm|online-time,r j,s jk|ΣF problem. Let SRL1(I)
and SRL2(I) be the solution (total flowtime) obtained for the
given problem instance I by both algorithms, respectively. Also
let OPT(I) be the optimal total flowtime for instance I. Then for
any r ∈ R+ there exist instances I1 and I2 such that:

SRL1(I1)

OPT(I1)
≥ r, (39)

SRL2(I2)

OPT(I2)
≥ r. (40)

Proof. The first inequality follows because from Theorem 1
we know SRL1(I1) can be r times greater than SRL2(I1) and
SRL2(I1)≥ OPT(I1). The second inequality is similar. �

5. Algorithms comparison

In the previous section we discuss theoretical properties
and competitiveness of some online algorithms for the
Cm|online-time,r j,s jk|ΣF problem and its variants. In this sec-
tion we perform a set of computer experiments in order to sup-
port the previously stated properties and show the average per-
formance of online algorithms in a more practical setting.

All experiments were performed as simulations on a machine
with Intel Core i708650U 1.9GHz CPU, 16 GiB of RAM work-
ing under 64-bit Linux (5.3.0 kernel). Algorithms were imple-
mented in C++ and compiled with gcc/g++. The testing envi-
ronment for running experiment was prepared using a mix of
C++ and Linux scripts (written in Bash).

The first experiment considers five different variants of the
SRL algorithm. Thus, all five algorithms choose some unstarted
job from the family of jobs with the smallest sum of processing
times of unstarted jobs. However, they differ in which job from
that family is chosen:
1. SRLLJ – (Longest Job) chooses the job with the longest pro-

cessing time.
2. SRLSJ – (Shortest Job) chooses the job with the shortest

processing time.
3. SRLAVG – (Average) chooses the job with processing time

closest to the average processing time of remaining jobs.
4. SRLRAVG – (Reverse Average) the reverse of SRLAVG.

Chooses the job that SRLAVG would choose last.
5. SRLRAND – (Random) chooses random job.

In order to observe the differences between the algorithms
better, we restricted the setting to a single family of jobs, two
machines and assumed no setup times. The number of jobs in
a family was drawn from a discrete uniform distribution from 2
to 20 (U {2,20}), while job processing times were drawn from
a U {1,100} distribution. 100000 such random instances were
tested. Each total flowtime was normalized compared to the
worst algorithm for the given instance. Thus, value of 0.5 for in-
stance I means the algorithm provided twice as good total flow-
time as the worst algorithm for I. The average and maximum
values over 100000 instances for each algorithm are shown in
Table 1. The values of maximum confirm that each of the con-

Table 1
Average and maximum normalized flowtimes for several variants of

the SRL algorithm

Algorithm Average Maximum

SRLLO 0.863 1.000

SRLSO 0.984 1.000

SRLAVG 0.900 1.000

SRLRAVG 0.918 1.000
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SRL1(I1)

SRL2(I1)
≥ r. (34)

Let us now consider the second case. We construct instance
I2 similarly to instance I1, except the first family is like family
IA from Definition 1 and the jobs of the remaining families have
ready times A1, A1+1, . . . , A1+q−1.

This time SRL1 algorithm will schedule A1 and when that job
is completed, the second family will arrive. Since A2 > 1 the
job of that new family will be scheduled first. Thus, that and
subsequent families will end up having flowtime of 1. When
those q families complete, the job A2 of the first family will
be scheduled at time A1 + q and will complete at time A1 +
A2 +q for the flowtime of A1 +A2 +q. Thus, the total flowtime
SRL1(I2) for this case is:

SRL1(I2) = 2q+A1 +A2 . (35)

Finally, SRL2 algorithm will start by scheduling job A2 first.
When that job is completed at time A2, then the algorithm will
start to schedule the job from the newly arrived family, which
will thus start at A2 and complete at A2 + 1 for a flowtime of
A2 −A1 +1. Similar will happen for the remaining families. At
last, the job A1 will be scheduled at time A2 +q and completed
at A1 +A2 +q for a flowtime of A1 +A2 +q. The total flowtime
SRL2(I2) will be:

SRL2(I2) = q(A2 −A1 +1)+A1 +A2 . (36)

As before, we compute the ratio of flowtimes for large q:

lim
q→∞

SRL2(I2)

SRL1(I2)
= lim

q→∞

q(A2 −A1 +1)+A1 +A2

2q+A1 +A2

=
A2 −A1 +1

2
.

(37)

Once again, the expression approaches infinity when A2 −
A1 → ∞. Thus, for any r ∈ R+ we can find such values q, A1
and A2 that:

SRL2(I2)

SRL2(I2)
≥ r. (38)

�

The above theorem proves divergent algorithms are not r-
competitive relative to each other for any r. This also means
that divergent algorithms are not r-competitive for any r:

Corollary 3. Let (SRL1,SRL2) be a pair of divergent algo-
rithms for the Cm|online-time,r j,s jk|ΣF problem. Let SRL1(I)
and SRL2(I) be the solution (total flowtime) obtained for the
given problem instance I by both algorithms, respectively. Also
let OPT(I) be the optimal total flowtime for instance I. Then for
any r ∈ R+ there exist instances I1 and I2 such that:

SRL1(I1)

OPT(I1)
≥ r, (39)

SRL2(I2)

OPT(I2)
≥ r. (40)

Proof. The first inequality follows because from Theorem 1
we know SRL1(I1) can be r times greater than SRL2(I1) and
SRL2(I1)≥ OPT(I1). The second inequality is similar. �

5. Algorithms comparison

In the previous section we discuss theoretical properties
and competitiveness of some online algorithms for the
Cm|online-time,r j,s jk|ΣF problem and its variants. In this sec-
tion we perform a set of computer experiments in order to sup-
port the previously stated properties and show the average per-
formance of online algorithms in a more practical setting.

All experiments were performed as simulations on a machine
with Intel Core i708650U 1.9GHz CPU, 16 GiB of RAM work-
ing under 64-bit Linux (5.3.0 kernel). Algorithms were imple-
mented in C++ and compiled with gcc/g++. The testing envi-
ronment for running experiment was prepared using a mix of
C++ and Linux scripts (written in Bash).

The first experiment considers five different variants of the
SRL algorithm. Thus, all five algorithms choose some unstarted
job from the family of jobs with the smallest sum of processing
times of unstarted jobs. However, they differ in which job from
that family is chosen:
1. SRLLJ – (Longest Job) chooses the job with the longest pro-

cessing time.
2. SRLSJ – (Shortest Job) chooses the job with the shortest

processing time.
3. SRLAVG – (Average) chooses the job with processing time

closest to the average processing time of remaining jobs.
4. SRLRAVG – (Reverse Average) the reverse of SRLAVG.

Chooses the job that SRLAVG would choose last.
5. SRLRAND – (Random) chooses random job.

In order to observe the differences between the algorithms
better, we restricted the setting to a single family of jobs, two
machines and assumed no setup times. The number of jobs in
a family was drawn from a discrete uniform distribution from 2
to 20 (U {2,20}), while job processing times were drawn from
a U {1,100} distribution. 100000 such random instances were
tested. Each total flowtime was normalized compared to the
worst algorithm for the given instance. Thus, value of 0.5 for in-
stance I means the algorithm provided twice as good total flow-
time as the worst algorithm for I. The average and maximum
values over 100000 instances for each algorithm are shown in
Table 1. The values of maximum confirm that each of the con-

Table 1
Average and maximum normalized flowtimes for several variants of

the SRL algorithm

Algorithm Average Maximum

SRLLO 0.863 1.000

SRLSO 0.984 1.000

SRLAVG 0.900 1.000

SRLRAVG 0.918 1.000

SRLRAND 0.910 1.000
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sidered algorithms has a “bad” instance for which it performs
badly. As for average values, we observe that the “shortest job”
strategy is the worst of all considered strategies almost all the
time. On the other hand, the “longest job” strategy turned to be
the best one, being 14% better than “shortest job” and 5% better
than random strategy.

The second computer experiment considered comparing
SRLLJ against several other online algorithms:
1. LRL (Largest Remaining Load) – incomplete family of jobs

with the largest remaining load is chosen first.
2. SJ (Shortest Job) – shortest unstarted remaining job is cho-

sen first (regardless of which family it belongs to).
3. LJ (Longest Job) – longest unstarted job is chosen, similar

to SJ.
4. FIFO (First In First Out) – incomplete families of jobs are

chosen in the order of their ready times (First-In First-Out).
5. RAND (Random) – random incomplete family of jobs is

chosen.
6. MIN – first a family of jobs is chosen from all incom-

plete families in a cyclic, round-robin-like fashion. Then the
shortest job of that family is chosen.

7. MAX – similar to MAX, but the longest job is chosen.
The MIN and MAX algorithms were considered based on
the algorithms implemented in a certain real-life Testing-as-a-
Service system. The data from that system was used to construct
50 problem instances of roughly 1800 jobs each. The setup time
s jk was set to 30, modeling the time needed to transfer nec-
essary files in the referenced real-life system. The algorithms
were ran for several number of machines. The most important
results, for 30 and 400 machines, are shown in Figs. 2 and 3 in
the form of boxplots.

Fig. 2. Normalized flowtime bloxplots for 30 machines

Let us start with the case of 30 machines. The SRL is clearly
the best algorithm, as all values are very close to 1. Even the
second closest algorithm, MIN, is outperformed by a large mar-
gin, its total flowtime being from 2.5 to nearly 4 times worse
than for SRL (3 times on average). Each subsequent algorithm

Fig. 3. Normalized flowtime bloxplots for 400 machines

generally performs worse than the previous one. Finally, in the
case of the RAND algorithm (which serves as a reference point
of sorts) we get 9 to 14 times worse values of the total flow-
time. Thus, the SRL provides the best and most stable (very
small variance) results in this case.

When the number of machines is increased to 400, the sit-
uation changes, slightly, but the general conclusion remains
the same. The SRL algorithm provides the smallest total flow-
time with little variance. Due to the increased number of ma-
chines the average values for the other algorithms have im-
proved greatly (staying close to 1, even for the RAND algo-
rithm). However, it is at the cost of the maximum values.

To summarize the above research, the SRL algorithm is
the best choice from all priority-rules online algorithms for
the Cm|online-time,r j,s jk|ΣF problem that we considered. The
SRLLJ subvariant of SRL provides the most promising results.

6. Simulated annealing approach

The results presented in Sections 4 and 5 showed that the SRL
algorithm and its variants generally outclass many other online
scheduling algorithms for the Cm|online-time,r j,s jk|ΣF prob-
lem. However, that does not answer a more general question,
namely: how much better algorithm for the considered problem
can we get? Let us note that the algorithms we considered so
far were so-called constructive algorithms, choosing the next
job based on priority rules. Such algorithms create only one
candidate solution and do not even evaluate it, thus essentially
not performing any search of the solution space.

There exists a completely different category of algorithms
called metaheuristics. Metaheuristics are also inexact methods
that are faster than exact methods, but do not guarantee obtain-
ing the optimal solution. They also have higher computational
cost when compared to the constructive algorithms like SRL.
However, metaheuristics are able to evaluate many candidate
solutions and compare them, performing a controlled search of
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sidered algorithms has a “bad” instance for which it performs
badly. As for average values, we observe that the “shortest job”
strategy is the worst of all considered strategies almost all the
time. On the other hand, the “longest job” strategy turned to be
the best one, being 14% better than “shortest job” and 5% better
than random strategy.
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SRLLJ against several other online algorithms:
1. LRL (Largest Remaining Load) – incomplete family of jobs

with the largest remaining load is chosen first.
2. SJ (Shortest Job) – shortest unstarted remaining job is cho-

sen first (regardless of which family it belongs to).
3. LJ (Longest Job) – longest unstarted job is chosen, similar

to SJ.
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chosen in the order of their ready times (First-In First-Out).
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chosen.
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the algorithms implemented in a certain real-life Testing-as-a-
Service system. The data from that system was used to construct
50 problem instances of roughly 1800 jobs each. The setup time
s jk was set to 30, modeling the time needed to transfer nec-
essary files in the referenced real-life system. The algorithms
were ran for several number of machines. The most important
results, for 30 and 400 machines, are shown in Figs. 2 and 3 in
the form of boxplots.

Fig. 2. Normalized flowtime bloxplots for 30 machines

Let us start with the case of 30 machines. The SRL is clearly
the best algorithm, as all values are very close to 1. Even the
second closest algorithm, MIN, is outperformed by a large mar-
gin, its total flowtime being from 2.5 to nearly 4 times worse
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Fig. 3. Normalized flowtime bloxplots for 400 machines

generally performs worse than the previous one. Finally, in the
case of the RAND algorithm (which serves as a reference point
of sorts) we get 9 to 14 times worse values of the total flow-
time. Thus, the SRL provides the best and most stable (very
small variance) results in this case.
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rithm). However, it is at the cost of the maximum values.

To summarize the above research, the SRL algorithm is
the best choice from all priority-rules online algorithms for
the Cm|online-time,r j,s jk|ΣF problem that we considered. The
SRLLJ subvariant of SRL provides the most promising results.

6. Simulated annealing approach

The results presented in Sections 4 and 5 showed that the SRL
algorithm and its variants generally outclass many other online
scheduling algorithms for the Cm|online-time,r j,s jk|ΣF prob-
lem. However, that does not answer a more general question,
namely: how much better algorithm for the considered problem
can we get? Let us note that the algorithms we considered so
far were so-called constructive algorithms, choosing the next
job based on priority rules. Such algorithms create only one
candidate solution and do not even evaluate it, thus essentially
not performing any search of the solution space.

There exists a completely different category of algorithms
called metaheuristics. Metaheuristics are also inexact methods
that are faster than exact methods, but do not guarantee obtain-
ing the optimal solution. They also have higher computational
cost when compared to the constructive algorithms like SRL.
However, metaheuristics are able to evaluate many candidate
solutions and compare them, performing a controlled search of
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the solution space. Metaheuristics are a very diverse group of
methods, but most of them work in an iterative manner. In each
iteration, the method tries to obtain a better solution than in the
last iteration. This means a metaheuristic has to start from some
initial solution, which is usually supplied by some other heuris-
tic method like the SRL algorithm. That also means that, in
theory, a metaheuristic will not obtain the final results that are
worse than the initial solution. Metaheuristics are commonly
used for solving many offline scheduling problems and some
were used for online problems as well, as shown in Section 1.
However, another study [10] for a similar TaaS system indi-
cated that the performance of metaheuristics was not better than
that of the SRL algorithm. We will now present a more detailed
study of this phenomenon.

6.1. Solving algorithm. We start by describing the solving
method used in this study. The method works by applying a cer-
tain metaheuristic every time a new family of jobs arrives1. This
schedules all unstarted jobs, including the newly arrived jobs
and the ones already scheduled but not yet started. Thus, previ-
ously scheduled jobs might be rescheduled.

We decided to employ Simulated Annealing (SA) method,
which is one of the most well-known metaheuristics used in
optimization problems, including scheduling [27]. Our imple-
mentation of SA follows the classical scheme well-known in
the literature [28], with a few adjustments. The method used
the processing order π introduced in Section 2. This allows em-
ploying a swap-or-move neighborhood. Thus, a transition be-
tween solutions happens either by swapping jobs inside a spe-
cific vector πi or by moving a job between different vectors. The
cooling scheme and solution acceptance probability are defined
as follows:

α(i) = t0 − i/I, (41)

Axy(t) =




1 when f (y)≤ f (x) ,

exp
(

f (x)− f (y)
t

)
otherwise ,

(42)

where α(i) is the temperature at iteration i, Axy(t) is acceptance
probability of transition from solution x to y given temperature
t, t0 is starting temperature, I is the total number of iterations
and f is cost function (total flowtime for a given solution).

Lastly, a metaheuristic requires an initial solution and two
different variants were prepared. The first variant uses the solu-
tion provided by the SRLLJ algorithm as the initial solution. The
second variant runs the SRLLJ algorithm first and then worsens
the result by making 25 random swap transitions.

6.2. Computer experiment. To provide details on the phe-
nomenon of metaheuristic approach to scheduling for the con-
sidered TaaS system, we conducted a computer experiment. In
the experiment, we compared the performance of both SA vari-
ants mentioned earlier with the performance of the SRLLJ algo-
rithm. The instances for this experiment were generated using

1If several families arrive at the same time, the method is run only once.

probability distributions derived from the workload character-
istics of a real-life TaaS system [6].

In the experiment 50 instances were used for 4 numbers of
machines (30, 50, 100 and 200), resulting in 200 subexperi-
ments in total. The SRLLJ is deterministic, so it is run once,
while both SA-based method variants were run 7 times for each
subexperiment, with the reported values being the averages.
Also, the SA-based method was run for different number of
iterations. The results of each subexperiment were normalized
with the value of 1 being the result provided by SRLLJ. The
software and hardware used in the experiment are the same as
the ones described in the experiment from Section 5.

In Fig. 4 we show the results when the SA-based method
starts from the worsened SRLLJ algorithm. We notice that with
the growing number of iterations, the effectiveness of the SA
method gets closer to that of the SRLLJ algorithm. In particu-
lar, the range of values obtained by the SA method decreases:
at 1 iteration SA is from around 1.4 to 5.09 times worse than
SRLLJ. However, at 100 000 iterations the values are from 0.98
to 1.4. Let us note that the SA method manages to outperform
the SRLLJ algorithm, but very rarely and unreliably. It also takes
a large number of iterations for it to get close to the results pro-
vided by the SRLLJ algorithm. However, we can conclude that
as the number of iterations grows, the SA method tends to get
closer to the result provided by the SRLLJ method, which is
an expected behavior.

Fig. 4. Overall total flowtime results for 8400 runs of the SA-based
method in function of the number of iterations allowed for SA. Initial

solution was worsened SRLLJ algorithm. The X axis is in log scale

For the next step, we made the SA method start directly from
the SRLLJ algorithm. Since the initial solution is now of higher
quality, we expect the SA method to perform better. The results
of this experiment are shown in Fig. 5. The outcome is largely
surprising. First, we notice that the SA method on average pro-
vides worse results than its starting solution. In fact, up to 1 000
iteration the SA method almost always generates results worse
than the SRLLJ algorithm. When the number of iterations in-
creases further, the best values become better, but the results do
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not go below 0.97 of what the SRLLJ can provide. Moreover,
as for the maximal values and most other ordinals we observe
a surprising behavior. Beyond 1 000 iterations, the average re-
sults obtained by the SA method get worse as the number of
iterations increases. While the values never get as bad as when
the SA method was starting from a worsened solution, the effect
is still counter-intuitive.

Fig. 5. Overall total flowtime results for 8400 runs of the SA-based
method in function of the number of iterations allowed for SA. Initial

solution was the SRLLJ algorithm. The X axis is in log scale

If we were to look at Figs. 4 and 5 when joined together,
we would notice that the shape of curves pertaining to most of
the ordinals (at least from the first quartile to the maximum)
resemble a bathtub curve. Of course, it would be best to portray
this effect on a single figure; however, due to the time needed to
run the SA-based method 1 400 times for a number of iterations
greater than 100 000, it was difficult to obtain the bathtub curve
with a single setting. This is why two different variants for the
SA-based method were used.

A possible explanation of the observed phenomenon might
be the greedy-like way the solving method is applied for the
considered problem. The method tries to solve an instance with
n families of jobs by applying the SA-based method O(n)-
times. Thus, each execution of the SA method acts on the lim-
ited part of the instance (with limited knowledge) and tries to
find the best solution. However, that best solution is not the so-
lution to the entire problem, so it might not be a global opti-
mum. This might be likened to a game of chess, where a greedy
algorithm is run for every move. However, a game constructed
from moves that are locally optimal might not be globally op-
timal. Thus, for our solving method, increasing the number of
iterations enabled the SA method to get closer to the local opti-
mum, which might make it return worse solution globally. This
also makes it possible for a metaheuristic like SA to return a re-
sult that is worse than its initial solution, which is also counter-
intuitive for a metaheuristic.

To summarize, in this section we presented the results of ap-
plying an exemplary metaheuristic to the problem of schedul-

ing tasks for the considered real-life TaaS system. Results indi-
cate that, at the current time, metaheuristics are not a viable
choice for this problem. Even if they can provide solutions
better than SRL-like algorithms, they have much higher com-
putational complexity and the possible gain is not significant
(around 3%). The most important conclusion, however, is that
the metaheuristics do not seem to be reliable. Even if one out
of 100 runs of the proposed solving method were to be suc-
cessful, we do not know which one it will be. Coupled with the
fact that we have to create the schedule on-the-fly, it makes the
metaheuristics impractical at the current time.

7. Processing time prediction

In the previous sections we have considered the Cm|online-
time,r j,s jk|ΣF problem with the assumption that the process-
ing times of jobs are known in advance and the problem is
clairvoyant. However, in practice the processing times are not
known for certain. The prediction of such uncertain parameters
is always difficult, even for single-machine scheduling prob-
lems [29]. If we were not able to approximate the processing
times of jobs, then the considered cluster scheduling problem
would be reduced to typical load-balancing problem.

This issue is especially important as we are trying to model
a Testing-as-a-Service cloud system. In such a system chang-
ing a single line of code can affect many test cases (jobs) and
drastically change their processing time. However, a single test
case is executed many times on average. Thus, previous exe-
cutions of a test case can be used to predict the time it would
take to execute it again. In this section we will show that the
processing times of jobs can be predicted well and thus the con-
sidered online scheduling problem is in fact semi-clairvoyant:
Cm|online-time-sclv,r j,s jk|ΣF .

For prediction we employed the k-recent moving average
technique. Thus, to predict processing time p j of job j, we com-
pute the average of the k most recent executions of jobs of type
t j. Such predicted value will be denoted as p̂ j. Let Ht be the
vector containing past processing times of jobs with type t and
Ht(x) be the x-th most recent processing time in that vector.
Then the predicted value p̂ j is defined as follows:

p̂ j =





1
k

k

∑
x=1

Ht j(x) if |Ht j |> k∧ k > 0,

1
|Ht j |

|Ht j |

∑
x=1

Ht j(x) if |Ht j | ≤ k∧|Ht j |> 0,

50 if |Ht j |= 0∨ k = 0,

(43)

where 50 is the default value used when the history is empty.
This value was chosen based on the average processing time in
the testing instances mentioned earlier in the paper.

It is also possible to include weights in the prediction mech-
anism, with weight decreasing as x increases. Such a system
would help take freshness of data into account, leading to the
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not go below 0.97 of what the SRLLJ can provide. Moreover,
as for the maximal values and most other ordinals we observe
a surprising behavior. Beyond 1 000 iterations, the average re-
sults obtained by the SA method get worse as the number of
iterations increases. While the values never get as bad as when
the SA method was starting from a worsened solution, the effect
is still counter-intuitive.

Fig. 5. Overall total flowtime results for 8400 runs of the SA-based
method in function of the number of iterations allowed for SA. Initial

solution was the SRLLJ algorithm. The X axis is in log scale

If we were to look at Figs. 4 and 5 when joined together,
we would notice that the shape of curves pertaining to most of
the ordinals (at least from the first quartile to the maximum)
resemble a bathtub curve. Of course, it would be best to portray
this effect on a single figure; however, due to the time needed to
run the SA-based method 1 400 times for a number of iterations
greater than 100 000, it was difficult to obtain the bathtub curve
with a single setting. This is why two different variants for the
SA-based method were used.

A possible explanation of the observed phenomenon might
be the greedy-like way the solving method is applied for the
considered problem. The method tries to solve an instance with
n families of jobs by applying the SA-based method O(n)-
times. Thus, each execution of the SA method acts on the lim-
ited part of the instance (with limited knowledge) and tries to
find the best solution. However, that best solution is not the so-
lution to the entire problem, so it might not be a global opti-
mum. This might be likened to a game of chess, where a greedy
algorithm is run for every move. However, a game constructed
from moves that are locally optimal might not be globally op-
timal. Thus, for our solving method, increasing the number of
iterations enabled the SA method to get closer to the local opti-
mum, which might make it return worse solution globally. This
also makes it possible for a metaheuristic like SA to return a re-
sult that is worse than its initial solution, which is also counter-
intuitive for a metaheuristic.

To summarize, in this section we presented the results of ap-
plying an exemplary metaheuristic to the problem of schedul-

ing tasks for the considered real-life TaaS system. Results indi-
cate that, at the current time, metaheuristics are not a viable
choice for this problem. Even if they can provide solutions
better than SRL-like algorithms, they have much higher com-
putational complexity and the possible gain is not significant
(around 3%). The most important conclusion, however, is that
the metaheuristics do not seem to be reliable. Even if one out
of 100 runs of the proposed solving method were to be suc-
cessful, we do not know which one it will be. Coupled with the
fact that we have to create the schedule on-the-fly, it makes the
metaheuristics impractical at the current time.

7. Processing time prediction

In the previous sections we have considered the Cm|online-
time,r j,s jk|ΣF problem with the assumption that the process-
ing times of jobs are known in advance and the problem is
clairvoyant. However, in practice the processing times are not
known for certain. The prediction of such uncertain parameters
is always difficult, even for single-machine scheduling prob-
lems [29]. If we were not able to approximate the processing
times of jobs, then the considered cluster scheduling problem
would be reduced to typical load-balancing problem.

This issue is especially important as we are trying to model
a Testing-as-a-Service cloud system. In such a system chang-
ing a single line of code can affect many test cases (jobs) and
drastically change their processing time. However, a single test
case is executed many times on average. Thus, previous exe-
cutions of a test case can be used to predict the time it would
take to execute it again. In this section we will show that the
processing times of jobs can be predicted well and thus the con-
sidered online scheduling problem is in fact semi-clairvoyant:
Cm|online-time-sclv,r j,s jk|ΣF .

For prediction we employed the k-recent moving average
technique. Thus, to predict processing time p j of job j, we com-
pute the average of the k most recent executions of jobs of type
t j. Such predicted value will be denoted as p̂ j. Let Ht be the
vector containing past processing times of jobs with type t and
Ht(x) be the x-th most recent processing time in that vector.
Then the predicted value p̂ j is defined as follows:

p̂ j =





1
k

k

∑
x=1

Ht j(x) if |Ht j |> k∧ k > 0,

1
|Ht j |

|Ht j |

∑
x=1

Ht j(x) if |Ht j | ≤ k∧|Ht j |> 0,

50 if |Ht j |= 0∨ k = 0,

(43)

where 50 is the default value used when the history is empty.
This value was chosen based on the average processing time in
the testing instances mentioned earlier in the paper.

It is also possible to include weights in the prediction mech-
anism, with weight decreasing as x increases. Such a system
would help take freshness of data into account, leading to the
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following formula:

p̂ j =





1
W (k)

k

∑
x=1

wxHt j(x) if |Ht j |> k∧ k > 0,

1
W (|Ht j |)

|Ht j |

∑
x=1

wxHt j(x) if |Ht j | ≤ k∧|Ht j |> 0,

50 if |Ht j |= 0∨ k = 0,

(44)

where W (k) and W (|Ht j |) are the sum of the weights of the k
and |Ht j | most recent processing times, respectively.

We can now use the value p̂ j to predict the remaining load
Lu of family of job u (which is the sum of processing times of
its jobs). The resulting value is denoted L̂u:

L̂u = ∑
j∈Bu

p̂ j . (45)

Through preliminary research we concluded that the best
value for k is 3. After that we performed two series of com-
puter experiments. The purpose of the first experiment was to
research the Person correlation coefficient between values p̂ j
and p j as well as between L̂u and Lu. The results for the 50 test-
ing instances mentioned earlier are shown in Table 2. The soft-

Table 2
Pearson correlation coefficient for prediction of job processing times

and family of job loads for the k-recent prediction method

Instance L̂u p̂ j Instance L̂u p̂ j

inst01 0.989 0.912 inst26 0.996 0.922
inst02 0.971 0.829 inst27 0.996 0.928
inst03 0.920 0.839 inst28 0.999 0.943
inst04 0.941 0.863 inst29 0.997 0.927
inst05 0.994 0.891 inst30 0.997 0.916
inst06 0.936 0.855 inst31 0.996 0.890
inst07 0.978 0.857 inst32 0.997 0.918
inst08 0.991 0.917 inst33 0.997 0.914
inst09 0.964 0.915 inst34 0.997 0.918
inst10 0.995 0.908 inst35 0.994 0.908
inst11 0.995 0.926 inst36 0.998 0.932
inst12 0.987 0.957 inst37 0.996 0.911
inst13 0.996 0.949 inst38 0.997 0.940
inst14 0.997 0.945 inst39 0.945 0.898
inst15 0.998 0.898 inst40 0.998 0.951
inst16 0.995 0.931 inst41 0.998 0.937
inst17 0.996 0.937 inst42 0.997 0.906
inst18 0.996 0.915 inst43 0.998 0.937
inst19 0.995 0.937 inst44 0.936 0.876
inst20 0.995 0.929 inst45 0.996 0.902
inst21 0.960 0.923 inst46 0.997 0.913
inst22 0.996 0.910 inst47 0.997 0.906
inst23 0.995 0.897 inst48 0.998 0.932
inst24 0.997 0.922 inst49 0.950 0.911
inst25 0.997 0.947 inst50 0.998 0.936

ware and hardware used in the experiment are the same as the
ones described in experiment from Section 5.

We observe that the quality of the p̂ j predictor is good with
average correlation coefficient at 0.914 and the minimum value
was 0.829. The coefficient of variation (CV), which is standard
deviation divided by the average, was 0.031. The prediction is
not perfect though, so it is natural to think that using that value
to predict the remaining load of family of jobs would provide
worse results as the errors of prediction for each job would ac-
cumulate inside the family. The results from the table, however,
show a different outcome. The average, minimum and CV val-
ues for the L̂u predictor are 0.987, 0.920 and 0.020. Thus, the
correlation between L̂u and Lu was for all instances higher than
the average correlation between p̂ j and p j. We assume this ef-
fect is caused by prediction errors averaging and canceling each
other over all jobs in a family.

For the second experiment we wanted to test the practical
quality of prediction. Even if there is a high correlation be-
tween values, it is still possible that algorithm using the pre-
dictor would obtain a vastly different total flowtime than the
“ideal” (clairvoyant) algorithm which uses the actual process-
ing times. Thus, in our experiment we ran both variants (the one
employing prediction and the one using the actual processing
times) for 5 previously discussed online algorithms. We nor-
malized the results (except CV) by dividing the total flowtime
obtained with prediction by the one obtained using actual pro-
cessing times. The summary of results is shown in Table 3.

Table 3
Normalized quality of the k-recent prediction method. All averages,

minima, maxima, and CVs are computed over 50 tested instances

Algorithm Average Minimum Maximum CV

30 machines

LRL 0.973 0.875 0.993 0.023
MAX 0.975 0.951 0.990 0.009
MIN 1.017 1.006 1.033 0.006

RAND 1.000 0.997 1.005 0.002
SRL 1.060 1.014 1.142 0.025

100 machines

LRL 0.986 0.839 1.016 0.027
MAX 0.984 0.968 0.996 0.006
MIN 1.008 0.993 1.031 0.007

RAND 1.000 0.998 1.003 0.001
SRL 1.046 0.998 1.101 0.026

400 machines

LRL 1.003 0.892 1.106 0.037
MAX 1.001 0.985 1.009 0.005
MIN 0.999 0.994 1.008 0.003

RAND 1.000 0.994 1.007 0.003
SRL 1.004 0.992 1.038 0.007

In general, we observe that all of the tested algorithms are
fairly robust: the prediction not worsening the results by more
than a few percent. The MIN, MAX and RAND algorithms
also are very stable with small CV values: the prediction barely
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affects them. The LRL algorithm is very interesting as using
the predicted value seems to work better than using the actual
values. The SRL algorithm suffers the biggest prediction error,
but still remains the best of the considered algorithms when it
comes to optimizing the total flowtime for Testing-as-a-Service
cloud system under consideration.

8. Discussion

In this section we will discuss the proposed approach, includ-
ing its features, advantages, disadvantages and results presented
in previous sections, as well as the possibility of applying the
approach to different kinds of problems.

We will start by discussing the advantages of the approach.
While the problem of running large-scale software test is related
to the problem of distributing or balancing load in computer
clusters, it is also very specific. This problem was considered
before, but most authors either focus on practical issues, often
considering many additional aspects (including test cases gen-
eration, flow of data in the company, aggregation of test case
results, etc.). However, there is little focus on the theoretical
properties of the problem. Our approach is partially theoretical
and focuses on a single aspect of the problem: the scheduling.
Thus, the approach using theory of scheduling allowed to bet-
ter define and understand the problem, its limitation, difficulties
and properties.

Such an approach allowed to extend the existing SRPT al-
gorithm to this problem. We also notice that the resulting SRL
algorithm is two-level and conducted research concerning en-
tire class of SRL algorithms, including the fact that many of
them are not competitive for any r. More importantly, the SRL
is a very fast algorithm, which is important for large-scale soft-
ware testing, where tens and hundreds of thousands of test cases
are run every day.

The SRL is also effective, outclassing other tested algo-
rithms. In particular, SRL outclasses the MIN algorithm, which
was originally the one used in the company. The effectiveness
of the SRL algorithm also allows to decrease the number of
machines used for software testing. This can reduce costs (by
buying and maintaining fewer resources) or allow to employ
(now idle) machines for other tasks.

Finally, we proved that the considered problem is not typi-
cal load-balancing, because the processing times of test cases,
though generally unknown, can be predicted with high accu-
racy using simple k-recent moving average predictor. As such,
while our research are case study-specific, the proposed ap-
proach should be applicable for high-scale software testing in
other companies as well.

We will now discuss some issues and disadvantages associ-
ated with considered approaches. While applicable for differ-
ent software-testing workloads, the numerical experiments pre-
sented in this paper are very case-specific. The use of our ap-
proach in a different software testing system would still require
prior analysis. Moreover, such analysis requires a considerable
history of past executions of test cases to be available. While we
expect companies to keep track of past data, that still means the

approach cannot be fully applied from the start, but only after
some time has passed.

Our research also indicated that while there are some promis-
ing results, the metaheuristics are generally inferior to simple
rule-based algorithms, at least in our approach (also due to the
large size of the problem). However, the research proved that
metaheuristics can, in some contexts, provide results worse than
their initial solutions. This counter-intuitive result means meta-
heuristics should be used carefully.

Finally, while the results, especially for the SRLLJ algorithm
are promising, the actual implementation in a real-life software
system still would encounter issues, including delay caused
by computer network, failure of machines and additional con-
straints (for example, different types of machines).

Lastly, we discuss the possibility of using our approach to
other problems. First, the approach can be used for distributing
workload in IT systems for purposes other than software test-
ing. In fact, most computation-heavy tasks would suffice. For
example, one can imagine a system for running programs for
scientific experiments. Each user would generally submit a task
(family of jobs in our context) composed of multiple subtasks
(e.g. many versions of the same program run with different pa-
rameters). Thus, the owner of the system would minimize the
total (equivalently average) time of completing the entire task,
which conforms to our definition of the goal function. Other-
wise, as a generalization of the classic scheduling jobs on par-
allel machines problem, our approach could be used for vari-
ety of systems, where jobs are packed into families. This could
include password retrieval, where a single task (submitted by
a single court expert) is composed of thousands of password
masks to be checked.

9. Conclusions

In this paper we have considered the problem of scheduling test
suites and test cases in a case study Testing-as-a-System cloud
environment. The problem was modeled as an online clustered
scheduling problem on parallel machines with the total flow-
time goal function. We proved that this problem is a gener-
alization of the classic problem of scheduling on parallel ma-
chines. We proposed a processing order representation that al-
lows to consider only semi-active feasible schedules. We pro-
posed the Smallest Remaining Load (SRL) online algorithm,
based on the well-known Shortest Remaining Processing Time
algorithm, and a number of its variants.

We showed that SRL algorithm variants belonging to a cer-
tain class are not competitive, not even relative to each other.
Through computer experiments on synthetic and real-life data,
we have shown that the SRLLJ is the best of of the consid-
ered SRL variants in practice, outclassing other SRL variants
and non-SRL algorithms. We also compared the SRL approach
to the metaheuristic approach and showed that, at the current
time, such approach leads to generally worse results, which is
counter-intuitive for a metaheuristic.

Finally, we proposed an approach to prediction of the
processing times of test cases using th k-recent method.

Bull. Pol. Ac.: Tech. 68(4) 2020 13



881

Online scheduling for a Testing-as-a-Service system

Bull.  Pol.  Ac.:  Tech.  68(4)  2020

Online scheduling for a Testing-as-a-Service system

affects them. The LRL algorithm is very interesting as using
the predicted value seems to work better than using the actual
values. The SRL algorithm suffers the biggest prediction error,
but still remains the best of the considered algorithms when it
comes to optimizing the total flowtime for Testing-as-a-Service
cloud system under consideration.

8. Discussion

In this section we will discuss the proposed approach, includ-
ing its features, advantages, disadvantages and results presented
in previous sections, as well as the possibility of applying the
approach to different kinds of problems.

We will start by discussing the advantages of the approach.
While the problem of running large-scale software test is related
to the problem of distributing or balancing load in computer
clusters, it is also very specific. This problem was considered
before, but most authors either focus on practical issues, often
considering many additional aspects (including test cases gen-
eration, flow of data in the company, aggregation of test case
results, etc.). However, there is little focus on the theoretical
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total (equivalently average) time of completing the entire task,
which conforms to our definition of the goal function. Other-
wise, as a generalization of the classic scheduling jobs on par-
allel machines problem, our approach could be used for vari-
ety of systems, where jobs are packed into families. This could
include password retrieval, where a single task (submitted by
a single court expert) is composed of thousands of password
masks to be checked.

9. Conclusions

In this paper we have considered the problem of scheduling test
suites and test cases in a case study Testing-as-a-System cloud
environment. The problem was modeled as an online clustered
scheduling problem on parallel machines with the total flow-
time goal function. We proved that this problem is a gener-
alization of the classic problem of scheduling on parallel ma-
chines. We proposed a processing order representation that al-
lows to consider only semi-active feasible schedules. We pro-
posed the Smallest Remaining Load (SRL) online algorithm,
based on the well-known Shortest Remaining Processing Time
algorithm, and a number of its variants.

We showed that SRL algorithm variants belonging to a cer-
tain class are not competitive, not even relative to each other.
Through computer experiments on synthetic and real-life data,
we have shown that the SRLLJ is the best of of the consid-
ered SRL variants in practice, outclassing other SRL variants
and non-SRL algorithms. We also compared the SRL approach
to the metaheuristic approach and showed that, at the current
time, such approach leads to generally worse results, which is
counter-intuitive for a metaheuristic.

Finally, we proposed an approach to prediction of the
processing times of test cases using th k-recent method.
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The method showed very high correlation between predicted
and actual values for both test case processing times and test
suite remaining load. Results from a computer experiment with
real-life data confirmed that this approach is robust, with the
prediction having little effect on the computed total flowtime
value.

REFERENCES

[1] D. Kumar and K. Mishra, “The impacts of test automation on
software’s cost, quality and time to market”, Procedia Comput.
Sci. 79, 8–15 (2016).

[2] J. Musial, M. Guzek, P. Bouvry, and J. Blazewicz, “A note on
the complexity of scheduling of communicationaware directed
acyclic graph”, textitBull. Pol. Ac.: Tech. 66 (2), 187–191
(2018).

[3] L. Yu, L. Zhang, H. Xiang, Y. Su, W. Zhao, and J. Zhu, “A frame-
work of testing as a service”, in 2009 International Conference
on Management and Service Science, 2009, pp. 1–4.

[4] L. Yu, W. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, and W. Zhao,
“Testing as a service over cloud”, in 2010 Fifth IEEE Inter-
national Symposium on Service Oriented System Engineering,
2010, pp. 181–188.

[5] A. Sathe and D.R. Kulkarni, “Study of testing as a service (taas)–
cost effective framework for taas in cloud environment”, Inter-
national Journal of Application or Innovation in Engineering
and Management (IJAIEM) 2 (5), 239–243, (2013).

[6] P. Lampe and J. Rudy, “Models and scheduling algorithms for a
software testing system over cloud”, in Contemporary Complex
Systems and Their Dependability, pp. 326–337, Eds. W. Zamo-
jski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk,
Cham: Springer International Publishing, 2019.

[7] S.-J. Lee, Y.-C. Lin, K.-H. Lin, and J.-L. You, “A system for
composing and delivering heterogeneous web testing software
as a composite web testing service”, J. Inf. Sci. Eng. 34 (3), 631–
648 (2018).

[8] J. Gao, X. Bai, and W. Tsai, “Cloud testing issues, chal-
lenges, needs and practice”, Software Engineering: An In-
ternational Journal 1(1), 9–23 (2011). [Online]. Available:
http://www.seij.dce.edu/Paper%5Cn1.pdf

[9] R. V. Binder, “Optimal scheduling for combinatorial software
testing and design of experiments”, in 2018 IEEE International
Conference on Software Testing, Verification and Validation
Workshops, 2018, pp. 295–301.

[10] J. Rudy, “Online multi-criteria scheduling for testing as a service
cloud platform”, in Smart Innovations in Engineering and Tech-
nology, pp. 34–52, Eds. R. Klempous and J. Nikodem, Cham:
Springer International Publishing, 2020.

[11] S. Tahvili, “Multi-criteria optimization of system integration
testing”, Ph.D. dissertation, RISE SICS Västerås, 2018.

[12] P. Lampe, “Fuzzy job scheduling for testing as a service plat-
form”, in Smart Innovations in Engineering and Technology, pp.
25–33, Eds. R. Klempous and J. Nikodem, Cham: Springer In-
ternational Publishing, 2020.

[13] A. Ali, H.A. Maghawry, and N. Badr, “Automated paral-
lel gui testing as a service for mobile applications”, J. Soft-
ware: Evol. Process 30 (10), e1963 (2018), [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1963

[14] I. Gog, M. Schwarzkopf, A. Gleave, R.N.M. Watson, and
S. Hand, “Firmament: Fast, Centralized Cluster Scheduling at

Scale”, in Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation, 2016, pp. 99–115.

[15] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic,
and S. Rao, “Efficient queue management for cluster schedul-
ing”, in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16, New York, USA, 2016, pp.
36:1–36:15.

[16] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling”, in Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Con-
ferece, Berkeley: USENIX Association, 2015, pp. 499–510.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2813767.
2813804.

[17] K. Lee, J.Y.-T. Leung, and M.L. Pinedo, “Makespan minimiza-
tion in online scheduling with machine eligibility”, Ann. Oper.
Res. 204(1), 189–222 (2013).

[18] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware
scheduling in eagle: Divide and stick to your probes”, in Pro-
ceedings of the Seventh ACM Symposium on Cloud Computing,
ser. SoCC ’16. New York, USA, 2016, pp. 497–509. [Online].
Available: http://doi.acm.org/10.1145/2987550.2987563

[19] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, and M.A. Ko-
zuch, “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis”, in Proceedings of the Third ACM Symposium on
Cloud Computing, ser. SoCC ’12, New York, USA, 2012, pp.
7:1–7:13.

[20] S. Leonardi and D. Raz, “Approximating total flow time on
parallel machines”, J. Comput. Syst. Sci. Int. 73 (6), 875–891
(2007).

[21] G. Dósa, A. Fügenschuh, Z. Tan, Z. Tuza, and K. Węsek, “Tight
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