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Abstract
Falls are one of the leading causes of disability and premature death among the elderly. Technical solutions
designed to automatically detect a fall event may mitigate fall-related health consequences by immediate
medical assistance. This paper presents a wearable device called TTXFD based on MPU6050 which can
collect triaxial acceleration signals. We have also designed a two-step fall detection algorithm that fuses
threshold-based method (TBM) and machine learning (ML). The TTXFD exploits the TBM stage with
low computational complexity to pick out and transmit suspected fall data (triaxial acceleration data). The
ML stage of the two-step algorithm is implemented on a server which encodes the data into an image and
exploits a fall detection algorithm based on convolutional neural network to identify a fall on the basis of
the image. The experimental results show that the proposed algorithm achieves high sensitivity (97.83%),
specificity (96.64%) and accuracy (97.02%) on the open dataset. In conclusion, this paper proposes a reliable
solution for fall detection, which combines the advantages of threshold-based method and machine learning
technology to reduce power consumption and improve classification ability.
Keywords: wearable, fall detection, MPU6050, threshold-based method, convolutional neural network.
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1. Introduction

A fall is defined as “unintentionally coming to ground, or some lower level not as a conse-
quence of sustaining a violent blow, loss of consciousness, sudden onset of paralysis as in stroke
or an epileptic seizure” [1]. The frequency of falls increases with age and the elderly have the
highest risk of severe injury due to a fall. It is estimated that approximately 28%–35% of people
aged 65 over fall each year increasing to nearly 32%–42% for those over 70 years of age [2].
These falls may result in hip fractures, traumatic brain injuries and upper limb injuries. As a result,
the elderly require to live in long-term care institutions. Moreover, falls also lead to a post-fall
syndrome, such as loneliness, fear of social withdrawal, and depression [3]. In general, the quality
of their lives is reduced.
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Nearly half of the elderly are unable to get up after a non-injured fall and remain on the floor
for a long time [4]. This may lead to a series of serious consequences, including pressure sores,
dehydration, hypothermia, pneumonia and even death. Therefore, solutions with automatic fall
detection and alarm notification functions are useful [5], because they ensure that the elderly get
immediate assistance and reduce the risk of fall-related complications.

The solutions of fall detection are broadly classified into two categories: wearable solutions
and non-wearable solutions. The latter concern the deployment of sensors in the surrounding
environment where the elderly live, such as pressure sensors [6, 7], infrared sensors [8, 9] and
cameras [10,11]. The solutions based on these sensors distinguish between falls and activities of
daily living (ADLs) by analyzing environmental information and/or the movement of the body
within the detection range. But the main limitation of these solutions is that they can only be
used in a specific room. In addition, the cost of deploying sensors, complex computing resources,
and privacy of the elderly (especially camera-based methods) are also challenges they have to
overcome [12].

Recently, the wearable solutions are research hotspots in fall detection studies. Current wear-
able devices with inertial sensors (such as accelerometer and/or gyroscope) are worn on the body
and capture body posture changes to detect a fall. Compared with non-wearable solutions, they
have the advantages of being available everywhere, lower cost and few privacy issues [13].

Methods for the wearable solutions can be divided into threshold-based methods (TBM)
and machine learning (ML) [14]. The former have the advantages of low power consumption,
low computational complexity and easy implementation. Wang et al. [15] proposed a wearable
device (LPFD) based on accelerometer and air pressure sensing technology. The LPFD exploited
a threshold-based fall detection algorithm to analyze kinematic information during a fall, including
weightless falling, impact, and resting phases of the fall. If all actionsmatched the characteristics of
the fall, the LPFD detected a fall event. However, the classification ability of the algorithm is poor,
because it is difficult to tune an optimal classification threshold to trade off between sensitivity
and specificity. A high threshold value brings out a large number of missing alarms, while a low
threshold brings out a large number of false alarms. Furthermore, Aziz et al. [16] compared TBM
with ML (including logistic regression, decision tree, naïve bayes, k-nearest neighbor, support
vector machines), and claimed that the ML has better performance than the TBM.

Due to the limitations of the microcontroller in storage and computing resources, the so-
phisticated ML algorithm is implemented in devices with stronger processing capacity, however,
wearable devices based on the microcontroller only collect and transmit body posture data. For
example, Ruben et al. [17] proposed a fall detection algorithm based on a convolutional neural
network (CNN). Although the algorithm achieved high accuracy (98%), the wearable device
needed to transmit acceleration data in real time to a host for running the algorithm. The peak
current is very high when the wearable device is performing wireless communication. Therefore,
the weakness of this solution is high power consumption.

Ahsan et al. [18] proposed a fall detection system based on a smart phone: FallDroid. Similarly
to our work, the FallDroid exploited a two-step algorithm to distinguish between falls and ADLs
using a triaxial accelerometer. The first step of the algorithm relied on the TBM algorithm to
effectively discard most of the ADLs. In the second step, the sophisticated multiple kernels
learning support vector machine (MKL-SVM) was used to classify the ADLs that were not
discarded by the TBM and the actual fall event. Sensitivity, specificity and accuracy of the
algorithm at the thigh position were 95.8%, 88% and 91.7%, respectively. The algorithm runs
most of the time at the TBM stage which reduces the average computational cost. However, some
power is still wasted when the smart phone is used for other purposes in real life, such as active
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wireless services and running other applications. In addition, the smart phone cannot be attached
to the body in some situations, as a result, its fall-detection function is disabled.

In summary, limiting our solutions to the wearable solutions based on the TBM and/or ML,
we found that the TBM with low classification ability has low power consumption and can be
fully implemented in a wearable device. On the other hand, the ML can achieve satisfactory
classification accuracy, but the battery life is shorter due to the extra power consumption caused
by real-time data transmission. Besides, some solutions that apply the TBM and ML to the smart
phone also ignore the fact that the specific function may be disabled. Therefore, it is essential to
design an efficient and reliable wearable fall detection solution.

To overcome these limitations, in this we paper present a wearable device (i.e. TTXFD) based
on MPU6050, which can collect and store acceleration samples when the microcontroller is in
the sleep state (saving energy). At the same time, in this paper we also propose a two-step fall
detection algorithm including the TBM stage and the ML stage. The TTXFD exploits the TBM
stage of the two-step algorithm to reject as many ADLs as possible while transmitting all real
fall events to a server. After receiving the acceleration samples transmitted by the TTXFD, the
server executes the ML stage of the two-step algorithm. The acceleration samples are encoded
as an image through data normalization, polar coordinate transformation, and mapping to image
steps, successively. And then the fall detection algorithm based on CNN is used to identify a fall
according to the image. Finally, the classification results of the two-step algorithm are reported
and analyzed.

The rest of the paper is structured as follows: In Section 2, the hardware implementation of the
TTXFD is introduced. The two-step fall detection algorithm is described in Section 3, including
the TBM stage and the ML stage. Section 4 contains the experimental results. Section 5 discusses
and analyzes the obtained results. Finally, Section 6 concludes our work.

2. Hardware implemented

The hardware of the TTXFD includes a 3.7 V, 500 mAh lithium battery, a low dropout voltage
regulator (TPS78001), a microcontroller (MSP430F149), a motion processing unit (MPU6050),
and a transmitting module (WH-NB73). Figure 1 shows the hardware structure of the TTXFD.

Fig. 1. The hardware structure of the TTXFD.

25

https://doi.org/10.24425/mms.2021.135999


T. Xu, H. Se, J. Liu: A TWO-STEP FALL DETECTION ALGORITHM . . .

The TPS78001 is a low dropout voltage regulator with ultra-low power consumption that
is compatible with similar products such as MSP430F149. The lower the input voltage of the
microcontroller is, the lower the current will be. Therefore, the use of the TPS78001 can prolong
the battery life. We have also designed a regulator using the TPS78001 which converts the lithium
battery voltage to 3 V to power all components on the TTXFD.

The MPU6050 contains a 3-axis accelerometer, a 3-axis gyroscope, a 1024-byte first-in-first-
out (FIFO) buffer, and a programmable interrupt system with the capability of capturing multiple
phases of a fall. If the interrupt and the FIFO of the MPU6050 are enabled, the MPU6050 can
automatically collect acceleration samples and store them into the FIFO,while themicrocontroller
is allowed to go into the sleep mode. The microcontroller is woken up only when the acceleration
sample exceeds a pre-configured programmable threshold (the interrupt of the MPU6050 is
triggered). In this way, the TTXFD cuts back on the workload generated by the microcontroller
collecting and processing all acceleration samples in real time, reducing power consumption.
Furthermore, the gyroscope function is turned off to save energy, the accelerometer’smeasurement
range is configured to be ±16 g, and its sampling rate is 50 Hz as a trade-off between the fall
detection rate and power efficiency.

The WH-NB73 is a product that transfers data between the serial device and the server
throughNarrow Band Internet of Things (NB-IoT), and it fits the usage scenario of being perfectly
battery-powered. Appropriate use of the WH-NB73’s power saving mode (PSM) can make the
WH-NB73 sleep for a long time to save energy. When the TTXFD exploits the TBM stage to
detect a suspected fall, the WH-NB73 automatically activates the network connection, exits the
PSM mode, and transfers data. If there is no task to transmit data for a period of time (set to 1
min), the WH-NB73 goes into the PSM mode again.

The wearable device in the fall detection study is typically worn on the neck, wrist, foot,
or thigh. Even though using a neck lanyard on the torso is more comfortable [18], the device
generates swinging motions due to its poor consistency with the body. As a result, its sensitivity
is poor. The SmartWatch (wrist) [19] or SmartShoe (foot) [20] is more aesthetically pleasing, but
they are prone to report fall-like events, leading to higher false alarm rates. In addition, the device
needs to frequently transmit data to the server as fall-like events increase, reducing battery life.
Compared with the above three locations, a thigh-worn wearable device is the most acceptable.
The TTXFD is only the size of a coin (28 mm× 25 mm). When the TTXFD is placed in the pants
pocket, it can avoid social stigma due to its invisibility. Thus, the TTXFD is worn on the thigh in
this study, whose prototype and its location are shown in Fig. 2.

Fig. 2. The wearable device is worn on the thigh, its prototype and size.
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3. Two-step fall detection algorithm

The proposed two-step fall detection algorithm includes TBM stage and ML stage. The TBM
stage implemented in the TTXFD can effectively reject many ADLs, while transmitting suspected
fall events (including all falls and some ADLs) to the server. The ML stage implemented in the
server further detects the suspected fall events and identifies the actual fall events. The flow chart
of the two-step fall detection algorithm is shown in Fig. 3.

Fig. 3. Flowchart of the two-step fall detection algorithm, including the TBM stage and the ML stage.
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3.1. The design of TBM stage

If the TBM stage captures the weightless falling phase and the impact phase of a fall succes-
sively, a suspected fall is detected. The TBM stage includes five procedures: interrupt triggering,
signal acquisition, feature extraction, event classification and data transmission (see Fig. 3).

Interrupt triggering: the TTXFD only utilizes the MPU6050 to collect acceleration samples
and store them in the FIFO and other components (e.g. the microcontroller and the WH-NB73)
go into low power mode to prolong battery life. When the MPU6050 captures the weightless
falling phase of the fall, the Free Fall Interrupt of the MPU6050 will be triggered. The interrupt
triggered condition is that the maximum absolute value (MAV) of the triaxial acceleration is less
than the preset threshold (i.e. MAV [i] < th0). The MAV is calculated as follows:

MAV [i] = max
{��ax[i]��, ��ay[i]��, ��az[i]��

}
, (1)

where ax[i], ay[i] and az[i] represent the i-th acceleration sample along x-, y-, and z-axis,
respectively.

Signal acquisition: after the Free Fall Interrupt is triggered, the microcontroller is activated
and collects a 3 s data window (DW) for subsequent feature extraction and data transmission
procedures. The DW consists of two parts, including 50 acceleration samples (1 s) retrieved
from the FIFO before the interruption and 100 new acceleration samples (2 s) collected by the
microcontroller (the span of the DW covers the weightless falling phase and the impact phase of
the fall).

Feature extraction: the minimum (SMVmin) and maximum (SMVmax) of the sum magnitude
vector are extracted from the DW. The calculation formula of the sum magnitude vector (SMV)
is as follows:

SMV[i] =
√

a2
x[i] + a2

y[i] + a2
z [i] , (2)

where ax[i], ay[i] and az[i] represent the i-th acceleration sample in the DW along the x-, y-,
and z-axis, respectively. During the weightless falling phase, the body moves downward and SMV
decreases to less than 1 g. The SMV has a large peak when the body hits the ground (the impact
phase of the fall). Thus, the SMVmin and SMVmax in the DW can capture these two key phases of
the fall.

Event classification: if both SMVmin and SMVmax exceed the corresponding thresholds (i.e.
SMVmin < th1 and SMVmax > th2), the current event is classified as a suspected fall. Otherwise,
it is classified as ADLs and the TBM stage returns to the interrupt trigger procedure.

Data transmission: when a suspected fall is detected at the TBM stage, the data transmission
procedure is executed. The TTXFD transmits the time series of SMV (48 SMV samples) to the
server through the WH-NB73, which is centered around the time of the SMVmax. Figure 4 shows
the line chart for SMV (SMV = {SMV1, SMV2, . . . , SMV48}) of 9 ADLs (getting up, lying down,
sitting down, standing up, going up, going down, walking, running, and jumping) and a simulated
fall. The difference between the highest and lowest of the SMV of d) running, f) jumping and j)
a simulated fall are the biggest due to the fact that these activities are more intense. The SMV of
e) walking is the most stable.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 4. The line charts for 9 ADLs and a fall of SMV: (a) standing up, (b) getting up, (c) going up, (d) running, (e) walking,
(f) jumping, (g) going down, (h) lying down, (i) sitting down, (j) a simulated fall.

3.2. The design of ML stage

In order to improve the accuracy of fall detection at the ML stage, we apply machine learning
technology to further detection of the suspected fall data (48 SMV samples). The CNNhas become
the state-of-the-art technology for image recognition tasks [21]. Therefore, we encode the time
series of SMV as an image, and design a CNN-based fall detection algorithm to identify a fall on
the basis of the image.

3.2.1. Encoded image

At the ML stage, firstly, the time series of SMV is encoded as an image using the method
proposed by Wang et al. [22]. It includes three steps: data normalization, polar coordinate
transformation, and mapping to image.

Data normalization: according to (3), the SMV is normalized to between −1 and 1 for subse-
quent the polar coordinate transformation step, i.e. SMV =

{
SMV1, SMV2, . . . , SMV48

}
.

SMVi =
2 × SMVi −max(SMV) −min(SMV)

max(SMV) −min(SMV)
. (3)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 5. 9 ADLs and a fall of the SMV in the polar coordinate system: (a) standing up, (b) getting up, (c) going up,
(d) running, (e) walking, (f) jumping, (g) going down, (h) lying down, (i) sitting down, (j) a simulated fall.

Polar coordinate transformation: we convert the SMV to the coded value in the polar coordinate
system according to (4), including angle (φ = {φ1, φ2, . . . , φ48}) and radius (r = {r1, r2, . . . , r48})
where ti (ti = 0.02 × i) is the time stamp. Figure 5 shows that the φ and r in the polar coordinate
system. It can be seen that all types of activities (9 ADLs and the fall) warp among different
angular points in a semicircle while polar coordinates preserve absolute temporal relationship.
On the other hand, due to the data being normalized, the φ is between 0 and π. This ensures that
the data has a unique corresponding result in two different coordinate systems. It can be observed
that the angle change rules of all activities are different in the polar coordinate system when the
values of the radius change.




φi = arccos
(
SMVi

)
, −1 ≤ SMVi ≤ 1

ri = ti
. (4)

Mapping to image: the φ is mapped to an image according to (5), which exploits trigonometric
sum to retain the relevance of φ at different time intervals. The trigonometric sum at each time
interval is a pixel of the image. In this way, 48 triaxial acceleration samples are mapped into
a 48 × 48 pixel image (see Fig. 6). It can be seen that the image based on the fall is different
from the images based on 9 ADLs which verifies the correctness of the image-based method to
detect falls.

Image =



cos(φ1 + φ1) · · · cos(φ1 + φ48)
cos(φ2 + φ1) · · · cos(φ2 + φ48)

...
. . .

...

cos(φ48 + φ1) · · · cos(φ48 + φ48)



. (5)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 6. Images of 9 ADLs and a fall through normalization, polar coordinate conversion and mapping to image steps:
(a) standing up, (b) getting up, (c) going up, (d) running, (e) walking, (f) jumping, (g) going down, (h) lying down,

(i) sitting down, (j) a simulated fall.

3.2.2. The fall detection algorithm based on CNN

LeNet-5 [23] is specifically designed to deal with variability of 2D shapes and seems to
outperform other techniques. In this paper, the fall detection algorithm based on CNN is designed
following the structure of the LeNet-5 which is composed of 7 layers (not counting the input
layer) including two convolutional layers(C1 and C3), two max poolings (S2 and S4), two fully
connected layers (F5 and F6) and an output layer. The architecture of the CNN-based fall detection
algorithm is shown in Fig. 7.

C1 layer: the filters, with the size of 3 × 3, extract hierarchical characteristics from the input
image to improve the classification performance. The C1 layer preserves the boundary information
of the input image by padding the edges while making the image and feature map the same size.
The size of 6 feature maps in the C1 layer is 48 × 48. In addition, we configure the Rectified
Linear Unit (ReLU) as an activation function to increase the learning speed and reduce the effect
of the vanishing gradient. The C1 layer has a total of 60 trainable parameters.

S2 layer: it can reduce the computational complexity of the network by reducing the data
dimensionality and retain useful features. The S2 layer is a sub-sampling layer with 6 feature
maps. The size of receptive fields is 2×2 and they are non-overlapping, thus the height and width
of feature maps in the S2 layer are half of the C1 layer (i.e. the size of feature maps in the S2
layer is 24 × 24).
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Fig. 7. Architecture of the CNN-based fall detection algorithm at the ML stage.

C3 layer: the size of filter is 3 × 3 × 6. The C3 layer also preserves the boundary information
by padding edges, therefore the size of 16 feature maps is 24 × 24. In addition, we also configure
the ReLU as an activation function. The C3 layer has a total of 880 trainable parameters.

S4 layer: the S4 layer is a sub-sampling layer with 16 feature maps. The size of receptive
fields is 2 × 2 and they are non-overlapping, thus the height and width of feature maps in the S4
layer are half of the C3 layer (i.e. the size of feature maps in the S4 layer is 12 × 12).

F5 layer: the F5 with a fully connected layer is added behind the S4 layer. It contains 256
neurons and is configured for the ReLU activation function. The F5 layer has 590080 trainable
parameters. Moreover, dropout is configured when training the model for reducing overfitting.

F6 layer: similarly, the F6 layer is also a fully connected layer. It contains 256 neurons and
uses the ReLU activation function. The F6 layer has 65536 trainable parameters. In addition,
dropout is also configured when training the model for reducing overfitting.

Output layer: it is fully connected to the F6 layer. The number of neurons in the output layer
is determined by the number of classifications required by the model and this study is a binary
classification (ADLs or fall), thus the output layer has two neurons and we configure the Softmax
as an activation function.

4. Experiment and results

To evaluate the two-step fall detection algorithm, two open datasets including UniMiB SHAR
[24] and MobiAct [25] are selected. In our experiments, the UniMiB SHAR (the training dataset)
is used to tune thresholds (th0 − th2) of the TBM stage and train the CNN-based fall detection
algorithm of the ML stage in the two-step algorithm. The MobiAct (the testing dataset) is used to
verify the classification performance (the sensitivity, specificity and accuracy) of the optimized
two-step algorithm.

4.1. Datasets

The training dataset is obtained by extracting the UniMiB SHAR which involves 30 healthy
subjects (24 males and 6 females, age: 27 ± 11 years, height: 169 ± 7 cm, weight: 64.4 ± 9.7 kg)
and contains 9 types of ADLs and 8 types of falls. The dataset collected from the thigh with
a sampling rate of 50 Hz. As a result, a total of 7565 ADLs and 4170 falls in the training dataset
(see Table 1).
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Table 1. The training dataset.

No. Category Instructions Number of Samples
1 ADLs Sitting down on a chair 150
2 ADLs Getting up from a chair 920
3 ADLs Lying on a bed 295
4 ADLs Getting up from a bed 215
5 ADLs Walking 1735
6 ADLs Going upstairs 200
7 ADLs Going downstairs 1320
8 ADLs Running 1985
9 ADLs Jumping 745
10 Fall Forwards 525
11 Fall Backwards 510
12 Fall Leftwards 525
13 Fall Rightwards, 510
14 Fall Falling with contact with an obstacle 660
15 Fall Falling while sitting down on a chair 430
16 Fall Falling using compensation strategies to prevent the impact 480
17 Fall Syncope 530

A total of 7565 ADLs and 4170 falls in the training dataset.

The testing dataset is obtained by extracting the MobiAct, which involves 57 healthy subjects
(42 males and 15 females, age: 25 ± 4 years, height: 175 ± 7 cm, weight: 76.6 ± 14.5 kg) and
contains 9 types of ADLs and 4 types of falls. The dataset collected from the thigh with a sampling
rate of 100 Hz. As a result, a total of 1280 ADLs and 600 falls on the testing dataset (see Table 2).

Table 2. The testing dataset.

No. Category Instructions Number of Samples
1 ADLs Standing with subtle movements 40
2 ADLs Normal walking 40
3 ADLs Jogging 100
4 ADLs Continuous jumping 100
5 ADLs Stairs up (10 stairs) 200
6 ADLs Stairs down (10 stairs) 200
7 ADLs Sitting on a chair 200
8 ADLs Step in a car 200
9 ADLs Step out of a car 200
10 Fall Fall forward from standing, use of hands to dampen the fall 150
11 Fall Fall forward from standing, first impact on knees 150
12 Fall Fall sideward from standing, bending legs 150
13 Fall Fall backward while trying to sit on a chair 150

A total of 1280 ADLs and 600 falls in the training dataset
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4.2. Performance indicators

In this study, there are four possible situations for classification results: 1) TP: Falls are
correctly identified. 2) FP: ADLs are wrongly identified. 3) TN: ADLs are correctly identified.
4) FN: falls are wrongly identified. We report the performance of the algorithm in terms of
multiple performance indicators, including sensitivity (Sen), specificity (Spc), and accuracy (Acc)
based onTP,FP,TN, andFN. These three indicators are calculated by (6), (7) and (8), respectively.

Sen =
TP

TP + FN
, (6)

Spc =
TN

TN + FP
, (7)

Acc =
TN + TP

TP + TN + FP + FN
. (8)

4.3. Experimental results

There are three thresholds (th0−th2) at the TBM stage of the two-step fall detection algorithm.
The th0 is used to trigger the Free Fall Interrupt inside the MPU6050. The th1 and th2 are the
corresponding thresholds of SMVmin and SMVmax features from the classifier, respectively. The
acceleration samples on the training dataset are processed and the TBM stage of the two-step
detection program is simulated in MATLAB. During the training procedure, three parameters
(th0−th2) at the TBM stage are tuned through particle swarm optimization (PSO) [26]. The target
of this optimization is to obtain the maximum value of the fitness function, which is calculated
as follows:

Fitness =



1 + Spc, if Sen = 100%
0, if Sen , 100%

. (9)

Figure 8 shows the flow of the PSO algorithm which includes seven steps: initialization,
calculation of the fitness function values, calculation of the personal best (pbest) and global best
(gbest), updating the velocity and position of the each particle, updating the fitness function value,
updating the pbest and gbest, outputting the optimal thresholds (th0 − th2).

Each particle inside the swarm contains a d-dimensional vector position and a d-dimensional
vector velocity (d = 3). xki = {x

k
i,1, xk

i,2, . . . , xk
i,d
} represents the position of i-th particle at k-th

iteration. vki = {v
k
i,1, v

k
i,2, . . . , v

k
i,d
} represents the velocity of i-th particle at k-th iteration. At

the initialization step of the PSO algorithm, the positions of all particles are randomly placed
between xmin and xmax while the velocities of all particles are randomly placed between vmin
and vmax. xmin and xmax respectively represent the minimum and maximum values of position.
vmin and vmax respectively represent the minimum and maximum values of velocity (vmin =
{−0.05 g,−0.05 g,−0.05 g}, vmax = {0.05 g, 0.05 g, 0.05 g}). The upper limit of th0 and th1
is 1 g (gravity magnitude) because of the Free Fall Interrupt and SMVmin is used to capture the
weightless falling phase. The upper limit of th2 is 16 g according to the measurement range of
the accelerometer. Therefore, xmin = {0 g, 0 g, 1 g}, xmax = {1 g, 1 g, 16 g}.

After the initialization step, the fitness function values of particles in the swarm is calculated
according to (9), and then pbest and gbest are obtained based on these fitness function values. At
the step of updating velocity and position, velocity vk+1

i is calculated as follows:

vk+1
i = wvki + c1r1

(
pki − xki

)
+ c2r2

(
pkg − xki

)
, i = 1, 2, . . . , N, k = 1, 2, . . . ,T, (10)
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Fig. 8. Flowchart of the PSO algorithm.

where pki = {p
k
i,1, pk

i,2..., pk
i,d
} represents the pbest of i−th particle at k-th iteration, pkg =

{pk
g,1, pk

g,2, . . . , pk
g,d
} represents the gbest of the swarm at k-th iteration, w represents inertia

weight (w = 0.9), r1 and r2 are random values between [0,1], c1 and c2 represent cognitive
coefficient and social coefficient, respectively (r1 = r2 = 2), N is the size of the swarm (N = 30),
T is number of iterations (T = 1000). The updated velocity vk+1

i is calculated as follows:

vk+1
i =




vk+1
i if vmin < vk+1

i < vmax

vmin if vk+1
i ≤ vmin

vmax if vk+1
i ≥ vmax

. (11)

The updated position xk+1
i is computed according to (12) and (13):

xk+1
i = xki + v

k+1
i , (12)

xk+1
i =




xk+1
i if xmin < xk+1

i < xmax

xmin if xk+1
i ≤ xmin

xmax if xk+1
i ≥ xmax

. (13)

After that, the fitness function values, the pbest and gbest are updated according to the xk+1
i ,

successively. When the number of iterations reaches 1000, the PSO algorithm outputs the optimal
thresholds, otherwise, it returns to update the particle’s position and velocity.

The optimal parameters being the output of the PSO are: th0 = 0.65 g, th1 = 0.72 g, and
th2 = 1.71 g (see Table 3). In this case, the TBM stage of the two-step algorithm achieves Sen of
100%, Spc of 50.81%, and Acc of 68.29% on the training dataset.

Based on the optimized thresholds (th0 − th2) above, the TBM stage of the two-step algo-
rithm detected 7891 suspected fall events (4170 falls and 3721 ADLs) on the training dataset.
These suspected fall events were encoded as images in MATLAB as previously described in
Section 3.2.1. The CNN-based fall detection program was simulated and the classification re-
sults of this stage were output in Python. During the training procedure, the images were fed by
the simulated program. The learning rate was 0.0001, the batch size was 32, the loss function
was cross entropy and the Adam algorithm is used to tune the model parameters. The target of
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Table 3. Parameter settings and training results of the TBN stage from the PSO algorithm.

Parameters Values Optimal thresholds from PSO Performance
vmin { –0.05 g, –0.05 g, –0.05 g}
vmax { 0.05 g, 0.05 g, 0.05 g}
xmin { 0 g, 0 g, 1 g}
xmax { 1 g, 1 g, 16 g}
c1 2 th0 = 0.65 g, Sen = 100%,
c2 2 th1 = 0.72 g, Spc = 50.81%,
r1 [0–1] th2 = 1.71 g Acc = 68.29%
r2 [0–1]
w 0.9
T 30
N 1000

optimization was to minimize the error calculated by the loss function. When the CNN training
iterated over 43 epochs, the accuracy kept stable (99.79%) based on the suspected fall data of the
training dataset.

Before testing the procedure, the testing dataset was subsampled to 50 Hz.With the optimized
thresholds (th0 − th2) and the trained CNN, the TBM stage of the two-step algorithm achieved
Sen of 100%, Spc of 47.42%, and Acc of 64.20% on the testing dataset (i.e. the TBM stage
rejecting 607 ADLs and detected 1273 suspected fall events including 600 falls and 673 ADLs,
see Table 4), further the ML stage of the two-step algorithm achieved Sen of 97.83%, Spc of
93.61%, and Acc of 95.60% based on the suspected fall events. Finally, the two-step algorithm
achieved Sen of 97.83%, Spc of 96.64%, and Acc of 97.02% on the testing dataset (see Table 5).

Table 4. The results for two-step algorithm on the testing dataset.

Input data: 1280 ADLs and 600 falls
At the TBM Stage of two-step
algorithm Rejecting 607 ADLs, transmitting 673ADLs and 600 falls to the server

At the ML Stage of two-step al-
gorithm 630 ADLs and 587 falls are correctly identified

Two-Step Algorithm 1237 ADLs and 587 falls are correctly identified

Table 5. The Sen, Spc, and Acc for two-step algorithm on the testing dataset.

Two-Step Algorithm Sen Spc Acc
At the TBM stage of two-step algorithm 100% 47.42% 64.20%
At the ML stage of two-step algorithm 97.83% 93.61% 95.60%
Two-step algorithm 97.83% 96.64% 97.02%

5. Discussion

Compared with the fall detection algorithm based on either TBM or ML, we proposed
a two-step fall detection algorithm using the MPU6050. Considering power consumption and
classification accuracy, the method of transmitting real-time data to the server is effectively
replaced by the TBM stage of the two-step algorithm and the ML stage of the two-step algorithm
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makes the final decision. As a result, all actual fall events are picked up and transmitted to the
server, while the two-step algorithm achieves high sensitivity (97.83%), specificity (96.64%) and
accuracy (97.02%) on the open dataset.

CNN can not only automatically discover useful features without manual extraction, but also
process the data in multiple arrays (images). Hence, we encode time series of triaxial accelerations
as images with the relevance at different times and use the CNN-based fall detection algorithm to
classify fall patterns from ADLs on the basis of the images. Compared with traditional artificial
neural networks (ANN), the CNN-based fall detection algorithm at the ML stage outperforms the
proposed algorithm based on ANN in [27] (see Table 6).

Table 6. A comparison of results presented in this article and some studies in the literature. ANN = artificial neural
networks, TBM = threshold-based method, CNN = convolutional neural network, MKL-SVM =multiple kernel learning

support vector machine.

Work Sensor Position Algorithm Results

Kerdegari et al [27] accelerometer waist ANN
Sen: 93.03%
Spc: 88.88%
Acc: 91.25%

Li et al [28] accelerometer
and gyroscope thigh and chest TBM Sen: 91.00%

Spc: 92.00%

He et al [29] accelerometer
and gyroscope waist CNN

Sen: 97.44%
Spc: 99.63%
Acc: 97.47%

Ahsan et al [18] accelerometer thigh TBM+MKL−SVM
Sen: 95.80%
Spc: 88.00%
Acc: 91.70%

Our work accelerometer thigh TBM+CNN
Sen: 97.83%
Spc: 96.64%
Acc: 97.02%

We know that the test results depend on how real-world fall data can reflect the authentic
performance of the algorithm. Because an accidental fall is a rare event, it is difficult to collect
a sufficient amount of fall data. Therefore, most of the fall detection solutions in the literature are
developed by simulated fall data which involves young subjects. However, different age groups
have different body posture changes when they fall, so the performance of the two-step algorithm
is likely to decrease in the real life.

Table 6 shows some solutions similar to our work and compares them to several variables,
including sensor, placement locations, algorithm, and classification performance. Li et al. [28]
proposed a wearable fall detection device based on an accelerometer and a gyroscope, which used
the threshold-based method to detect fall events. However, the device was equipped with multiple
sensors (in fact there were two accelerometers and two gyroscopes) with a higher sampling rate
(120 Hz). Hence, more power was consumed in theory. On the other hand, it needed to be placed
in multiple locations (the thigh and the chest) on the body to work which increased the intrusion
and reduces the acceptability of the elderly. In addition, they did not consider exploiting machine
learning technology to improve the detection accuracy, providing a low sensitivity (91.00%) and
specificity (92.00%) of the device. He et al. [29] proposed a fall detection algorithm called an FD-
CNN. Similarly, acceleration and angular velocity samples (2 s sliding window) were transmitted
to the server and encoded as an RGB image which was used as the input of the FD-CNN.
However, The method of encoding images was simply to arrange these samples chronologically
to generate a 20 × 20 RGB image (each sample is a pixel). This resulted in poor relevance of
the image at different pixels which made the sensitivity level of their device lower than in our
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work. Ahsan et al. [18] proposed a fall detection algorithm based on the TBM and MKL-SVM
which extracted 15 complex features from acceleration samples. In this solution a smart phone
performed power-intensive signal processing tasks for a long time, reducing battery life. On the
other hand, the features manually extracted from the raw data (acceleration samples) are not
always the parameters which have the ability to distinguish between falls and ADLs, so the
performance of the algorithm (sensitivity of 95.8%, specificity of 88.0%, accuracy of 91.7%) is
also lower than in our work. What is more, the smart phone is not always placed where it matches
the specific function, such as the fall-detection function is disabled when watching a movie with
the smart phone.

6. Conclusions

This paper proposes a pervasive fall detection solution which consists of a wearable device
and a two-step fall detection algorithm including the TBM stage andML stage. The device utilizes
a TBM with low computational complexity to filter out simple ADLs and transmit the actual fall
data to the server without uploading all data in real time, resulting in reducing power consumption
of the device. At the same time, considering the advantages of the CNN at the image classification
task, we encode the uploaded data as an image and use the CNN-based method to further detect
fall events on the server. Experimental results on the open dataset including 1280 ADLs and 600
falls demonstrate the satisfactory performance of the two-step algorithm, achieving accuracy of
97.02%, sensitivity of 97.83%, specificity of 96.64%, respectively.

In the future, we plan to prolong battery life with methods based both on hardware and
firmware, such as dynamically adjusting the sampling rate of the sensor, using multiple interrupts
to capture multiple key phases of a fall instead of feature extraction procedures at the TBM stage
as well as choosing components with lower power consumption. The human experiments will be
carried out to collect body posture data in daily life and the battery life will be estimated based on
the data. Another potential future work is to refine the two-step algorithm to make it independent
from the sampling rate, measurement range, placement location and dataset so that it could be
adapted for different elderlies. Besides, classification performance of the two-step algorithm of
the wearable device will be evaluated in in real life.
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