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1. INTRODUCTION
The meta-heuristic algorithm based on swarm intelligence
plays a vital role in the optimal reactive power dispatch in
the complex power system planning and operation. Most of
the modern engineering problems considered meta-heuristic al-
gorithms for their fewer parameters and operators used. The
ORPD problem is important in the operation of power system
planning and operation of the power system. The reactive power
generation changes on every load variation in the power system
operation and tends to lead to variations in load voltage. By
proper management of reactive power, the voltage profile will
be maintained easily. ORPD main objective is the minimization
of real power loss and satisfying power balance equations and
different equality and inequality constraints. The minimization
of real power loss is achieved through control variables which
consist of generator voltage magnitude, transformer tap settings
and shunt capacitors. Therefore, the proper handling of voltage
profile results to minimize the real power losses in the transmis-
sion lines easily.

Several classical techniques [1] have been implemented for
solving ORPD problem. The difficulties of the conventional op-
timization approaches (COA) arise when we incorporate system
constraints, trapped in local minima. They suffer from complex
objective functions and require high computational time. An ad-
ditional problem is associated with these techniques and their
lack of efficiency, local convergence and dealing with discrete
control variables. These techniques also suffer from nonlinear
functions and problems having multiple local minimum points.
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Three classes of meta-heuristic algorithms are mainly clas-
sified: Evolutionary-based optimization methods [2], physical-
based optimization methods [3] and swarm intelligence-based
optimization methods [4]. Evolutionary based optimization al-
gorithm begins with the initial population and evaluates the ob-
jective using several operators like crossover, mutation, and se-
lection. Furthermore, these methods do not carry previous pop-
ulation information. Physical-based optimization methods are
based on the physical rules in the universe. They explore the
search space by physic rules. The third class is swarm-based
optimization algorithms, based on the behavior of the swarm of
animals in nature. These methods collect the information of in-
telligence of animals and save the information about optimiza-
tion problem over the process.

Nature of the differences of algorithms, the optimization pro-
cess in the meta-heuristic algorithms depends on two character-
istics, exploration, and exploitation. In exploration, a sample
of unknown regions find randomly searchability, too much ex-
ploration deploys with random search and no convergence. In
exploitation we try to improve the best-so-far individuals, too
much exploitation results in only local search and converge to
the local optimum. So, the proper balance between exploration
and exploitation plays a major role in meta-heuristic algorithms
[5]. Pathfinder algorithm (PFA) is a new meta-heuristic algo-
rithm that was created by Yapici and Cetinkaya (2019) [6].
This method is based on finding the best food or prey area de-
pending on the collective movement of the animal group and
mimics the leadership hierarchy of swarms. The searching be-
havior of the swarms to find the prey or food area depends
on the leadership of an individual. The position of swarms
is not orderly, all of them are randomly moved. PFA gives
the best performance to some of the optimization problems.
PFA mainly depends on mathematical formulas when the prob-
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lem is increased, the potential of these algorithm decreases.
To overcome these problems a hybridization is employed. The
evolutionary-based optimization algorithm DE is incorporated
with the swarm intelligence-based PFA algorithm. The differ-
ential evolution (DE), introduced by storn and price [7] gives
better convergence, searching local optima and good robust-
ness. The superiority of the Differential Evolution (DE) algo-
rithm is the fast convergence speed, a mutation operator in DE
algorithm incorporated into the pathfinder algorithm (PFA).

This paper proposes a new hybrid pathfinder algorithm to
solve ORPD problems of power systems. The efficiency of the
HPFA algorithm is tested on a medium scale, larger and large-
scale test systems namely IEEE-118 and IEEE-300 bus are se-
lected to demonstrate the performance. The simulations of the
proposed methods are compared with other results of recently
published algorithms such as Chaotic parallel vector evaluated
interactive honey bee mating optimization PSO with an aging
leader and challengers (ALC-PSO) [8], Modified imperialist
competitive algorithm and invasive weed optimization (MICA-
IWO) [9], Imperialist competitive algorithm (ICA) [10], Inva-
sive weed optimization (IWO) [9], Quasi opposition teaching-
learning based optimization (QOTLBO) [11], Double differ-
ential evolution (DDE) [10], Modified teaching-learning algo-
rithm MTLA [10], Teaching-learning algorithm (TLA) [10],
Binary real coded firefly algorithm (BRCFF) [10], Artificial bee
colony (ABC) [10], Ant lion optimizer (ALO) [12], Chaotic bat
algorithm-IV (CBA-IV) [13], Chaotic bat algorithm-III (CBA-
III) [13], Bat algorithm (BA) [13], Specialized genetic algo-
rithm (SGA) [14].

The rest of the paper is structured as follows: ORPD prob-
lem is mathematically formulated in Section 2. In Section 3, the
PFA is described briefly. HPFA algorithm is briefly explained
in Section 4. Section 5 of the paper is reserved to give the sim-
ulation results along with comparison with recently developed
meta-heuristic algorithms. The conclusion is made in Section 6.

2. MATHEMATICAL FORMULATION
In general view, the mathematical formulation of ORPD issue
is described in two classes: the real power minimization and
second class is constraints. The real power loss minimization is
subjected to equality and inequality constraints in transmission
lines while it should satisfy it. Mathematically ORPD problem
can be formulated as follows:

f = minPloss = fobj(x,u)

= ∑
k∈Nl

k∈(i, j)

gk
(
V 2

i +V 2
j −2ViVj cosθi j

)
. (1)

Subject to:

g(x,u) = 0, (2)
h(x,u)≤ 0, (3)

umin ≤ u ≤ umax, (4)

xmin ≤ x ≤ xmax. (5)

In the above equation, f (x,u) describes the objective function,
minPloss is the objective function of real power losses in trans-

mission network to be minimized, Nl is overall transmission
networks, gk is the branch k conductance, Vi and Vj are the i-
th and j-th bus voltage respectively, θi j is the difference of i-th
and j-th bus voltage phase, g(x,u) referred to as equality con-
straints which consist of the power balance equation, h(x,u)
refers as inequality constraints, x refers to dependent variables
consisting of
1. Load bus voltage magnitude VL.
2. Reactive power output-based generator Qg.
3. Apparent line loading Sl .
Mathematically the dependent vector can be examined as fol-
lows:

xT = [VL1 . . .VLNQ, Qg1 . . .QgNg, Sl1 . . .SlNl ] . (6)

u is the control variable vector described as follows:
1. Generator bus voltage restriction Vg.
2. Transformer tap ratio t.
3. Compensation of reactive power (Capacitor banks) Qc.

uT = [Vg1 . . .VgNg, t1 . . . tNT , Qc1 . . .QcNc] , (7)

where NPQ is the total PQ buses, Nl is the number of transmis-
sion lines, Ng is the total generator buses, NT is the total trans-
former in the system and Nc is the total bank of the capacitor.

2.1. Objective constraints
2.1.1. Equality constraints
The equality constraints are real and reactive power balance and
they can be illustrated as follows:

Pgi,slack −Pdi −Vi

NB

∑
j=1

Vj (Gi j cosθi j +Bi j sinθi j) = 0,

i = 1,2, . . . ,NB−1, (8)

Qgi −Qdi +Qci −Vi

NB

∑
j=1

Vj (Gi j sinθi j −Bi j cosθi j) = 0,

i = 1,2, . . . ,NPQ , (9)

where Pgi,slack and Qgi are the generation of real and reactive
power at i-th bus, Pdi and Qdi is the demand of real power and
reactive power at i-th bus, Qci is the capacitor of reactive power,
Gi j and Bi j are real and reactive part of admittance matrix at i-th
and j-th bus, NB is the total buses, NB−1 is the excluding slack
bus, respectively.

2.1.2. Inequality constraints
The inequality constraints include:

Constraints related to Generator consist of their minimum
and maximum limits as:

1. Real power generation at slack bus

Pmin
gi,slack ≤ Pgi,slack ≤ Pmax

gi,slack , i ∈ Ng . (10)

2. Restrictions on generator voltage

V min
gi ≤Vgi ≤V max

gi , i ∈ Ng . (11)

3. Reactive power outputs

Qmin
gi ≤ Qgi ≤ Qmax

gi , i ∈ Ng , (12)
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where Pmin
gi,slack and Pmax

gi,slack define min and max of real power
generator at slack bus, V min

gi and V max
gi define minimum and

maximum generator voltage, Qmin
gi and Qmax

gi define min and
max of reactive power generator.

Transformer tap ratio are restricted by their minimum and
maximum limits as:

tmin
k ≤ tk ≤ tmax

k , k ∈ NT , (13)

where tmin
k and tmax

k define minimum and maximum of trans-
former tap setting at branch k.

Shunt VAR reactive power source (capacitor banks) are re-
stricted by their minimum and maximum limits as:

Qmin
ci ≤ Qci ≤ Qmax

ci , i ∈ Nc , (14)

where Qmin
ci and Qmax

ci define minimum and maximum of i-th
capacitor bank.

Line flow limits: includes the load bus voltage and the trans-
mission line loading are restricted by their minimum and max-
imum limits as:

V min
li ≤Vli ≤V max

li , i ∈ Nl , (15)

Sl ≤ Smax
l , l ∈ Nl , (16)

where V min
li and V max

li define minimum and maximum load bus
voltage of i-th unit, Sl defines apparent line flow of i-th unit,
Smax

l defines maximum apparent line flow of i-th unit.
In the proposed work, dependent variables constraints are in-

corporated to the objective function to avoid an unfeasible so-
lution. The control variables are self-constrained, but the de-
pendent variables are violated. By using the penalty function
method these problems will be controlled and feasible solution
obtained. Therefore the modified objective function is changed
to the following form:

f ′ = f +µg1

(
Pg1 −Plim

g1

)2
+µv ×

NPQ

∑
i=1

∆Vi

+µq ×
Ng

∑
i=1

∆Qi +µs ×
Nl

∑
i=1

∆Si , (17)

where µg1, µv, µq and µs are the penalty terms with the slack
real power generation, load bus voltage, reactive power genera-
tion and the apparent line flow limit violations, xmin ≤ x ≤ xmax

are the minimum and maximum value of the dependent vari-
ables.

∆Vi =





(
V min

i −Vi
)2 if Vi <V min

i ,

(Vi −V max
i )2 if Vi >V max

i ,

0 if V min
i ≤Vi ≤V max

i ;

(18)

∆Qi =




(
Qmin

i −Qi
)2 if Qi < Qmin

i ,

(Qi −Qmax
i )2 if Qi > Qmax

i ,

0 if Qmin
i ≤ Qi ≤ Qmax

i ;

(19)

∆Si =

{
(Si −Smax

i )2 if Si > Smax
i ,

0 if Smin
i ≤ Si ≤ Smax

i .
(20)

3. PATHFINDER ALGORITHM
The pathfinder algorithm (PFA) is a Swarm intelligence (SI)-
based optimization algorithm inspired by the behaviour of
swarms with a leader. This technique permits all individu-
als from swarms to choose randomly to investigate the search
space, while the member chooses to move towards any area by
following the leader. In numerical, the behaviour of the leader
and the member is completely different from each other. Note
that we called the leader of a swarm a pathfinder. The pathfinder
stores the best solution on each iteration. The PFA have three
positions:
1. Initialization position.
2. Pathfinder’s position.
3. Follower’s position.

Initialization position
In this initialization process, some positions are selected ran-
domly in the search space. In equation (21) there is generated a
randomly positioned vector. This individual vector find the best
solution and it is chosen as the pathfinder:

XG
i, j = Xmin

j + rand[0,1]
(

Xmax
j −Xmin

j

)
, (21)

i ∈ [1,Np] , i ∈ [1,D],

where Np is the number of swarms and D is the total control
variables. Xmin

j and Xmax
j minimum and maximum value of each

control variable j.

Pathfinder’s position
By using equation (22) the location of the pathfinder is a move
to the next level. The best solution is taken by comparing the
two position vectors i.e., a new position of pathfinder and the
past one:

XG+1
p = XG

p +2r3
(
XG

p −XG−1
p

)
+A, (22)

where Xp is the pathfinder position vector, G is the current it-
eration and r3 is the random vector within the range [0,1]. A is
the variation coefficient is calculated as follows:

A =U2e−
2G

Gmax . (23)

U2 is a random vector range in [−1,1], Gmax is the maximum
number of iteration

Follower’s position
By using equation (24) the position of the follower is updated.
The pathfinder is replaced with the follower in case that the
follower finds the best fitness solution. The follower’s position
is calculated as follows:

XG+1
i = XG

i +R1
(
XG

j −XG
i
)
+R2

(
XG

p −XG
i
)
+ ε, (24)

i ∈ [2,Np], R1 = αr1 , R2 = β r2 ,

ε =

(
1− G

Gmax

)
U1Di j , (25)

Di j =
∥∥xi − x j

∥∥ ,
where Xi is the position vector of i-th follower, Xj is the position
vector of member j-th follower, U1 is a random vector range
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in [−1,1], Di j is the position between two follower members:
In this direction, r1, and r2 are random values range in [0,1],
ε is the vibration coefficient. Likewise, α and β are selected
randomly in the range of [1,2] in each iteration.

4. MODIFIED PATHFINDER ALGORITHM
In this detailed study, the pathfinder algorithm has both its ad-
vantages and disadvantages. The main advantage of PFA is that
all members are randomly moved. When the dimensions of
the problem increase PFA performance is decreased because
it mainly depends on mathematical formulas. They restricted
the exploration and exploitation process of the ORPD problem
by two randomly generated values ε and A. When ε and A are
close to zero the swarm movement of the next position with
small steps; ε and A are greater than one the swarm gets large
steps. To develop the new solutions, the position vectors are
moved in the search space with small steps. Therefore, some
modifications are needed to get the best feasible solution by ad-
justing two values ε and A. In this aspect, different experimental
analyses have been taken into account, the five most powerful
modifications.

Proposed mPFA modification :

{
ε = 0.1ε
A = 0.001A;

(26)

First modification :

{
ε,
A = 0.1A;

(27)

Second modification :

{
ε = 0.1ε,
A = 0.1A;

(28)

Third modification :

{
ε = 0.001ε,
A = 0.1A;

(29)

Fourth modification :

{
ε = 0.001ε,
A = 0.001A.

(30)

5. HYBRID PATHFINDER ALGORITHM
Many of the researchers have been focused on the hybridization
of meta-heuristic algorithms with local optima solution. In this
proposed work a new meta-heuristic algorithm called hybrid
pathfinder algorithm (HPFA) is introduced. The evolutionary-
based optimization algorithm based differential evolution (DE)
algorithm is the most powerful. The superiority of the Differ-
ential Evolution (DE) algorithm is the fast convergence speed,
a mutation operator in the DE algorithm incorporates into the
pathfinder algorithm (PFA) to produce the optimal change be-
tween exploration and exploitation, escape from local optima
and get the better convergence rate.

Implementation of HPFA for ORPD
The implementation of HPFA for ORPD problem based on the
series operation of optimization which gives equal possibilities
to all the members of swarms in the evolution of each gener-
ation. The main operation in the DE algorithm is the mutation

operator (F). The superiority of the Differential Evolution (DE)
algorithm is the fast convergence speed, a mutation operator in
DE algorithm incorporated into the pathfinder algorithm (PFA)
to form a new meta-heuristic algorithm called hybrid pathfinder
algorithm (HPFA). A mutation operator is added after the fol-
lower’s position. The following steps are used to incorporate
mutation phase after follower’s phase and the rest part of the
PFA are the same. For each follower Xi in the swarm, do the
following steps:
Step 1: From the follower’s phase pick three different followers,
Xr, Xp and Xq which is not equal to Xi.
Step 2: The new position vector is carried out for each D in
the total control variables depending on CR. CR in the range of
[0,1]. From equation (31) the new position vector is selected by
transformation one dimension of Xi.

Yi j = Xr j +F (Xp j −Xq j) , (31)

where i, r, p and q are random modification integers that are
not equal. F is the mutation vector range in [0,2]. j is selected
randomly index between [1,D].
Step 3: Determine the best objective solution of the new posi-
tion vector.
Step 4: In the selection process, a new position vector gives
a better objective solution than the old one. Replace the old
vector with the new position vector. Otherwise, the old is the
best objective solution value. Figure 1 shows the implementa-
tion of HPFA.

6. NUMERICAL RESULTS AND DISCUSSIONS
To verify the performance and efficiency of the proposed HPFA
algorithm, a MATLAB platform is used for the ORPD prob-
lem [20–23]. The simulation results are conducted on a per-
sonal computer “2.30 GHz of Turbo Boost up system, Core i5-
2410M Processor with the range of 2.90 GHz – 4 GB RAM”.
For power flow examination the MATPOWER 6.0 software
(Zimmerman et al. 2005) is used [15]. The proposed HPFA is
implemented through several simulation cases on IEEE 118-
bus power system and large-scale power system IEEE 300-bus
power system. For each optimization methods, 50 individual tri-
als were solved to get the optimal solutions. For minimization
parameter settings for the proposed HPFA algorithm, the mPFA
values as chosen, mutation factor (F) is 0.7, population size is
40 and number of generations is 300.

Test system 1: Results of IEEE 118-bus system
Firstly IEEE 118-bus system is tested to show the effectiveness
of the proposed HPFA algorithm. The system has 186 branches
which fifty-four generators 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25,
26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 61, 62,
65, 66, 69, 70, 72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92,
99, 100, 103, 104, 105, 107, 110, 111, 112, 113, 116 at buses,
nine transformer tap settings 5–8, 25–26, 17–30, 37–38, 59–
63, 61–64, 65–66, 68–69, 80–81 buses and fourteen capacitors
are placed at buses 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83,
105, 107, 110. The boundary condition for control variables like
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the generator voltage magnitude is 0.95–1.1, transformer taps is
0.95–1.1 and shunt capacitor limits is 0–0.18. Line data and bus
data are taken from [11].

The system loads are given as follows:

Pload = 4242.0 MW, Qload = 1438.0 MVAr,

∑PG = 4374.9 MW, ∑QG = 795.7 MVAr,

Ploss = 132.863 MW.

Table 1 summarizes the minimum real power losses (min-
imum), median real power losses (median), maximum real
power losses (worst), standard deviation (std), real power losses
saving percentage (%PSave) and the average CPU times (s) to
execute the results. From Table 1, it is seen that the percentage
of power saving for HPFA algorithm is 18.6455% compared
to base case value. To show the effectiveness of the proposed
algorithms 50 individual trials were taken to get the best opti-
mal solution. The minimum real power loss is obtained by the
HPFA algorithm is 108.090 MW. It can be seen that the opti-
mal solution of real power loss is less when compared to mPFA
and other existing algorithms. The results confirm that the
real power loss reduced to 3.8754% less than QOTLBO [11],
5.4505% less than MTLA-DDE [13], 5.5047% less than
MICA-IWO [9], 5.6724% less than MTLA [10], 7.3811% less
than TLA [10], 7.7613% less than DDE [10], 7.8555% less than
BRCFF [10], 9.1611% less than ABC [10], 10.8143% less than
ALO [12] and 12.4341% less than ALC-PSO [8].

It may be observed that all the control variables are within
their limits. The performance characteristics of real power loss

by HPFA, mPFA, mPFA1, mPFA 2, mPFA 3, mPFA 4 and PFA
is illustrated in Figs. 2 and 3. From Fig. 2, the optimal solu-
tion is achieved and these solutions show substantial improve-
ments, which will be more accurate with the large scale prob-
lem. The optimum real power loss obtained within less exe-
cuted time is found to be a more promising one. Figure 3 il-
lustrates the statistical details of the IEEE 118-bus system. It
shows the best, mean and worst optimal value of all proposed
algorithms.

Fig. 2. Real power loss analysis for IEEE-118 bus system using HPFA, and
mPFA

Table 1
The test power system of IEEE 118 bus based statistical details

Methods
Best Solution,

MW
Median Solution,

MW
Worst Solution,

MW
Standard
deviation %PSave

Average CPU
time, s

HPFA 108.090 109.2265 111.0862 0.5974 18.6455 39.120

mPFA 109.400 110.6587 112.4245 0.6373 17.6595 39.318

mPFA1 109.484 113.7257 119.4001 2.2180 17.5963 39.289

mPFA2 109.550 111.9117 114.7864 1.5193 17.5466 39.403

mPFA3 111.211 112.6254 114.0518 0.6522 16.2965 39.412

mPFA4 109.695 111.5693 113.0648 0.7930 17.4375 39.300

PFA 109.848 115.1558 121.6239 3.447 17.3223 39.255

QOTLBO [11] 112.2789 113.7693 115.4516 0.0244 NR NR

MTLA-DDE [10] 113.9814 114.0852 114.4975 2.8755*10-4 14.53 792.49

MICA-IWO [9] 114.04 114.44 114.97 2.4288*10-4 14.48 835.32

MTLA [10] 114.2213 115.8446 116.2458 2.458*10-3 14.35 821.54

TLA [10] 116.0682 119.9652 123.4688 1.956*10-2 12.96 844.86

DDE [10] 116.4792 120.4789 133.2587 5.752*10-2 12.66 838.32

BRCFF [10] 116.581 117.20 119.90 2.135*10-3 12.58 787.47

ABC [10] 117.9922 118.47 119.684 2.2807*10-3 11.52 815.26

ALO [12] 119.7792 NR NR NR 9.847 716.7

ALC-PSO [8] 121.53 123.14 132.99 91*10-6 8.245 1045.10

NR means Not Reported
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Fig. 4. Statistical results of IEEE 118-bus system

Test System 2: Results of IEEE-300 bus system

Large scale power system is taken to shows the effectiveness of
the proposed HPFA algorithm. The large-scale IEEE 300-bus
system consists of 411 transmission lines; 69 generator buses,
107 transformer tap-setting, 8 capacitor banks and 6 reactors are
used. The minimum and maximum limits for control variables
like magnitude voltage of the generator is 0.95–1.1, transformer
taps are 0.95–1.1, capacitor limits are 0–3.25 and reactors is 0
to –0.3. Line data and bus data are taken from [13].

The system loads are given as follows:

Pload = 4242.0 MW, Qload = 1438.0 MVAr,

∑PG = 4374.9 MW, ∑QG = 795.7 MVAr,

Ploss = 408.316 MW.

To get the best optimal solution 50 individual trials were taken
to show the potential of the HPFA algorithm and other proposed
methods. The proposed HPFA approach can yield the minimum
real power losses as 353.750 MW, which is the globally opti-
mal solution when compared to mPFA and other existing algo-
rithms. The results confirm that the real power loss reduced to
1.1307% less than SGA [14], 5.6304% less than CBA-IV [13],
7.3997% less than CBA-III [13], 8.7381% less than BA [13].

Table 2 shows the minimum real power losses (minimum),
median real power losses (median), maximum real power losses
(worst), standard deviation (std), real power losses saving per-
centage (%PSave) and the average CPU times (s) to execute the
results for IEEE 300-bus large scale power system. From Ta-
ble 2 it is seen that the percentage of power saving for HPFA
algorithm is 13.3637% compared to the base case value.

The performance characteristics of real power loss by HPFA,
mPFA, mPFA1, mPFA 3 illustrates in Fig. 5. From Fig. 5, the
optimal solution is achieved and these solutions show substan-

Fig. 5. Real power loss analysis for IEEE-300 bus system using HPFA, mPFA,
mPFA 1 and 3

Table 2
The test power system of IEEE 300 bus based statistical details

Methods
Best Solution,

MW
Median Solution,

MW
Worst Solution,

MW
Standard
deviation %PSave

Average CPU
time, s

HPFA 353.750 354.949 356.3145 0.6134 13.3637 75.9561

mPFA 355.491 356.7497 358.5155 0.6356 12.9373 76.0354

mPFA 1 356.665 360.9067 366.5811 2.1189 12.6498 76.1568

mPFA 3 358.849 360.2634 361.8735 0.6635 12.1149 77.1083

SGA [14] 357.10 371.7911 405.4689 8.4040 NR 77.4805

CBA-IV [13] 373.6675 375.5762 380.065 1.6047 NR NR

CBA-III [13] 379.9265 385.5483 392.973 2.1774 NR NR

BA [13] 384.6609 387.7787 419.145 5.0014 NR NR

NR means Not Reported
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tial improvements, which will be more accurate with the large
scale problem. The optimum real power loss is obtained within
less executed time is found to be more promising one. Figure 6
illustrates the statistical details of the IEEE 300-bus system. It
shows the best, mean and worst optimal value of all proposed
algorithms.

Fig. 6. Statistical results of IEEE 300-bus system

7. CONCLUSIONS
In this work, ORPD based HPFA, mPFA and PFA are proposed
to reduce real power loss in large scale test systems. The pro-
posed HPFA helps to manipulate the large scale test systems
with less computation time. This demonstrates that the large
scale systems are progressively accurate through powerful exe-
cution and capacity. The simulations are carried out on the IEEE
118-bus and IEEE 300-bus test systems. The investigations of
the outcomes can produce the minimum power loss compared
to existing methods. The optimal solution is achieved and these
solutions show substantial improvements, which will be more
accurate with the large scale problem. It is seen that the percent-
age of power-saving for HPFA algorithm is very high compared
to the base case value. The obtained results show the potential
of HPFA method to find the near-optimum solution compared
to other meta-heuristic algorithms. For future research, conver-
gence, as well as better quality solutions, will be encourage as
the most promising ones.
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