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1. INTRODUCTION
Positive switched systems, which comprise positive subsystems
and a switching law that determines the active subsystem at
the switching instant, have received wide attention in recent
years [1–5]. This class of systems is widespread in many prac-
tical fields such as formation flying, tumor treatment, HIV mit-
igation therapy, and so on [6–9]. In the research on positive
switched systems, stability and stabilization are the most im-
portant issues [10–12]. As we all know, quadratic Lyapunov
functions (i.e., V (t) = xT (t)Px(t)) and linear matrix inequal-
ities are used for general switched systems (non-positive) for
dealing with synthesis problems [13]. For positive switched
systems, linear co-positive Lyapunov functions integrated with
linear programming are more powerful than other approaches
[14, 15]. The literature [16] discussed the stability of positive
switched systems by introducing a switched co-positive Lya-
punov function. A non-fragile controller was proposed in [17]
for positive switched systems subject to actuator faults and satu-
ration. Zhang et al. designed a novel controller by decomposing
the controller gain into positive and negative parts [18]. Under
sampling mechanism, the time-triggered control strategy was
widely adopted in most literature. Such a design may refer to
many useless samplings and thus results in waste of resources
and heavy communication burden. In order to overcome these
disadvantages, a so-called event-triggered mechanism was pro-
posed in [19]. The key of event-triggered mechanism is that data
is transmitted only when a specific event occurs. The event-
triggered control has also been applied in many systems and
verified to be effective. A co-design method of controller gains
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and triggering parameters was proposed in [20] for switched
systems with time-varying delays. The event-triggered and self-
triggered H∞ controllers were derived in [21] for uncertain
switched systems. Moreover, the problem of event-triggered
networked fault detection for positive Markovian systems was
studied in [22]. However, there are few studies on the event-
triggered control of positive systems, let alone positive switched
systems. The literature [23] presented an event-triggered state-
feed back law of positive systems with input saturation. An
event-triggering mechanism in the form of 1-norm was intro-
duced for positive switched systems in [24]. In [25, 26], it has
been shown that a non-fragile control strategy is an effective
way to handle saturation and actuator faults. However, the non-
fragile event-triggered control of positive switched systems has
not been solved completely.

On the other hand, the nonlinearity is a non-negligible fac-
tor influencing the performances of systems. Indeed, the occur-
rence of nonlinearity holds a random property since nonlinear-
ity may be induced by the random failure or repair of compo-
nents and the sudden change of network environment [27]. This
kind of nonlinearity is generally called random nonlinearity. Up
to now, many related results have been reported in [28–30]. In
[31], a novel adaptive event-triggered communication scheme
was presented for networked systems with network-induced
delays and random nonlinearities. The literature [32] investi-
gated the stochastic synchronization of complex networks with
nonlinearity obeys to Bernoulli distribution. When introducing
nonlinearities into positive systems, how to ensure the positiv-
ity of systems is an important problem to be solved. Using a
nonlinear Lyapunov-Krasovskii functional, absolute exponen-
tial L1 stability of switched nonlinear positive systems with
time-varying delay was studied in [33]. In [34], the saturation
controller was designed for nonlinear positive Markovian jump
systems subject to random actuator faults. In the literature men-
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tioned above, it is always assumed that random nonlinearities
conform to Bernoulli sequence. In the Bernoulli process, a ran-
dom variable can only take 0 or 1. Hence, the Bernoulli process
looks like an on-off switch, where “on” means there is nonlin-
earity and “off” means there is no nonlinearity. However, it may
contain different classes of nonlinearities in actual systems and
the nonlinearities exist all the time. Such a class of simultane-
ous occurrence nonlinearities cannot be described by Bernoulli
distribution. Thus, Binomial process is introduced for the mul-
tiple nonlinearities. Binomial distribution is a combination of
multiple independent Bernoulli random variables. It is a gener-
alization of the Bernoulli sequence. In addition, there are oc-
casional random perturbations in many practical systems such
as aircraft and electric circuits. Therefore, the perturbation will
lead to the random uncertainties of controllers. To the authors’
best knowledge, there are no results on random nonlinearities
and controller perturbations of positive switched systems. Con-
sidering the advantages of the event-triggered strategy and the
non-fragile control, it is significant to investigate the issues of
random nonlinearities and controller perturbations of positive
switched systems.

This paper is concerned with the problem of non-fragile
event-triggered control of positive switched systems. The oc-
currence of nonlinearities conforms to Bernoulli sequence and
controller perturbations are modeled as a set of Binomial se-
quences. The main contributions of this paper are as follows.
A 1-norm based event-triggering mechanism is introduced. By
construction of a switched linear co-positive Lyapunov func-
tion and utilization of a matrix decomposition technique, a non-
fragile event-triggered controller is designed for the systems.
The proposed approach can be extended to more general situ-
ations, where the probabilities of controller perturbations and
nonlinearities in each subsystem are different. Under the de-
signed controller, the presented conditions can be solved via
linear programming. This paper is organized as follows. Sec-
tion 2 gives the preliminaries. Section 3 presents the main re-
sults. Two examples are given in Section 4. Section 5 concludes
this paper.

Notation: Rn and Rn×r are the sets of n-dimensional vectors
and n × r matrices with real entries, respectively. Denote N
(or N+) as the sets of nonnegative (or positive) integers. For
A= [ai j] with A∈Rn×n, A� 0 (� 0) means that ai j ≥ 0 (ai j > 0)
∀i, j = 1, . . . ,n and A � 0 (≺ 0) means that ai j ≤ 0 (ai j < 0)
∀i, j = 1, . . . ,n. Similarly, A � B (A � B) means that ai j ≥ bi j
(ai j ≤ bi j) ∀i, j = 1, . . . ,n. AT is a transpose matrix of matrix
A. xi is the ith element of vector x = (x1, . . . ,xn)

T . Define I as
an identity matrix with appropriate dimensions. | · | and ‖ · ‖
are the absolute value and Euclidean norm, respectively. The
1-norm ‖x‖1 and infinite-norm of a vector x ∈ Rn are defined
as ‖x‖1 = ∑n

i=1 |xi| and ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|), respec-
tively. Define 1r = (1, . . . ,1︸ ︷︷ ︸

r

)T , 1(ι)r = (0, . . . ,0︸ ︷︷ ︸
ι−1

,1,0, . . . ,0︸ ︷︷ ︸
r−ι

)T , and

let 1n×n be the n×n matrix with all elements being 1. The sym-
bol E{·} refers to the mathematical expectation and Prob{·}
refers to probability. A matrix A is called Metzler matrix if its
off-diagonal elements are all nonnegative real numbers.

2. PRELIMINARIES
Consider a class of discrete-time switched systems with random
nonlinearities:

x(k+1) = Aσ(k)x(k)+Bσ(k)u
f
σ(k)(k)

+Eσ(k)

L

∑
p=1

ℵσ(k)p(k) fσ(k)p(x(k)), (1)

where x(k) ∈ Rn is system state and u f
σ(k)(k) ∈ Rr is control

input with random actuator faults. The switching signal σ(k)
takes values on the finite set S= {1,2, . . . ,N}, N ∈N+. For sim-
plicity, assume that the ith subsystem is activated when σ(t)= i.
The function ℵip(k) indicates a random nonlinear process. The
nonlinear function fip(x(k)) = ( fip1(x1(k)), . . . , fipn(xn(k)))T is
a vector-valued one. Throughout this paper, assume that Ai �
0,Bi � 0, and Ei � 0.

Definition 1. ( [6, 8]) A system is called positive system if its
state and output are nonnegative for any nonnegative initial con-
dition and input.

Lemma 1. ( [6,8]) A system x(k+1) = Ax(k) is positive if and
only if A � 0.

Definition 2. ( [35,36]) Assume that the system (1) with u f
σ(k) =

0 is positive. The considered system is stochastically exponen-
tially stable if the condition

E{‖x(k)‖1} ≤ τλ kE{‖x(0)‖1}

holds for any initial condition x(0)� 0 and any switching signal
σ(0) ∈ S, where τ > 0 and 0 < λ < 1.

Assumption 1. The nonlinear function fip(x(k)) satisfies the
following condition:

α1x2
ip j(k)≤ fip j(xip j(k))xip j(k)≤ α2x2

ip j(k), (2)

where 0 < α1 < α2.
This paper will design a non-fragile event-triggered con-

troller:
ui(k) = (Fi +∆Fi)x̂(k), k ∈ [kq,kq+1), (3)

where q ∈ N, kq represents the qth event-triggering instant
(k0 = 0), x̂(k) = x(kq), Fi ∈ Rr×n are normal controller gain
matrices, ∆Fi are the gain perturbation matrices and ∆Fi = GiHi
with Hi ∈Rr×n being unknown matrices and Gi ∈Rr×r satisfy-
ing θ1I � Gi � θ2I for 0 < θ1 < θ2 < 1.

Remark 1. It is necessary to state several points on the con-
troller (3). First, there always exist modelling errors when de-
scribing a practical system. Due to the complexity of practi-
cal dynamic processes, it may be hard to establish an accurate
model for a practical system. In such a case, an accurate con-
troller for the error model is difficult to handle the practical
system. Second, the structure of a system may change owing
to unexpected internal and external factors. The controller of
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the original system is also hard to control the changed system.
Third, the parameters of the controller may have fluctuations.
Generally, actuators have limited implementation ability owing
to limited capacity of elements. Therefore, it is not easy to acti-
vate the designed controller accurately. To solve these problems
mentioned above, a non-fragile controller is introduced in (3),
where a perturbation term ∆Fi is added for the normal controller
ui(k) =Fix(k). In addition, the controller (3) employs the event-
triggering mechanism, that is, the control law only updates its
state information when some prescribed event conditions (to be
given later) are satisfied. Such a control strategy can reduce the
update times of the control law and thus save the design cost
of the controller. The event-triggered control is more practical
than the traditional time-triggered control.

The considered controller with actuator fault is defined as:

u f
i (k) = Liui(k), (4)

where Li = diag(li1, li2, . . . , lir) are uncertainty fault matrices but
bounded: 0 � Ldi � Li � Lui � ρLdi,ρ ≥ 1, Ldi and Lui are
given diagonal matrices satisfying Ldi = diag(ldi1, ldi2, . . . , ldir)
and Lui = diag(lui1, lui2, . . . , luir), respectively.

The change of controller perturbations is random and de-
pendent on Binomial sequence. Denote ρi(k) as the stochastic
variable. If ρi(k) = m, then the additive gain perturbation ∆Fi
changes to m∆Fi, where m = 0,1,2, . . . , l and l is the number
of changes. By (3) and (4), the non-fragile event-triggered con-
troller with actuator fault is rewritten as:

u f
i (k) = Li(Fi +ρi(k)∆Fi)x̂(k). (5)

Remark 2. Robust control is a class of control methods that en-
hance the system’s ability to resist interferences of the system.
Non-fragile control refers to a control method that keeps the
system stable when the controller parameters deviate from its
design value. Generally speaking, non-fragile control is a kind
of robust control. Compared with robust control, the non-fragile
control is more specific since it aims to overcome the change of
controller parameters caused by actuator faults [25, 26].

3. MAIN RESULTS
In this section, we will study the non-fragile event-triggered
control of positive switched systems with random nonlineari-
ties and controller perturbations. First, the nonlinearities of the
systems with the same and different probabilities in each sub-
system are considered, respectively. Then, the controller per-
turbations with the same occurrence probability and different
occurrence probabilities in each subsystem are addressed, re-
spectively.

The event-triggering condition is given as:

‖xe(k)‖1 > η‖x(k)‖1 , (6)

where 0 < η < 1 and xe(k) = x̂(k)−x(k) is the error. Given any
initial state x(k0)� 0, it follows that

‖ xe(k0) ‖1≤ η(x1(k0)+ . . .+ xn(k0)) = η1T
n x(k0).

Thus,
−η1n×nx(k0)� xe(k0)� η1n×nx(k0). (7)

Lemma 2. The system (1) is positive with u f
i = 0.

Proof. By Assumption 1, we get

α1x2
ip j(k0)≤ fip j(xip j(k0))xip j(k0)≤ α2x2

ip j(k0). (8)

Given any initial state x(k0)� 0, we have

0 ≤ α1xip j(k0)≤ fip j(xip j(k0))≤ α2xip j(k0),

which means that fip(xip(k0)) � 0. Since ℵip(k) takes val-
ues in the index set: {0, 1}, then ℵip(k0) ≥ 0. By Ai �
0 and Ei � 0, it is clear that x(k0 + 1) = Aσ(k0)x(k0) +

Eσ(k0)

L
∑

p=1
ℵip(k0) fip(x(k0))� 0. Using recursive induction, we

can get x(k)� 0,∀k ∈N. So, the system (1) is positive by Defi-
nition 1. �

3.1. Random nonlinearities
First, we consider system (1) with ∆Fi = 0. Then, the resulting
closed-loop system is:

x(k+1) = Aix(k)+BiLiFix(k)+BiLiFixe(k)

+Ei

L

∑
p=1

ℵip(k) fip(x(k)), (9)

where ℵip(k) is a Bernoulli sequence and belongs to the index
set: {0,1}. Assume that the occurrence of nonlinearities in each
subsystem is the same, that is, Prob{ℵip(k) = 1} = β , where

0 ≤ β ≤ β ≤ β ≤ 1. Then
L
∑

p=1
ℵip(k) satisfies

E

{
L

∑
p=1

ℵip(k)

}
=

L

∑
p=1

E
{

ℵip(k)
}
= Lβ . (10)

Theorem 1. If there exist constants µ > 0, ρ ≥ 1, 0 < δ1 < 1,
δ2 ≥ 1 and Rn vectors vi � 0, ζ+

i � 0, ζ+
iι � 0, ζ−

i
� ζ

−
i ≺ 0,

ζ−
iι ≺ 0 such that

ρ1T
r LT

diB
T
i viAi +BiLdi

r

∑
ι=1

1(ι)r ζ+T
iι

+ρBiLui

r

∑
ι=1

1(ι)r ζ−T
iι −ρηBiLui

r

∑
ι=1

1(ι)r ζ+T
iι 1n×n

+ρηBiLui

r

∑
ι=1

1(ι)r ζ−T
iι 1n×n � 0, (11a)

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2Lβ̄ET

i v j −µvi ≺ 0, (11b)

δ1vi � v j � δ2vi, (11c)
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p=1

ℵip(k) fip(x(k)), (9)

where ℵip(k) is a Bernoulli sequence and belongs to the index
set: {0,1}. Assume that the occurrence of nonlinearities in each
subsystem is the same, that is, Prob{ℵip(k) = 1} = β , where

0 ≤ β ≤ β ≤ β ≤ 1. Then
L
∑

p=1
ℵip(k) satisfies

E

{
L

∑
p=1

ℵip(k)

}
=

L

∑
p=1

E
{

ℵip(k)
}
= Lβ . (10)

Theorem 1. If there exist constants µ > 0, ρ ≥ 1, 0 < δ1 < 1,
δ2 ≥ 1 and Rn vectors vi � 0, ζ+

i � 0, ζ+
iι � 0, ζ−

i
� ζ

−
i ≺ 0,

ζ−
iι ≺ 0 such that

ρ1T
r LT

diB
T
i viAi +BiLdi

r

∑
ι=1

1(ι)r ζ+T
iι

+ρBiLui

r

∑
ι=1

1(ι)r ζ−T
iι −ρηBiLui

r

∑
ι=1

1(ι)r ζ+T
iι 1n×n

+ρηBiLui

r

∑
ι=1

1(ι)r ζ−T
iι 1n×n � 0, (11a)

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2Lβ̄ET

i v j −µvi ≺ 0, (11b)

δ1vi � v j � δ2vi, (11c)
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ζ+
iι � ζ+

i , ζ−
i
� ζ−

iι � ζ
−
i , ι = 1, . . . ,r, (11d)

hold ∀(i, j) ∈ S × S, i �= j,s = 1, . . . ,r, then under the control
law (5) with

Fi = F+
i +F−

i , (12)

and

F+
i =

r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

uiB
T
i vi

, F−
i =

r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

, (13)

the resulting closed-loop system (9) is positive and stochasti-
cally exponentially stable for arbitrary switching law.

Proof. Due to 1r � 0, Bi � 0, 0 � Ldi � Li � Lui and vi � 0, we
get 0 < 1T

r LT
diB

T
i vi < 1T

r LT
uiB

T
i vi. Since F+

i � 0 and F−
i ≺ 0 , it

follows that

Ai +BiLdiF+
i +BiLuiF−

i � Ai +BiLiF+
i +BiLiF−

i

� Ai +BiLuiF+
i +BiLdiF−

i . (14)

By (7) and (12)–(14), we have

Aix(k)+BiLiFix(k)+BiLiFixe(k)

�
(
Ai +BiLdiF+

i −ηBiLuiF+
i 1n×n

+BiLuiF−
i +ηBiLuiF−

i 1n×n
)
x(k)

=


Ai +

BiLdi
r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

uiB
T
i vi

−η
BiLui

r
∑

ι=1
1(ι)r ζ+T

iι 1n×n

1T
r LT

uiB
T
i vi

+

BiLui
r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

+η
BiLui

r
∑

ι=1
1(ι)r ζ−T

iι 1n×n

1T
r LT

diB
T
i vi


x(k)

�


Ai +

1
ρ

BiLdi
r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

diB
T
i vi

−η
BiLui

r
∑

ι=1
1(ι)r ζ+T

iι 1n×n

1T
r LT

diB
T
i vi

+

BiLui
r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

+η
BiLui

r
∑

ι=1
1(ι)r ζ−T

iι 1n×n

1T
r LT

diB
T
i vi


x(k).

Together with (11a), it holds that

Ai +
1
ρ

BiLdi
r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

diB
T
i vi

−
ηBiLui

r
∑

ι=1
1(ι)r ζ+T

iι 1n×n

1T
r LT

diB
T
i vi

+

BiLui
r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

+

ηBiLui
r
∑

ι=1
1(ι)r ζ−T

iι 1n×n

1T
r LT

diB
T
i vi

� 0.

Thus, Aix(k)+BiLiFix(k)+BiLiFixe(k)� 0 for each i ∈ S. Not-

ing the fact Ei
L
∑

p=1
ℵip(k) fip(x(k))� 0 in Lemma 2, the positiv-

ity of the closed-loop system (9) is achieved.

Choose a switched linear co-positive Lyapunov function:

V (k) = xT (k)vσ(k) . (15)

Then, E{V (k+1)|V (k)}= E{xT (k+1)vσ(k+1)}. Moreover,

E{∆V (k)}= E
{

xT (k+1)v j − xT (k)vi
}

≤ E
{

xT (k)(AT
i v j +F+T

i LT
uiB

T
i v j

+F−T
i LT

diB
T
i v j +η1n×nF+T

i LT
uiB

T
i v j

−η1n×nF−T
i LT

uiB
T
i v j − vi)

+α2

L

∑
p=1

ℵip(k)xT (k)ET
i v j

}
, (16)

where σ(k) = i and σ(k+1) = j mean that the ith and jth sub-
system is active at time instants k and k + 1, respectively. By
(11c), (11d) and (13),

F+T
i LT

uiB
T
i v j �

r
∑

ι=1
ζ+

i 1(ι)Tr LT
uiB

T
i v j

1T
r LT

uiB
T
i vi

� δ2

ζ+
i

r
∑

ι=1
1(ι)Tr LT

uiB
T
i vi

1T
r LT

uiB
T
i vi

= δ2ζ+
i , (17a)

F−T
i LT

diB
T
i v j �

r
∑

ι=1
ζi

−
1(ι)Tr LT

diB
T
i v j

1T
r LT

diB
T
i vi

� δ1

ζ
−
i

r
∑

ι=1
1(ι)Tr LT

diB
T
i vi

1T
r LT

diB
T
i vi

= δ1ζ
−
i , (17b)

F−T
i LT

uiB
T
i v j �

r
∑

ι=1
ζ−

i
1(ι)Tr LT

uiB
T
i v j

1T
r LT

diB
T
i vi

� δ2ρ
ζ−

i

r
∑

ι=1
1(ι)Tr LT

diB
T
i vi

1T
r LT

diB
T
i vi

= δ2ρζ−
i
. (17c)

Substitute (17) into (16) yields that

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2LβET

i v j − vi

)

≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2Lβ̄ET

i v j − vi

)
.

By (11b), it is easy to obtain E{V (k + 1)−V (k)} < −(1 −
µ)V (k). Thus, E{V (k)} < µkV (0). Moreover, E{||x(k)||1} <
ρ
ρ µk{||x(0)||1}, where ρ and ρ are the minimal element and
maximal element of vi,∀i ∈ S, respectively. By Definition 2, the
system (9) is stochastically exponentially stable. �
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Remark 3. In [16], a switched co-positive Lyapunov function
was constructed for positive switched systems. Multiple Lya-
punov functions have less rigorous stability conditions but re-
stricted dwell time conditions while common Lypaunov func-
tions have rigorous stability conditions but less restricted dwell
time conditions. Switched Lyapunov functions make a trade-off
between stability and dwell time conditions. Finally, some less
rigorous stability and dwell time conditions than common and
multiple Lyapunov functions are obtained under switched Lya-
punov functions, respectively. Considering these advantages
mentioned, a switched linear co-positive Lyapunov function is
employed in Theorem 1.

Remark 4. The literature [27–30, 32, 33] had considered the
random issues concerning random saturation, random nonlin-
earities, and so on. It is always assumed in the literature that
the random behavior obeys Bernoulli distribution. In this pa-
per, the random behavior of nonlinearities in positive switched
systems is assumed to confirm Binomial distribution, which is
more general than Bernoulli distribution. A new even-triggered
control framework for positive switched systems with Binomial
distribution type of nonlinearities is established in Theorem 1 in
terms of linear programming.

Remark 5. Nonlinearity is an interesting but challenging is-
sue in the control field. How to determine the positivity of a
nonlinear system is not an easy job [33, 34]. Particularly, few
results are contributed to the event-triggered synthesis of pos-
itive systems [22–24]. There are still open issues in the event-
triggered issues of positive systems. Under the event-triggered
control framework, the positivity of nonlinear systems is more
challenging. Compared with [33] and [34], a more general
nonlinear description is introduced in Theorem 1 for positive
switched systems and an event-triggered control strategy is pro-
posed for the considered systems. Different from linear systems
in [22–24], nonlinear positive switched systems are investigated
in Theorem 1.

Theorem 1 considers the non-fragile event-triggered control
design of the system (1) with ∆Fi = 0. Based on Theorem 1, the
different occurrence probabilities of nonlinearities in each sub-
system is considered, that is, Prob{ℵip(k) = 1} = βip, where
0 ≤ β

ip
≤ βip ≤ β ip ≤ 1. Then,

E

{
L

∑
p=1

ℵip(k)

}
=

L

∑
p=1

E
{

ℵip(k)
}
=

L

∑
p=1

βip . (18)

Corollary 1. If there exist constants µ > 0, ρ ≥ 1, δ2 ≥ 1, 0 <

δ1 < 1 and Rn vectors vi � 0, ζ+
i � 0, ζ+

iι � 0, ζ−
i
� ζ

−
i ≺ 0,

ζ−
iι ≺ 0 such that

ρ1T
r LT

diB
T
i viAi +BiLdi

r

∑
ι=1

1(ι)r ζ+T
iι

+ρBiLui

r

∑
ι=1

1(ι)r ζ−T
iι −ρηBiLui

r

∑
ι=1

1(ι)r ζ+T
iι 1n×n

+ρηBiLui

r

∑
ι=1

1(ι)r ζ−T
iι 1n×n � 0, (19a)

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2

L

∑
p=1

β̄ipET
i v j −µvi ≺ 0, (19b)

δ1vi � v j � δ2vi, (19c)

ζ+
iι � ζ+

i , ζ−
i
� ζ−

iι � ζ
−
i , ι = 1, . . . ,r, (19d)

hold ∀(i, j) ∈ S× S, i �= j, s = 1, . . . ,r, then under the control
law (5), (12) and (13), the resulting closed-loop system (9) is
positive and stochastically exponentially stable.

Sketch of Proof. By (19a), the positivity of the closed-loop sys-
tem (9) can be proved using a similar method in Theorem 1.
Choose the same switched linear co-positive Lyapunov func-
tion in (15), then

E{∆V (k)} ≤ E
{

xT (k)(AT
i v j +F+T

i LT
uiB

T
i v j

+F−T
i LT

diB
T
i v j +η1n×nF+T

i LT
uiB

T
i v j

−η1n×nF−T
i LT

uiB
T
i v j − vi)

+α2

L

∑
p=1

ℵip(k)xT (k)ET
i v j

}
.

Together with (17) and (18) gives

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2

L

∑
p=1

β ipET
i v j − vi

)
.

By (19b), we have E{∆V (k)}<−(1−µ)V (k). �

3.2. Random nonlinearities and controller perturbations
In Subsection 3.1, random nonlinearities are considered. Here,
the random controller perturbations are further introduced for
the systems. Then, the resulting closed-loop (9) is rewritten as:

x(k+1) = (Ai +BiLiFi +ρi(k)BiLi∆Fi)x(k)

+(BiLiFi +ρi(k)BiLi∆Fi)xe(k)

+Ei

L

∑
p=1

ℵip(k) fip(x(k)). (20)

In the process of system execution, there will be some dis-
turbances due to the change of environment. In addition, when
these disturbances exist, its subliminal degree in the controller
varies according to the random change in the real environment.
To solve the problem mentioned above, the controller parame-
ter is assumed to be randomly changing in this subsection. This
means ρi is a random process described by Binomial sequence.
Assume that the occurrence probabilities of random nonlinear-
ities of each subsystem is different and the occurrence proba-
bility of controller perturbations in each subsystem is the same.
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Remark 3. In [16], a switched co-positive Lyapunov function
was constructed for positive switched systems. Multiple Lya-
punov functions have less rigorous stability conditions but re-
stricted dwell time conditions while common Lypaunov func-
tions have rigorous stability conditions but less restricted dwell
time conditions. Switched Lyapunov functions make a trade-off
between stability and dwell time conditions. Finally, some less
rigorous stability and dwell time conditions than common and
multiple Lyapunov functions are obtained under switched Lya-
punov functions, respectively. Considering these advantages
mentioned, a switched linear co-positive Lyapunov function is
employed in Theorem 1.

Remark 4. The literature [27–30, 32, 33] had considered the
random issues concerning random saturation, random nonlin-
earities, and so on. It is always assumed in the literature that
the random behavior obeys Bernoulli distribution. In this pa-
per, the random behavior of nonlinearities in positive switched
systems is assumed to confirm Binomial distribution, which is
more general than Bernoulli distribution. A new even-triggered
control framework for positive switched systems with Binomial
distribution type of nonlinearities is established in Theorem 1 in
terms of linear programming.

Remark 5. Nonlinearity is an interesting but challenging is-
sue in the control field. How to determine the positivity of a
nonlinear system is not an easy job [33, 34]. Particularly, few
results are contributed to the event-triggered synthesis of pos-
itive systems [22–24]. There are still open issues in the event-
triggered issues of positive systems. Under the event-triggered
control framework, the positivity of nonlinear systems is more
challenging. Compared with [33] and [34], a more general
nonlinear description is introduced in Theorem 1 for positive
switched systems and an event-triggered control strategy is pro-
posed for the considered systems. Different from linear systems
in [22–24], nonlinear positive switched systems are investigated
in Theorem 1.

Theorem 1 considers the non-fragile event-triggered control
design of the system (1) with ∆Fi = 0. Based on Theorem 1, the
different occurrence probabilities of nonlinearities in each sub-
system is considered, that is, Prob{ℵip(k) = 1} = βip, where
0 ≤ β

ip
≤ βip ≤ β ip ≤ 1. Then,

E

{
L

∑
p=1

ℵip(k)

}
=

L

∑
p=1

E
{

ℵip(k)
}
=

L

∑
p=1

βip . (18)

Corollary 1. If there exist constants µ > 0, ρ ≥ 1, δ2 ≥ 1, 0 <

δ1 < 1 and Rn vectors vi � 0, ζ+
i � 0, ζ+

iι � 0, ζ−
i
� ζ

−
i ≺ 0,

ζ−
iι ≺ 0 such that

ρ1T
r LT

diB
T
i viAi +BiLdi

r

∑
ι=1

1(ι)r ζ+T
iι

+ρBiLui

r

∑
ι=1

1(ι)r ζ−T
iι −ρηBiLui

r

∑
ι=1

1(ι)r ζ+T
iι 1n×n

+ρηBiLui

r

∑
ι=1

1(ι)r ζ−T
iι 1n×n � 0, (19a)

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2

L

∑
p=1

β̄ipET
i v j −µvi ≺ 0, (19b)

δ1vi � v j � δ2vi, (19c)

ζ+
iι � ζ+

i , ζ−
i
� ζ−

iι � ζ
−
i , ι = 1, . . . ,r, (19d)

hold ∀(i, j) ∈ S× S, i �= j, s = 1, . . . ,r, then under the control
law (5), (12) and (13), the resulting closed-loop system (9) is
positive and stochastically exponentially stable.

Sketch of Proof. By (19a), the positivity of the closed-loop sys-
tem (9) can be proved using a similar method in Theorem 1.
Choose the same switched linear co-positive Lyapunov func-
tion in (15), then

E{∆V (k)} ≤ E
{

xT (k)(AT
i v j +F+T

i LT
uiB

T
i v j

+F−T
i LT

diB
T
i v j +η1n×nF+T

i LT
uiB

T
i v j

−η1n×nF−T
i LT

uiB
T
i v j − vi)

+α2

L

∑
p=1

ℵip(k)xT (k)ET
i v j

}
.

Together with (17) and (18) gives

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+α2

L

∑
p=1

β ipET
i v j − vi

)
.

By (19b), we have E{∆V (k)}<−(1−µ)V (k). �

3.2. Random nonlinearities and controller perturbations
In Subsection 3.1, random nonlinearities are considered. Here,
the random controller perturbations are further introduced for
the systems. Then, the resulting closed-loop (9) is rewritten as:

x(k+1) = (Ai +BiLiFi +ρi(k)BiLi∆Fi)x(k)

+(BiLiFi +ρi(k)BiLi∆Fi)xe(k)

+Ei

L

∑
p=1

ℵip(k) fip(x(k)). (20)

In the process of system execution, there will be some dis-
turbances due to the change of environment. In addition, when
these disturbances exist, its subliminal degree in the controller
varies according to the random change in the real environment.
To solve the problem mentioned above, the controller parame-
ter is assumed to be randomly changing in this subsection. This
means ρi is a random process described by Binomial sequence.
Assume that the occurrence probabilities of random nonlinear-
ities of each subsystem is different and the occurrence proba-
bility of controller perturbations in each subsystem is the same.
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Let 0 ≤ ρ ≤ ρ ≤ ρ ≤ 1. Then, the stochastic variable ρi(k) be-
longs to the index set of multiple elements: {0,1,2, . . . , l}, and
satisfies

E{ρi(k)}= lρ. (21)

Theorem 2. If there exist constants µ > 0, ρ ≥ 1, δ2 ≥ 1,
0 < δ1 < 1 and Rn vectors vi � 0, ζ+

i � 0, ζ+
iι � 0, ξ+

i � 0,

ξ+
iι � 0, ζ−

i
≺ ζ

−
i ≺ 0, ζ−

iι ≺ 0, ξi
− ≺ ξi

− ≺ 0, ξ−
iι ≺ 0 such

that

ρ1T
r LT

diB
T
i viAi −ρηBiLui

r

∑
ι=1

1(ι)r ζ+T
iι 1n×n

+BiLdi

r

∑
ι=1

1(ι)r ζ+T
iι +ρηBiLui

r

∑
ι=1

1(ι)r ζ−T
iι 1n×n

−ρlηBiLuiGi

r

∑
ι=1

1(ι)r ξ+T
iι 1n×n

+ρBiLui

r

∑
ι=1

1(ι)r ζ−T
iι +ρlBiLdiGi

r

∑
ι=1

1(ι)r ξ−T
iι

+ρlηBiLuiGi

r

∑
ι=1

1(ι)r ξ−T
iι 1n×n � 0, (22a)

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i −ηδ2ρ1n×nζ−
i

+lρδ2θ2ξ+
i + lρδ1θ1ξ

−
i + lρηδ2θ21n×nξ+

i

−lρηδ2ρθ21n×nξ−
i
+α2

L

∑
p=1

β̄ipET
i v j −µvi ≺ 0, (22b)

δ1vi � v j � δ2vi, (22c)

ζ+
iι � ζ+

i , ζ−
i
� ζ−

iι � ζ
−
i , ξ+

iι � ξ+
i ,

ξ−
i
� ξ−

iι � ξ
−
i , ι = 1, . . . ,r,

(22d)

hold ∀(i, j) ∈ S × S, i �= j,s = 1, . . . ,r, then under the control
law (5) with Fi = F+

i +F−
i ,Hi = H+

i +H−
i , and

F+
i =

r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

uiB
T
i vi

, F−
i =

r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

,

H+
i =

r
∑

ι=1
1(ι)r ξ+T

iι

1T
r LT

uiB
T
i vi

, H−
i =

r
∑

ι=1
1(ι)r ξ−T

iι

1T
r LT

diB
T
i vi

,

(23)

the system (20) is positive and stochastically exponentially sta-
ble under arbitrary switching law.

Proof. The proof of Theorem 2 can be seen in Appendix.

Remark 6. Due to limited capability of elements, the controller
may be subject to parameter fluctuations when the running en-
vironment and status change. These fluctuations usually arise
in the form of abrupt changes. Random process is suitable to
be used for such fluctuations. In [25] and [26], the non-fragile

control of positive Markovian jump systems has been explored.
However, the parameter fluctuations are described in a deter-
mined way. In Theorem 2, it is assumed that the occurrence of
parameter fluctuations obeys a stochastic process. This is more
practical than the determined way.

Assume that the occurrence probability of controller pertur-
bations for each subsystem is dependent on ρ(k) satisfying

E{ρi(k)}=
l

∑
h̄=1

ρih̄, (24)

where 0 ≤ ρ
ih̄
≤ ρih̄ ≤ ρ ih̄ ≤ 1.

Corollary 2. If there exist constants µ > 0, ρ ≥ 1, δ2 ≥ 1,
0 < δ1 < 1 and Rn vectors vi � 0, ζ+

i � 0, ζ+
iι � 0, ξ+

i � 0,

ξ+
iι � 0, ζ−

i
≺ ζ

−
i ≺ 0, ζ−

iι ≺ 0, ξi
− ≺ ξi

− ≺ 0, ξ−
iι ≺ 0 such

that

ρ1T
r LT

diB
T
i viAi +BiLdi

r

∑
ι=1

1(ι)r ζ+T
iι

−ρηBiLui

r

∑
ι=1

1(ι)r ζ+T
iι 1n×n +ρBiLui

r

∑
ι=1

1(ι)r ζ−T
iι

+ρηBiLui

r

∑
ι=1

1(ι)r ζ−T
iι 1n×n

+ρlBiLdiGi

r

∑
ι=1

1(ι)r ξ−T
iι

−ρlηBiLuiGi

r

∑
ι=1

1(ι)r ξ+T
iι 1n×n

+ρlηBiLuiGi

r

∑
ι=1

1(ι)r ξ−T
iι 1n×n � 0, (25a)

AT
i v j −µvi +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+δ2θ2

l

∑
h̄=1

ρ ih̄ξ+
i

+δ1θ1

l

∑
h̄=1

ρ
ih̄

ξ
−
i +ηδ2θ2

l

∑
h̄=1

ρ ih̄1n×nξ+
i

−ηδ2ρθ2

l

∑
h̄=1

ρ ih̄1n×nξ−
i
+α2

L

∑
p=1

β ipET
i v j ≺ 0, (25b)

δ1vi � v j � δ2vi, (25c)

ζ+
iι � ζ+

i , ζ−
i
� ζ−

iι � ζ
−
i ,

ξ+
iι � ξ+

i , ξ−
i
� ξ−

iι � ξ
−
i , ι = 1, . . . ,r,

(25d)

hold ∀(i, j) ∈ S× S, i �= j, s = 1, . . . ,r, then under the control
law (5) with Fi = F+

i +F−
i , Hi = H+

i +H−
i and (23), the system

(20) is positive and stochastically exponentially stable.

Sketch of Proof. By (25a), it is easy to get the positivity of the
close-loop system (20). Using the switched linear co-positive
Lyapunov function (15), we obtain
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E{∆V (k)} ≤ E
{

xT (k)(AT
i v j +F+T

i LT
uiB

T
i v j +F−T

i LT
diB

T
i v j

+ρi(k)(H+T
i GT

i LT
uiB

T
i v j +H−T

i GT
i LT

diB
T
i v j)

+η1n×nF+T
i LT

uiB
T
i v j −η1n×nF−T

i LT
uiB

T
i v j

+ρi(k)η1n×nH+T
i GT

i LT
uiB

T
i v j

−ρi(k)η1n×nH−T
i GT

i LT
uiB

T
i v j

+α2

L

∑
p=1

ℵip(k)ET
i v j − vi)

}
.

Then, together with (23) and (24) gives

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+δ2θ2

l

∑
h̄=1

ρih̄ξ+
i +δ1θ1

l

∑
h̄=1

ρih̄ξ
−
i

+ηδ2θ2

l

∑
h̄=1

ρih̄1n×nξ+
i −ηδ2ρθ2

l

∑
h̄=1

ρih̄1n×nξ−
i

+α2

L

∑
p=1

βipET
i v j − vi

)

≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+δ2θ2

l

∑
h̄=1

ρ ih̄ξ+
i +δ1θ1

l

∑
h̄=1

ρ
ih̄

ξ
−
i

+ηδ2θ2

l

∑
h̄=1

ρ ih̄1n×nξ+
i −ηδ2ρθ2

l

∑
h̄=1

ρ ih̄1n×nξ−
i

+α2

L

∑
p=1

βipET
i v j − vi

)
.

By (25b), we have E{V (k+1)−V (k)}<−(1−µ)V (k). Then,
the stochastically exponential stability of system (20) with ran-
dom nonlinearities and controller perturbations can be proved
by using a similar method used in Theorem 1. �

Remark 7. Consider a switched system: x(k + 1) = Ax(k) +
Bu(k),y(k) = Cx(k), where x(k) ∈ Rn, u(k) ∈ Rr, y(k) ∈ Rs.
Theorems 1 and 2 present a matrix decomposition approach
to design the controller of the system. Specifically, the con-

troller gain matrix F is divided into the sum of F+ =

r
∑

ι=1
1(ι)r ζ+T

ι

1T
r BT

i v

and F− =

r
∑

ι=1
1(ι)r ζ−T

ι

1T
r BT vi

. It is necessary to point out that the de-
sign approach in Theorems 1 and 2 can be developed for the
observer design of the considered system. Suppose that the
gain matrix of Luenberger-type observer is L. One can de-

sign the gain matrix as L = L+ + L− =

s
∑

ι=1
1(ι)s z+T

ι

1T
s CT v +

s
∑

ι=1
1(ι)s z−T

ι

1T
s CT vs

.

Then, we can obtain CT L+T v � z+T and CT L−T v � z−T . Thus,
(A+LC)T v � AT v+ z+T + z−T . Finally, the validity of the ob-
server can be achieved if AT v+ z+T + z−T � 0 holds.

Remark 8. This paper studies the non-fragile event-triggered
controller of positive switched systems. It is assumed that the
state is measurable. In practice, the state is often unmeasurable
or unknown. This implies that it is necessary to design an ob-
server of positive switched systems. Noting the statements in
Remark 7, it is feasible to develop the matrix decomposition-
based control approach for designing the observer of positive
switched systems. The detail-deduced progress is complex but
straightforward.

4. ILLUSTRATIVE EXAMPLES
The SEIR model is a mathematical model describing the
generic behavior of epidemics. In this model, there are four
classes of people, that is, the susceptible (S) who can contract
the disease and become infectious; the exposed (E) and infec-
tious (I) who can spread diseases; and the recovered (R) who
have been immunized against the virus (including death). More-
over, the literature [37] proved that the transmission coefficient
ℜ0 of virus is an important index to measure the infectious
ability of a virus, and the disease can be almost eliminated if
ℜ0 < 1, while the disease will spread if ℜ0 > 1. In real ecolog-
ical systems, the population dynamics are often affected by the
external environment. For example, the rate of disease transmis-
sion will be affected by the weather because the survival rate
and infectivity of viruses and bacteria will be better in humid
environment. In Fig. 1, the SEIR model switches in two cases
(ℜ0 < 1 and ℜ0 > 1) , where ϖ1 and ϖ2 represent the proba-
bility of virus transmission from the susceptible to the exposed,
latent rates ω1 and ω2 are the infection rates of latent individu-
als, γ1 and γ1 correspond to the recovery rates, and the parame-
ters K1 and K2 represent the mortality rates. It should be noted
that this is the simplest switched system which switches be-
tween two models. In fact, we can divide the basic reproduction
number ℜ0 into n different intervals to express the infectivity
of the disease. For example, 0 < ℜ0 < 0.25, 0.25 ≤ ℜ0 < 0.5,
0.5 ≤ ℜ0 < 1, 1 ≤ ℜ0 < 1.5, 1.5 ≤ ℜ0 < 2, etc. Such a division
method can help us to acquire more specific transmission status
of virus. It is clear that this class of models can be represented
by switched systems with n subsystems. What is more, since
the state and outputs are all nonnegative, the SEIR model can
be considered as a positive switched system. The fluctuations
of natural birth and mortality can be regarded as a random non-
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E{∆V (k)} ≤ E
{

xT (k)(AT
i v j +F+T

i LT
uiB

T
i v j +F−T

i LT
diB

T
i v j

+ρi(k)(H+T
i GT

i LT
uiB

T
i v j +H−T

i GT
i LT

diB
T
i v j)

+η1n×nF+T
i LT

uiB
T
i v j −η1n×nF−T

i LT
uiB

T
i v j

+ρi(k)η1n×nH+T
i GT

i LT
uiB

T
i v j

−ρi(k)η1n×nH−T
i GT

i LT
uiB

T
i v j

+α2

L

∑
p=1

ℵip(k)ET
i v j − vi)

}
.

Then, together with (23) and (24) gives

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+δ2θ2

l

∑
h̄=1

ρih̄ξ+
i +δ1θ1

l

∑
h̄=1

ρih̄ξ
−
i

+ηδ2θ2

l

∑
h̄=1

ρih̄1n×nξ+
i −ηδ2ρθ2

l

∑
h̄=1

ρih̄1n×nξ−
i

+α2

L

∑
p=1

βipET
i v j − vi

)

≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+δ2θ2

l

∑
h̄=1

ρ ih̄ξ+
i +δ1θ1

l

∑
h̄=1

ρ
ih̄

ξ
−
i

+ηδ2θ2

l

∑
h̄=1

ρ ih̄1n×nξ+
i −ηδ2ρθ2

l

∑
h̄=1

ρ ih̄1n×nξ−
i

+α2

L

∑
p=1

βipET
i v j − vi

)
.

By (25b), we have E{V (k+1)−V (k)}<−(1−µ)V (k). Then,
the stochastically exponential stability of system (20) with ran-
dom nonlinearities and controller perturbations can be proved
by using a similar method used in Theorem 1. �

Remark 7. Consider a switched system: x(k + 1) = Ax(k) +
Bu(k),y(k) = Cx(k), where x(k) ∈ Rn, u(k) ∈ Rr, y(k) ∈ Rs.
Theorems 1 and 2 present a matrix decomposition approach
to design the controller of the system. Specifically, the con-

troller gain matrix F is divided into the sum of F+ =

r
∑

ι=1
1(ι)r ζ+T

ι

1T
r BT

i v

and F− =

r
∑

ι=1
1(ι)r ζ−T

ι

1T
r BT vi

. It is necessary to point out that the de-
sign approach in Theorems 1 and 2 can be developed for the
observer design of the considered system. Suppose that the
gain matrix of Luenberger-type observer is L. One can de-

sign the gain matrix as L = L+ + L− =

s
∑

ι=1
1(ι)s z+T

ι

1T
s CT v +

s
∑

ι=1
1(ι)s z−T

ι

1T
s CT vs

.

Then, we can obtain CT L+T v � z+T and CT L−T v � z−T . Thus,
(A+LC)T v � AT v+ z+T + z−T . Finally, the validity of the ob-
server can be achieved if AT v+ z+T + z−T � 0 holds.

Remark 8. This paper studies the non-fragile event-triggered
controller of positive switched systems. It is assumed that the
state is measurable. In practice, the state is often unmeasurable
or unknown. This implies that it is necessary to design an ob-
server of positive switched systems. Noting the statements in
Remark 7, it is feasible to develop the matrix decomposition-
based control approach for designing the observer of positive
switched systems. The detail-deduced progress is complex but
straightforward.

4. ILLUSTRATIVE EXAMPLES
The SEIR model is a mathematical model describing the
generic behavior of epidemics. In this model, there are four
classes of people, that is, the susceptible (S) who can contract
the disease and become infectious; the exposed (E) and infec-
tious (I) who can spread diseases; and the recovered (R) who
have been immunized against the virus (including death). More-
over, the literature [37] proved that the transmission coefficient
ℜ0 of virus is an important index to measure the infectious
ability of a virus, and the disease can be almost eliminated if
ℜ0 < 1, while the disease will spread if ℜ0 > 1. In real ecolog-
ical systems, the population dynamics are often affected by the
external environment. For example, the rate of disease transmis-
sion will be affected by the weather because the survival rate
and infectivity of viruses and bacteria will be better in humid
environment. In Fig. 1, the SEIR model switches in two cases
(ℜ0 < 1 and ℜ0 > 1) , where ϖ1 and ϖ2 represent the proba-
bility of virus transmission from the susceptible to the exposed,
latent rates ω1 and ω2 are the infection rates of latent individu-
als, γ1 and γ1 correspond to the recovery rates, and the parame-
ters K1 and K2 represent the mortality rates. It should be noted
that this is the simplest switched system which switches be-
tween two models. In fact, we can divide the basic reproduction
number ℜ0 into n different intervals to express the infectivity
of the disease. For example, 0 < ℜ0 < 0.25, 0.25 ≤ ℜ0 < 0.5,
0.5 ≤ ℜ0 < 1, 1 ≤ ℜ0 < 1.5, 1.5 ≤ ℜ0 < 2, etc. Such a division
method can help us to acquire more specific transmission status
of virus. It is clear that this class of models can be represented
by switched systems with n subsystems. What is more, since
the state and outputs are all nonnegative, the SEIR model can
be considered as a positive switched system. The fluctuations
of natural birth and mortality can be regarded as a random non-
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linear disturbance. Base on these points, an SEIR model con-
taining n subsystems and multiple random nonlinearities is es-
tablished, as shown in Fig. 2.





  























  
  










    
  




    

  




    

  

Fig. 2. Positive switched systems with random nonlinearities and con-
troller perturbations

Example 1. Consider the system (9) with:

A1 =




0.41 0.09 0.5
0.3 0.3 0.29

0.306 0.46 0.34


 , B1 =




0.004 0.004
0.0026 0.0027
0.0029 0.0027


 ,

A2 =




0.3 0.4 0.25
0.38 0.2 0.47
0.3 0.4 0.3


 , B2 =




0.0029 0.003
0.0024 0.005
0.0026 0.0036


 .

Choose E1 = diag(0.005 0.006 0.027) and E2 =
diag(0.007 0.009 0.008). The nonlinearities are
selected as f11(x(k)) = 0.3sin(x(k)) + 0.1x(k),
f12(x(k)) = 0.1x(k) + 0.01x2(k), f13(x(k)) = 0.1x(k)

0.01x2(k)+1 ,

f21(x(k)) = 0.3sin(0.2x(k))+ 0.1x(k), f22(x(k)) =
0.2x(k)

0.02x2(k)+2 ,

f23(x(k)) = 0.2x(k) + 0.01x2(k) and the corresponding prob-
abilities are β

11
= 0.15, β11 = 0.2, β 11 = 0.25, β

12
= 0.3,

β12 = 0.3, β 12 = 0.35, β 13 = 0.43, β13 = 0.5, β 13 = 0.55,
β

21
= 0.1, β21 = 0.2, β 21 = 0.2, β

22
= 0.3, β22 = 0.35,

β 22 = 0.35, β
23

= 0.4, β23 = 0.45, β 23 = 0.5. Set α1 = 0.01,
α2 = 0.4, δ1 = 0.98,δ2 = 1.01,µ = 0.98, η = 0.19 and
ρ = 1.2. Let Ld1 = diag(0.3 0.2), Lu1 = diag(0.33 0.26),
Ld2 = diag(0.42 0.3), Lu2 = diag(0.45 0.35). By Corollary 1,
we get

v1 =




3.5015
3.4736
2.4529


 , ζ+

1 =




0.0020
0.3652
0.0020


 , ζ−

1
=



−0.3499
−0.0030
−1.7887


 ,

ζ
−
1 =



−0.3479
−0.001
−1.7867


 , v2 =




3.4678
3.4402
2.4296


 , ζ+

2 =




0.0020
0.0020
0.0020


 ,

ζ−
2
=



−0.0276
−0.0030
−1.1795


 , ζ

−
2 =



−0.0010
−0.0010
−1.1775


 .

Then, the controller gains are

F1 =

(
−23.1288 20.3837 −118.7568
−23.1288 20.3837 −118.7568

)
,

F2 =

(
−0.0420 −0.0420 −49.4599
−0.0420 −0.0420 −49.4599

)
.

Choose L1 = diag(0.3 0.25) and L2 = diag(0.43 0.32), then the
resulting closed-loop system matrices are

A1 +B1L1F1 =




0.3591 0.1348 0.2387
0.2663 0.3297 0.1172
0.2703 0.4915 0.1565


 ,

A2 +B2L2F2 =




0.2999 0.3999 0.1408
0.3799 0.1999 0.3398
0.2999 0.3999 0.1877


 .

The simulation of system states is shown in Fig. 3 with the ini-
tial condition x(t0) = (4 3.5 3)T . Figure 4 shows the event-
triggering signal and Fig. 5 is the state simulations with differ-
ent initial conditions.

Fig. 3. The state simulations with x(k0) = (4 3.5 3)T

Fig. 4. The event-triggering signal
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Fig. 5. The state simulations with different initial conditions

Example 2. Consider the system (20) with

A1 =




0.48 0.1 0.49
0.28 0.31 0.29
0.31 0.45 0.33


 , B1 =




0.038 0.041
0.025 0.027
0.03 0.03


 ,

A2 =




0.3 0.4 0.25
0.38 0.2 0.47
0.3 0.4 0.32


 , B2 =




0.0027 0.0031
0.0023 0.0045
0.0028 0.0035


 .

Let E1 = diag(0.004 0.002 0.025) and E2 =
diag(0.0065 0.007 0.009). The corresponding parameters
of nonlinearities and probabilities are the same as Example 1.
In this Example, δ1 = 0.95, δ2 = 1.01, µ = 0.98, η = 0.13,
and ρ = 1.2. In subsystem 1, the probabilities of controller
perturbations are ρ

11
= 0.15, ρ11 = 0.2, ρ11 = 0.3, ρ

12
= 0.3,

ρ12 = 0.3, ρ12 = 0.35, ρ
13

= 0.45, ρ13 = 0.45, ρ13 = 0.53.
In subsystem 2, the probabilities of controller perturbations
are taken as: ρ

21
= 0.15, ρ21 = 0.15, ρ21 = 0.25, ρ

22
= 0.25,

ρ22 = 0.3, ρ22 = 0.3, ρ
23

= 0.2, ρ23 = 0.52, ρ23 = 0.55.
Choose Ld1 = diag(0.29 0.2), Lu1 = diag(0.33 0.29),
Ld2 = diag(0.41 0.28), Lu2 = diag(0.44 0.34). By Corollary 2,
we obtain

v1 =




0.6307
0.8339
0.9382


 , ζ+

1 =




0.0020
0.0020
0.0020


 , ζ−

1
=



−0.2751
−0.0030
−0.0030


,

ζ
−
1 =



−0.2731
−0.0010
−0.0010


 , ξ+

1 =




0.0020
0.0020
0.0020


 , ξ−

1
=



−0.0030
−0.0030
−0.0030


,

ξ
−
1 =



−0.0010
−0.0010
−0.0010


 , v2 =




0.6254
0.8413
0.9299


 , ζ+

2 =




0.0020
0.0020
0.0020


,

ζ−
2
=



−0.2496
−0.0348
−0.0030


 , ζ

−
2 =



−0.2476
−0.0328
−0.0010


 , ξ+

2 =




0.0020
0.0020
0.0020


,

ξ−
2
=



−0.0401
−0.0030
−0.0030


 , ξ

−
2 =



−0.0010
−0.0010
−0.0010


 .

Then, the controller gains and the gain perturbation matrices are

F1 =

(
−7.4963 −0.0332 −0.0332
−7.4963 −0.0332 −0.0332

)
,

F2 =

(
−42.7349 −5.6649 −0.1726
−42.7349 −5.6649 −0.1726

)
,

�F1 = G1H1 =

(
−0.0010 −0.0010 −0.0010
−0.0007 −0.0007 0.0007

)
,

�F2 = G2H2 =

(
−0.2765 −0.0073 −0.0073
−0.0005 −0.0005 −0.0005

)
.

Choose L1 = diag(0.32 0.25) and L2 = diag(0.43 0.3), then the
resulting closed-loop system matrices are

A1 +B1L1F1 +ρ1(k)B1L1G1H1

=




0.3120 0.0992 0.4892
0.1694 0.3095 0.2895
0.1818 0.4494 0.3294


 ,

A2 +B2L2K2 +ρ2(k)B2L2G2H2

=




0.2100 0.3881 0.2496
0.2795 0.1867 0.4696
0.2030 0.3872 0.3196


 .

Take initial condition x(t0) = (4 3.5 3)T , ρ1(k) = 3 and ρ2(k) =
2, when l = 3. Figures 6 and 7 represent the system state and
the event-triggering signal, respectively. Figure 8 shows state
simulations with different initial conditions.
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Fig. 6. The state simulations with x(k0) = (4 3.5 3)T

In this section, two examples are given to verify the effec-
tiveness of designed controllers. Example 1 studies positive
switched systems with random nonlinearities. Figure 3 shows
that the system state will eventually be 0 under the non-fragile
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Fig. 5. The state simulations with different initial conditions

Example 2. Consider the system (20) with

A1 =




0.48 0.1 0.49
0.28 0.31 0.29
0.31 0.45 0.33


 , B1 =




0.038 0.041
0.025 0.027
0.03 0.03


 ,

A2 =




0.3 0.4 0.25
0.38 0.2 0.47
0.3 0.4 0.32


 , B2 =




0.0027 0.0031
0.0023 0.0045
0.0028 0.0035


 .

Let E1 = diag(0.004 0.002 0.025) and E2 =
diag(0.0065 0.007 0.009). The corresponding parameters
of nonlinearities and probabilities are the same as Example 1.
In this Example, δ1 = 0.95, δ2 = 1.01, µ = 0.98, η = 0.13,
and ρ = 1.2. In subsystem 1, the probabilities of controller
perturbations are ρ

11
= 0.15, ρ11 = 0.2, ρ11 = 0.3, ρ

12
= 0.3,

ρ12 = 0.3, ρ12 = 0.35, ρ
13

= 0.45, ρ13 = 0.45, ρ13 = 0.53.
In subsystem 2, the probabilities of controller perturbations
are taken as: ρ

21
= 0.15, ρ21 = 0.15, ρ21 = 0.25, ρ

22
= 0.25,

ρ22 = 0.3, ρ22 = 0.3, ρ
23

= 0.2, ρ23 = 0.52, ρ23 = 0.55.
Choose Ld1 = diag(0.29 0.2), Lu1 = diag(0.33 0.29),
Ld2 = diag(0.41 0.28), Lu2 = diag(0.44 0.34). By Corollary 2,
we obtain

v1 =




0.6307
0.8339
0.9382


 , ζ+

1 =




0.0020
0.0020
0.0020


 , ζ−

1
=



−0.2751
−0.0030
−0.0030


,

ζ
−
1 =



−0.2731
−0.0010
−0.0010


 , ξ+

1 =




0.0020
0.0020
0.0020


 , ξ−

1
=



−0.0030
−0.0030
−0.0030


,

ξ
−
1 =



−0.0010
−0.0010
−0.0010


 , v2 =




0.6254
0.8413
0.9299


 , ζ+

2 =




0.0020
0.0020
0.0020


,

ζ−
2
=



−0.2496
−0.0348
−0.0030


 , ζ

−
2 =



−0.2476
−0.0328
−0.0010


 , ξ+

2 =




0.0020
0.0020
0.0020


,

ξ−
2
=



−0.0401
−0.0030
−0.0030


 , ξ

−
2 =



−0.0010
−0.0010
−0.0010


 .

Then, the controller gains and the gain perturbation matrices are

F1 =

(
−7.4963 −0.0332 −0.0332
−7.4963 −0.0332 −0.0332

)
,

F2 =

(
−42.7349 −5.6649 −0.1726
−42.7349 −5.6649 −0.1726

)
,

�F1 = G1H1 =

(
−0.0010 −0.0010 −0.0010
−0.0007 −0.0007 0.0007

)
,

�F2 = G2H2 =

(
−0.2765 −0.0073 −0.0073
−0.0005 −0.0005 −0.0005

)
.

Choose L1 = diag(0.32 0.25) and L2 = diag(0.43 0.3), then the
resulting closed-loop system matrices are

A1 +B1L1F1 +ρ1(k)B1L1G1H1

=




0.3120 0.0992 0.4892
0.1694 0.3095 0.2895
0.1818 0.4494 0.3294


 ,

A2 +B2L2K2 +ρ2(k)B2L2G2H2

=




0.2100 0.3881 0.2496
0.2795 0.1867 0.4696
0.2030 0.3872 0.3196


 .

Take initial condition x(t0) = (4 3.5 3)T , ρ1(k) = 3 and ρ2(k) =
2, when l = 3. Figures 6 and 7 represent the system state and
the event-triggering signal, respectively. Figure 8 shows state
simulations with different initial conditions.
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Fig. 6. The state simulations with x(k0) = (4 3.5 3)T

In this section, two examples are given to verify the effec-
tiveness of designed controllers. Example 1 studies positive
switched systems with random nonlinearities. Figure 3 shows
that the system state will eventually be 0 under the non-fragile

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138566 9
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Fig. 7. The event-triggering signal

Fig. 8. The state simulations with different initial conditions

event-triggered controller. Figure 5 proves the stability of the
system with different initial conditions. On the basis of Ex-
ample 1, the random controller perturbations are additionally
considered in Example 2. The simulation results prove that the
system is stable under the designed controller.

5. CONCLUSIONS
This paper designs the non-fragile event-triggered controller for
positive switched systems subject to randomly occurring non-
linearities and controller perturbations. Firstly, a non-fragile
event-triggered controller for the positive switched system is
formed by combining event-trigger mechanism and non-fragile
control. The randomly occurring nonlinearities and perturba-
tions are assumed to belong to the Bernoulli sequence and Bino-
mial sequence, respectively. To drive main results, the suitable
switched linear co-positive Lyapunov function is used to obtain
the stability and stabilization conditions of positive switched
systems. Then, the cases where the probabilities of nonlinearity
and controller disturbance in each subsystem are different are
considered.
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APPENDIX
The proof of Theorem 2:
Since Ai,Bi,Gi,F+

i , and H+
i are nonnegative vectors, then

F−
i ≺ 0 and H−

i ≺ 0. By 0 � Ldi � Lui, we get

Ai +BiLdiF+
i +BiLuiF−

i +BiLdiGiH+
i +BiLuiGiH−

i

� Ai +BiLiF+
i +BiLiF−

i +BiLiGiH+
i +BiLiGiH−

i

� Ai +BiLuiF+
i +BiLdiF−

i +BiLuiGiH+
i +BiLdiGiH−

i . (A1)

Together (7) with (A1) gives

Aix(k)+BiLiFix(k)+BiLiFixe(k)

+ρi(k)BiLi∆Fix(k)+ρi(k)BiLi∆Fixe(k))

� (Ai +BiLdiF+
i +BiLuiF−

i −ηBiLuiF+
i 1n×n

+ηBiLuiF−
i 1n×n +ρi(k)BiLdiGiH+

i +ρi(k)BiLuiGiH−
i

−ρi(k)ηBiLuiGiH+
i 1n×n +ρi(k)ηBiLuiGiH−

i 1n×n)x(k).

Since ρi(k) follows the Binomial sequence, ρi(k) can take the
value in the set {0,1,2, . . . , l}. It is easy to get

(
Ai +BiLdiF+

i +BiLuiF−
i −ηBiLuiF+

i 1n×n

+ηBiLuiF−
i 1n×n +ρi(k)BiLdiGiH+

i

+ρi(k)BiLuiGiH−
i −ρi(k)ηBiLuiGiH+

i 1n×n

+ρi(k)ηBiLuiGiH−
i 1n×n

)
x(k)

�
(
Ai +BiLdiF+

i +BiLuiF−
i −ηBiLuiF+

i 1n×n

+ηBiLuiF−
i 1n×n + lBiLuiGiH−

i

− lηBiLuiGiH+
i 1n×n + lηBiLuiGiH−

i 1n×n
)
x(k).

Together with 0 � Ldi � Li � Lui � ρLdi and (23) gives

(
Ai +BiLdiF+

i +BiLuiF−
i −ηBiLuiF+

i 1n×n

+ηBiLuiF−
i 1n×n + lBiLuiGiH−

i

− lηBiLuiGiH+
i 1n×n + lηBiLuiGiH−

i 1n×n
)
x(k)

�
(

Ai +
1
ρ

BiLdi
r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

diB
T
i vi

+

BiLui
r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

−η
BiLui

r
∑

ι=1
1(ι)r ζ+T

iι 1n×n

1T
r LT

diB
T
i vi

+η
BiLui

r
∑

ι=1
1(ι)r ζ−T

iι 1n×n

1T
r LT

diB
T
i vi

+ l
BiLdiGi

r
∑

ι=1
1(ι)r ξ−T

iι

1T
r LT

diB
T
i vi

− lη
BiLui

r
∑

ι=1
1(ι)r ξ+T

iι 1n×n

1T
r LT

diB
T
i vi

+ lη
BiLuiGi

r
∑

ι=1
1(ι)r ξ−T

iι 1n×n

1T
r LT

diB
T
i vi

)
x(k).
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Fig. 8. The state simulations with different initial conditions

event-triggered controller. Figure 5 proves the stability of the
system with different initial conditions. On the basis of Ex-
ample 1, the random controller perturbations are additionally
considered in Example 2. The simulation results prove that the
system is stable under the designed controller.

5. CONCLUSIONS
This paper designs the non-fragile event-triggered controller for
positive switched systems subject to randomly occurring non-
linearities and controller perturbations. Firstly, a non-fragile
event-triggered controller for the positive switched system is
formed by combining event-trigger mechanism and non-fragile
control. The randomly occurring nonlinearities and perturba-
tions are assumed to belong to the Bernoulli sequence and Bino-
mial sequence, respectively. To drive main results, the suitable
switched linear co-positive Lyapunov function is used to obtain
the stability and stabilization conditions of positive switched
systems. Then, the cases where the probabilities of nonlinearity
and controller disturbance in each subsystem are different are
considered.
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APPENDIX
The proof of Theorem 2:
Since Ai,Bi,Gi,F+

i , and H+
i are nonnegative vectors, then

F−
i ≺ 0 and H−

i ≺ 0. By 0 � Ldi � Lui, we get

Ai +BiLdiF+
i +BiLuiF−

i +BiLdiGiH+
i +BiLuiGiH−

i

� Ai +BiLiF+
i +BiLiF−

i +BiLiGiH+
i +BiLiGiH−

i

� Ai +BiLuiF+
i +BiLdiF−

i +BiLuiGiH+
i +BiLdiGiH−

i . (A1)

Together (7) with (A1) gives

Aix(k)+BiLiFix(k)+BiLiFixe(k)

+ρi(k)BiLi∆Fix(k)+ρi(k)BiLi∆Fixe(k))

� (Ai +BiLdiF+
i +BiLuiF−

i −ηBiLuiF+
i 1n×n

+ηBiLuiF−
i 1n×n +ρi(k)BiLdiGiH+

i +ρi(k)BiLuiGiH−
i

−ρi(k)ηBiLuiGiH+
i 1n×n +ρi(k)ηBiLuiGiH−

i 1n×n)x(k).

Since ρi(k) follows the Binomial sequence, ρi(k) can take the
value in the set {0,1,2, . . . , l}. It is easy to get

(
Ai +BiLdiF+

i +BiLuiF−
i −ηBiLuiF+

i 1n×n

+ηBiLuiF−
i 1n×n +ρi(k)BiLdiGiH+

i

+ρi(k)BiLuiGiH−
i −ρi(k)ηBiLuiGiH+

i 1n×n

+ρi(k)ηBiLuiGiH−
i 1n×n

)
x(k)

�
(
Ai +BiLdiF+

i +BiLuiF−
i −ηBiLuiF+

i 1n×n

+ηBiLuiF−
i 1n×n + lBiLuiGiH−

i

− lηBiLuiGiH+
i 1n×n + lηBiLuiGiH−

i 1n×n
)
x(k).

Together with 0 � Ldi � Li � Lui � ρLdi and (23) gives

(
Ai +BiLdiF+

i +BiLuiF−
i −ηBiLuiF+

i 1n×n

+ηBiLuiF−
i 1n×n + lBiLuiGiH−

i

− lηBiLuiGiH+
i 1n×n + lηBiLuiGiH−

i 1n×n
)
x(k)

�
(

Ai +
1
ρ

BiLdi
r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

diB
T
i vi

+

BiLui
r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

−η
BiLui

r
∑

ι=1
1(ι)r ζ+T

iι 1n×n

1T
r LT

diB
T
i vi

+η
BiLui

r
∑

ι=1
1(ι)r ζ−T

iι 1n×n

1T
r LT

diB
T
i vi

+ l
BiLdiGi

r
∑

ι=1
1(ι)r ξ−T

iι

1T
r LT

diB
T
i vi

− lη
BiLui

r
∑

ι=1
1(ι)r ξ+T

iι 1n×n

1T
r LT

diB
T
i vi

+ lη
BiLuiGi

r
∑

ι=1
1(ι)r ξ−T

iι 1n×n

1T
r LT

diB
T
i vi

)
x(k).
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By (22a), we have

Ai +
1
ρ

BiLdi
r
∑

ι=1
1(ι)r ζ+T

iι

1T
r LT

diB
T
i vi

+

BiLui
r
∑

ι=1
1(ι)r ζ−T

iι

1T
r LT

diB
T
i vi

−
ηBiLui

r
∑

ι=1
1(ι)r ζ+T

iι 1n×n

1T
r LT

diB
T
i vi

+

ηBiLui
r
∑

ι=1
1(ι)r ζ−T

iι 1n×n

1T
r LT

diB
T
i vi

+

lBiLdiGi
r
∑

ι=1
1(ι)r ξ−T

iι

1T
r LT

diB
T
i vi

−
lηBiLuiGi

r
∑

ι=1
1(ι)r ξ+T

iι 1n×n

1T
r LT

diB
T
i vi

+

lηBiLuiGi
r
∑

ι=1
1(ι)r ξ−T

iι 1n×n

1T
r LT

diB
T
i vi

� 0.

Thus, (Ai+BiLiFi+BiLi∆Fi)x(k)+(BiLiFi+BiLi∆Fi)xe(k)� 0
for i ∈ S. By Lemma 1, the positivity of the closed-loop system
(20) is proved.

Consider the same switched linear co-positive Lyapunov
function in (15), then

E{∆V (k)} ≤ E
{

xT (k)(AT
i v j +F+T

i LT
uiB

T
i v j +F−T

i LT
diB

T
i v j

+ρi(k)(H+T
i GT

i LT
uiB

T
i v j +H−T

i GT
i LT

diB
T
i v j)

+η1n×nF+T
i LT

uiB
T
i v j −η1n×nF−T

i LT
uiB

T
i v j

+ηρi(k)1n×nH+T
i GT

i LT
uiB

T
i v j

−ηρi(k)1n×nH−T
i GT

i LT
uiB

T
i v j − vi

+α2

L

∑
p=1

ℵip(k)ET
i v j)

}
.

Using (17), we have F+T
i LT

uiB
T
i v j � δ2ζ+

i , F−T
i LT

diB
T
i v j � δ1ζ

−
i

and F−T
i LT

uiB
T
i v j � δ2ρζ−

i
. By (22c) and (22d), we obtain

H+T
i GT

i LT
uiB

T
i v j ≺ δ2θ2ξ+

i ,

H−T
i GT

i LT
diB

T
i v j ≺ δ1θ1ξ

−
i ,

H−T
i GT

i LT
uiB

T
i v j � δ2ρθ2ξ−

i
.

(A2)

By (18), (21) and (A3),

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+ lρδ2θ2ξ+

i + lρδ1θ1ξ
−
i

+ lρηδ2θ21n×nξ+
i − lρηδ2ρθ21n×nξ−

i

+α2

L

∑
p=1

β̄ipET
i v j − vi

)
.

From (22b), we can get E{V (k+ 1)−V (k)} < −(1− µ)V (k).
Then, the exponentially stability of the system (1) with random
nonlinearities and controller perturbations satisfying Binomial
distribution can be proved by Definition 2. �

REFERENCES

[1] L. Fainshil, M. Margaliot and P. Chigansky, “On the stability of
positive linear switched systems under arbitrary switching laws”,
IEEE Trans. Autom. Contr., vol. 54, no. 4, pp. 897–899, 2009.

[2] T. Kaczorek, “Simple sufficient conditions for asymptotic sta-
bility of positive linear systems for any switchings”, Bull. Pol.
Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 343–347, 2013.

[3] J. Zhang, Z. Han and F. Zhu, “L1-gain analysis and control syn-
thesis of positive switched systems”, Int. J. Syst. Sci., vol. 46, no.
12, pp. 2111–2121, 2015.

[4] T. Kaczorek, “Global stability of positive standard and fractional
nonlinear feedback systems”, Bull. Pol. Acad. Sci. Tech. Sci., vol.
68, no. 2, pp. 285–288, 2020.

[5] H. Yang and Y. Hu, “Stability and stabilization of positive lin-
ear dynamical systems: new equivalent conditions and computa-
tions”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 307–
315, 2020.

[6] L. Farina and S. Rinaldi, Positive linear systems: theory and ap-
plications. John Wiley and Sons, 2011.

[7] T. Kaczorek, Positive 1D and 2D systems. Springer Science and
Business Media, 2012.

[8] J. Lam et al., Positive Systems. Springer, 2019.
[9] E. Hernandez-Vargas et al., “Discrete-time control for switched

positive systems with application to mitigating viral escape”,
Int. J. Robust Nonlinear Contr., vol. 21, no. 10, pp. 1093–1111,
2011.

[10] L. Gurvits, R. Shorten and O. Mason, “On the stability of
switched positive linear systems”, IEEE Trans. Autom. Contr.,
vol. 52, no. 6, pp. 1099–1103, 2007.

[11] E. Fornasini and M. Valcher, “Stability and stabilizability cri-
teria for discrete-time positive switched systems”, IEEE Trans.
Autom. Contr., vol. 57, no. 5, pp. 1208-1221, 2011.

[12] J. Zhang et al., “Stability and stabilization of positive switched
systems with mode-dependent average dwell time”, Nonlinear
Anal.-Hybrid Syst., vol. 9, pp. 42–55, 2013.

[13] J. Klamka, A. Czornik and M. Niezabitowski, “Stability and
controllability of switched systems”, Bull. Pol. Acad. Sci. Tech.
Sci., vol. 61, no. 3, pp. 547–555, 2013.

[14] O. Mason and R. Shorten, “On linear copositive Lyapunov func-
tions and the stability of switched positive linear systems”, IEEE
Trans. Autom. Contr., vol. 52, no. 7, pp. 1346–1349, 2007.

[15] F. Blanchini, P. Colaneri and M. Valcher, “Co-positive Lyapunov
functions for the stabilization of positive switched systems”,
IEEE Trans. Autom. Contr., vol. 57, no. 12, pp. 3038–3050,
2012.

[16] X. Liu, “Stability analysis of switched positive systems: A
switched linear copositive Lyapunov function method”, IEEE
Trans. Circuits Syst. II-Express Briefs, vol. 56, no. 5, pp. 414–
418, 2009.

[17] M. Li et al., “Nonfragile reliable control for positive switched
systems with actuator faults and saturation”, Optim. Contr. Appl.
Met., vol. 40, no. 4, pp. 676–690, 2019.

[18] J. Zhang, X. Zhao and R. Zhang, “An improved approach to con-
troller design of positive systems using controller gain decompo-
sition”, J. Franklin Inst., vol. 354, no. 3, pp. 1356–1373, 2017.

[19] R.C. Dorf, M. Farren and C. Phillips, “Adaptive sampling fre-
quency for sampled-data control systems”, IEEE Trans. Autom.
Contr., vol. 7, no. 1, pp. 38–47, 1962.

[20] P. Li et al., “Dynamic event-triggered control for networked
switched linear systems”, in 2017 36th Chin. Contr. Conf., 2017,
pp. 7984–7989.

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138566 11

ACKNOWLEDGEMENTS
This work was supported by National Natural Science Foundation 
of China (No. 62073111), the Fundamental Research Funds for the 
Provincial Universities of Zhejiang (Nos. GK209907299001-007  

and GK21990929001-002), the Natural Science Foundation of 
Zhejiang Province, China (No. LY20F030008), and the Foun-
dation of Zhejiang Provincial Department of Education (No. 
Y202044335).



11

Non-fragile event-triggered control of positive switched systems with random nonlinearities and controller perturbations

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138566

Non-fragile event-triggered control of positive switched systems with random nonlinearities and controller perturbations

By (22a), we have
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1
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BiLdi
r
∑

ι=1
1(ι)r ζ+T
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1T
r LT

diB
T
i vi
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1T
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diB
T
i vi

−
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1T
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diB
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1T
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−
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Thus, (Ai+BiLiFi+BiLi∆Fi)x(k)+(BiLiFi+BiLi∆Fi)xe(k)� 0
for i ∈ S. By Lemma 1, the positivity of the closed-loop system
(20) is proved.
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H+T
i GT

i LT
uiB

T
i v j ≺ δ2θ2ξ+

i ,

H−T
i GT

i LT
diB

T
i v j ≺ δ1θ1ξ

−
i ,

H−T
i GT

i LT
uiB

T
i v j � δ2ρθ2ξ−

i
.

(A2)

By (18), (21) and (A3),

E{∆V (k)} ≤ xT (k)
(

AT
i v j +δ2ζ+

i +δ1ζ
−
i +ηδ21n×nζ+

i

−ηδ2ρ1n×nζ−
i
+ lρδ2θ2ξ+

i + lρδ1θ1ξ
−
i

+ lρηδ2θ21n×nξ+
i − lρηδ2ρθ21n×nξ−

i

+α2

L

∑
p=1

β̄ipET
i v j − vi

)
.

From (22b), we can get E{V (k+ 1)−V (k)} < −(1− µ)V (k).
Then, the exponentially stability of the system (1) with random
nonlinearities and controller perturbations satisfying Binomial
distribution can be proved by Definition 2. �
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