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On the role of measurement repetitions in the light of the theory
of reliability of observation systems

Assuming correlation only within the results of measurement repetitions for each quantity
observed in a network, equivalence has been proved for two forms of parametric adjustment model,
which differ in the approach to measurement repetitions and are called the one-stage and the
two-stage model respectively. As a complement to the known criterion of imperceptibility of
disturbances in observations, the criterion of imperceptibility of correlation between the
components of the observation vector has been formulated, which applies to each of the modules of
the two-stage model. Assuming the structure of the observation error, being slightly developed as
compared to the standard structure, the cases of meeting of each of the above criteria in those
modules have been presented. Then, the relationship which combines measures of internal
reliability for both the adjustment models under question has been given.

INTRODUCTION

Publications, which partially or entirely concem issues of reliability of networks, or,
to say it more generally — reliability of observation systems (see e.g. Caspary 1988,
Proszynski, Kwasniak 2002) assume final results of measurements of every observed
quantity. as values, which are the entries to the model of adjustment. Those publications do
not consider the previous stage of determining those values based on the results of
measurement repetitions. To say this strictly, the usage of such a model for specifying the
measures of the internal reliability of a network, instead of a model with original results of
measurements, neglects the stage of the process of development of measurement results,
which is very important for diagnostics of gross errors. Therefore it can be expected, that
measures of reliability determined for a model, which does not contain measurement
repetitions, will not fully characterise reliability features of the complete model. We will
make an attempt to specify values of measures for the complete model, as well as to estimate
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the level and the nature of influence of measurement repetitions upon those measures.
Considerations will be performed with respect to the structure of an error of a single
observation, which is slightly developed as compared to the structure, which has been
assumed in existing methodology of reliability analyses.

1. Equivalence of one- and two-stage models in the case of lack of disturbances
in observations

Assuming that only random errors in observations occur, we will consider two fol-
lowing forms of an adjustment model, which differ in the way of treatment of
measurement repetitions for quantities observed in a network (see schematic approach,
Fig. 1):

— one-stage model (1)
Ax +e=1;e~ (0, C) (1)
LS (least squares) estimation: £, C;

— two-stage model ( II )

modules Ila
1y + Ea)i = l; Eapi ~ (0, C[a]ai) 5 i=1,..n 2)

LS estimation: $;, 035 1 = 1,...,n
module IIb
Apx e =Y ; epy ~ (0, Cppp) 3)
LS estimation: £, C;
where: i — indicator of a quantity observed in a network; ; — number of repetitions of the
measurements of the i-th observed quantity; x(ux1); § (nx1); ; (r:x1); Zri=w; IT=[IT,...,
I LT AGwxu), r(A) = u; Ay, (nxw), r(Ay) =u; 1;(rix1); C (wxw) d.o.; Cpayi (rixr) d.o;

Cy) (nxn) d.o;

Ilal a, 1
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Fig.1. Adjustment models under consideration: one-stage model (I), two-stage model (II); repetitions of
measurements of a given quantity are marked with square brackets

Assuming lack of correlation between the results of measurements of any two
observed quantities in the network, i.e. I, [; (i #j; i,j = 1,...,n) we will obtain

C = diag {Cy;} ; Cy) = diag {q};} i = L 4)
Now we will find an estimator £ for each model and its covariance matrix C;.
Model (I)
£ =(ATC'A)'ATC

where, according to (4) C = diag {C,;} i = 1,...,n
and, after transformations

n =7 n
= (Sarciva) (Sarc)
1 1

-1

C: = (A'C'A)'= (Za,f ok a,]
1

Model (I)
— modules Ila;

yA,' = (I,TC[;]I, I,‘)_I IIT C[:,}, l,‘ l = 1,...,”

o;i=Ul Cgi 1)
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— module IIb
=A% Ch Ap)" Ay Cyl §

where, according to (1), Cy,; = diag {ITCjj.1;} i=1,..n,
and, after transformations

n 1 %
1 1

< =1
C} = (A[Z] C[;ﬁ l&[b])_l = (Ea ;1-1 ‘TC[_al] i Iia,)
1

Equivalence of models I and II (the latter is a two-stage decomposition of the model
I), has been proved, allowing for correlation only within measurement repetitions for each
of observed quantities. Since, if this assumption was not fulfilled, the equivalence would
not have been achieved and we could also observe that such an assumption is the necessary
condition of decomposability of the model I into modules Ila and the module IIb.

Equivalence of both models, with respect to £ and C; should also imply consistency
with respect to estimation of random errors & We will prove it for the sub-vector
£ (=1,.,n):

é,‘z La,—,f e l,‘ = Iiaif — l,‘ + Iiy[ o= I,'yA,‘ =
=1Lyi—-bL+1i@xX—-39)=8y+ 1€y,

2. Criteria of imperceptibility of the error vector and imperceptibility
of correlation berween its components in the module Ila

The first criterion is immediately obtained basing on the well known definition of
the space of imperceptible disturbances; we will pay more attention to the second criterion,
as a new one.

a) the criterion of imperceptibility of the error vector

Basing on (Préoszynski 2000) we can immediately write

g e // (1,)@5,:1(1, k#O (5)
where ./ (1;) means the space generated by the column vector of the coefficient matrix of
the model.

This criterion is met by every error vector of identical components.

b) the criterion of imperceptibility of correlation between the components of
the error vector
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Let us consider the following, standardised form of the module Ila ;, written — for the
reason of simplicity — without the lower indices i and [a],

Lopy+teg=lgy; g — (0, Cy) (6)
where:
X Leg=Z ly=2*,
Cp=2"'CZ, 2 = (diag C)"*

The matrix Cy, is the correlation matrix for the components of the error vector &.
Let us examine, for which matrices Cg, # I the following equations hold

RC(q) =R; @)

and
TC(q) =T, (8)

where: Re(, — the matrix which transforms the vector of standardised observations [, onto
the vector of standardised corrections v ;) = — & (; (Which is the matrix of reliability in the
standardised system); T¢, — the matrix which transforms the vector of standardised
observations [, onto the unknowns 3.

The condition (7) may be written as:

Loy @iy Coy L)' 15 Cy=1¢g (5 1) 1,

After postmultiplication of both sides of the above equation by 1 [ We will immediately
obtain the consistence of both sides I, = I,.
As a result of premultiplication by I{, Cy), we will obtain

15, Cy =15, Cq - 1 o 1) 15, )
Both sides are consistent for C, such, that:

1fy Cq € M (1),
or, equivalently
1{, Cy € M (1) (10)

The condition (8) may be written as

(15 Cip 1) 1§y Cgy = Uy 1) I
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As a result of premultiplication by I, Cy) I, we will obtain the identical equation as (9),

and thus finally, the condition identical with (10). We will call it the condition of imper-

ceptibility of correlation between the measurement repetitions for /; in the module Ila ;.
To get a more detailed form of that condition, we will present it as

Iy, Cy = kI, k#0

what finally leads to

2 {Coln = Z {Colp=...= z {Cawlir (11)

Jj=1 j=1 Jj=1

i.e. to the requirement of identical sums of elements in columns (and due to symmetry
— also in rows) of the matrix Cy,.

Among matrices C, which meet this criterion, there are the matrices of identical values
of all non-diagonal elements. We will call such a case of correlation as the uniform
correlation.

In the case when repetitions are the observations of equal accuracy, it may be easily
proved that the requirement (11) applies directly to the initial matrix C, i.e.

rz {C}jl = Zr: {C}J”l_ =...= rz {C}jr (12)

j=1 j=1 i= 1

It is left for the reader to check, that the correlation between measurement repetitions, as
given in the examples of correlation matrices presented below

1 03 02 01 1 03 03 03
03 1 01 02 03 1 03 03
Co=lo2 01 1 03 Co=l03 03 1 03
01 02 03 1 03 03 03 1

is imperceptible in the model Ila, in the sense of equations (7) and (8).

3. A model of observation errors in the case of disturbances

The following structure of the vector of errors for the r; — repetitions of
measurement of the quantity /; (i = 1....,n) will be assumed for the analysis of reliability of
observation systems

e,-=£,-+c,-+g,~ (13)
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where: &; — vector of random errors, E (g;) = 0, ¢; — vector of the constant error, ¢; = ¢; 1;;
¢;— error made in each r;-th repetition of measurement, g;— vector of gross errors (made in
one or in several repetitions of measurement).

In order to ensure the decomposability of the model I, we will assume, according to (4),
that E (¢;€]) =0; i, j=1,...,n, j # i. Considering the deterministic nature of vectors ¢; and g; we
will obtain C,, = C,,

For the needs of further considerations let us assume that the vector ; has the following
structure (the lower indices i will be neglected in this notation)

e =Ko (14)

where: 0 (w X 1) — vector of the elementary, mutually non-correlated random errors;
E(6;)=0,Var (6;)=0},j=1,...w,w2r; K (r xw) — matrix of coefficients, rank (K) =r.
Now we will write

C.=C.,=KC;K’ (15)

4. Imperceptibility of disturbances in measurement repetitions and imperceptibility
of correlation between measurement repetitions in the module Ila

Let us check, which of the vectors being the components of the error vector e (see
formula (13)) are imperceptible in the module Ila.

We will immediately notice, that such a vector is the vector of constant error
¢, since ¢ = cl,.

Now we will show, that it is also possible, at least from theoretical point of view, that
there may occur the imperceptible component of the vector e of the random nature. Since if
the following form of the structure of the vector ¢ is assumed

&= 6(/‘) i 6r+11(r)

where 0 ., is a random error, which burdens every of the r repetitions of measurement,
what corresponds to the matrix K in the formula (14)

K=[I () I(,)], (16)

we will obtain the random vector ¢ .., I (5, which is imperceptible in the module IIa.

It turns out from the specifics of repeating the measurement of the quantity Z;, that most
probably this creates a system of equally accurate observations, with the same values of
correlation coefficient for each pair of observations. It is the case of uniform correlation,
where the covariance matrix of the observation vector has the form:
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a b b

C, = b a - b
b

b b b a

where: a = V(g)), b =cov(e;, &), k=1, 2,...r, j # k.

As it turns out from the discussion in section 3 such correlation is imperceptible in the
module IIa and, therefore, the measures of internal reliability can be calculated basing on
the formulas for uncorrelated observations.

Analysis of the case K= [I,; 1] under the assumption that 0, =0, =... =0, =0, leads
to a similar conclusion. Since, using the formula (15) we obtain

s e 2 2
Ce - Cz =0 I(r) + 0r+ll(r><r)a

what means uniform correlation, i.e. correlation which is imperceptible in the module IIa.

As might be expected, the correlation of components of the vector &, generated
by the random vector d,., 1, being imperceptible in the module Ila, is also imperceptible
in this module.

5. Relations between global measures of reliability for the one- and two-stage models

In order to simplify relationships searched for we will assume that:
— measurement repetitions are considered as non-correlated observations (see con-
siderations concerning imperceptibility of correlation in section 4);
— numbers of repetitions in each module are the same (r; =r, = ...=r, =7r);
— the observation system (e.g. the network) is a uniform structure with respect to reliability
(the average global measure = the local measure).
The expression which specifies the average global measure for a one-stage model will
have the form:

u
J=1= a7
r-n
We may transform it to the form:
1 1 I 1
15 RN L P P PRE.1, .11
r r-n r r r n

1
where: 1 — —= f|, 1s the reliability measure in each of Ila modules of the two-stage model,
r
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P = fp 1s the reliability measure in the module IIb of the two-stage model,
n

thus

1
f=fa+—=fu,
r

or, showing components of a single observation error, which correspond to those
measures (i.e. those components the level of control of which in the model is
determined by the given measure)

1
(&) = fa(8) + ;f[b} (c) (18)

and, more precisely

1
f(®)=fa(®+ “fule+ Or41) 19)

Now, let us have a more detailed look at those simple relationships, using Fig. 2. We
may state, that — with the one-stage model (i.e. the model I) — in the case of lack of the
constant error ¢ (or ¢ + 0,,;) we will obtain the satisfactory level of controllability of
a single observation /; for the values of r starting from 2 (f = 0.63), even for a network
of low level of the internal reliability (f,; = 0.25). This is the effect of measurement
repetitions, which increase the total number of observations, which control the given
observation /;. However, considering the possibility of occurrence of the error ¢, attention
should be paid to the appropriate level of controllability of observations with respect to error
g as well as the error c. As a result, the two-stage model with the appropriate number of
measurement repetitions (r = 2 or, more preferably, r = 3) is definitely preferred.
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Fig. 2. Relationships between internal reliability measures for the one-stage (f) and two- stage (f(., f15)) models
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Using such a model, we have lower detectability of the error g in every module Ila, but
— on the other hand — such modules are not sensitive to the constant error ¢, which may
occur at the same time. The error ¢ is perceptible in the module IIb and with sufficiently high
level of the measure f; (c) it may be the quantity detectable in the model. Due to the fact,
that the components of the equation (18) (or (19)) relate to errors of different nature and
consequently, this equation may be used for orientation purposes only, it would be
recommended to represent the internal reliability level for the two-stage model in the form
Sun=fa)mins f 161 min)s €.8- fry = (0.67; 0.70). The criterion f ) min > 0.5 should be obligatory for
each component.

CONCLUSIONS

Considering the structure of an observation error, assumed in this paper, as
characteristic for practical purposes, we will state, that — from the point of view of the
reliability theory — the two-stage model is more advantageous than the one-stage model. As
aresult of transfer of the constant error ¢ to the module IIb, due to its imperceptibility in the
module Ila, the possibility of superposition of errors ¢ and g, what might occur in the
one-stage model, is considerably reduced. It is an additional argument which justifies the
solution, which has been practically used for many years, but has been mainly the result of
consideration of economy of calculations.

The approach to reliability analysis, presented in this paper, forms the basis for some
general guidelines, which widen the existing methodology of reliability analysis for obser-
vation systems. The guidelines are as follows:

— if possible, the detailed structure of an observation error should be taken into conside-
ration (which includes the regular random part and gross errors); the level of details
of the analysis is obviously limited by the possibility to determine the nature and specifics
of influence of the factors, which may effect the accuracy of measurements, as well
as by the intention not to complicate the model form, both in the functional as well
as the stochastic layer;

— one should examine the usefulness and possibility of decomposing the process of
development of measurement results, with a view to specific features of an observation
error. In the case of such decomposition an appropriate level of internal reliability should be
ensured for each module. The occurrence of correlation between the repetitions of
measurement of various quantities excludes the possibility to use the two-stage model,
which is an advantageous model in respect of the efficiency of outlier detection.

For many practical situations, the detailed analyses concerning the structure of the
observation error may be considered the subject of an academic discussion, since it is often
difficult to identify the error structure and to estimate its stochastic parameters.
Imperceptibility of correlation between measurement repetitions, which occurs in the case
of highly probable uniform correlation (due to specific nature of repetitions), is of great
help. In such a case there is no need to generate the covariance matrix for the observation
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vector. At the same time, it is a strong justification for practical use of the arithmetic mean
of results of repetitions, although they are actually intercorrelated.
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O roli powtérzen obserwacji w Swietle teorii niezawodnosci ukladéw obserwacyjnych

Streszczenie

W publikacjach po$wieconych problematyce niezawodnoici ukladéw obserwacyjnych, jako wielkosci
zasilajace model wyréwnawczy przyjmuje si¢ ostateczne wyniki pomiaru kazdej z wielkosci obserwowanych, nie
zajmujac si¢ uprzednim etapem ustalania tych warto$ci z reguly poprzez usrednianie wynikéw powtdrzen
obserwacji. Patrzac z punktu widzenia teorii niezawodnosci mozna oczekiwaé, ze miary niezawodno$ci
wyznaczone dla modelu nie uwzgledniajacego faktu powtarzania obserwacji nie beda w petni charakteryzowaty
wiasnosci niezawodno$ciowych modelu peinego. W niniejszym opracowaniu podjeto prébe ustalenia wartoSci
miar dla modelu pelnego, jak tez oszacowania wielko$ci i charakteru wptywu jaki na ich ksztaltowanie maja
powtdrzenia obserwacji.

Zakladajac skorelowanie jedynie pomiedzy wynikami powtdrzen pomiaru kazdej z wielkosci obser-
wowanych w sieci, wykazano rownowazno$¢ dwu, rézniacych si¢ sposobem traktowania powtérzefi pomiaru,
postaci pelnego modelu wyréwnawczego, nazwanych modelem jednoetapowym i modelem dwuetapowym.
W uzupelnieniu do znanego kryterium niedostrzegalnosci zaburzefi w obserwacjach sformulowano kryterium
niedostrzegalnosci skorelowania skladowych wektora obserwacji, stosujace si¢ do kazdego z moduléw
usredniania wynik6w powtérzefi pomiaru w modelu dwuetapowym.

Kryterium to sprowadza si¢ ostatecznie do postaci

r r

D iCaln= D ACalp=- .= Z{CW},,

j=1 j=1 JE=i

oznaczajacej wymog identycznych sum wyrazéw w kolumnach (a wobec symetrii — takze i wierszach) macierzy
korelacyjnej C,.
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Przyjmujac strukture wektora bledéw r; — powtérzeii pomiaru wielkosci /; (i-ty modut)
ei=¢+ci+g

gdzie: & — wektor bledoéw przypadkowych, E (g;) = 0, ¢; — wektor bledu stalego, ¢; = ¢;I;; ¢; — blad popetniony
w kazdym z r; powtérzefi pomiaru; g; — wektor bledéw grubych (popetnionych w jednym badZ w kilku
powtérzeniach pomiaruy).
pokazano przypadki spelnienia kazdego z ww. kryteriéw.
Przy upraszczajacych zatozeniach wyprowadzono zalezno$¢

1
f(©) =fla(®) +~fu()
r

wiazaca wskazniki niezawodnoS$ci wewnetrznej: fiq(g), fin (¢) — dla modelu dwuetapowego oraz f(g) — dla
modelu jednoetapowego. Indeks dolny [a] oznacza modul usredniania r wynikéw powtdrzedi pomiaru i-tej
wielkosci obserwowanej, zas [b] — modut wyréwnawczy zasilany wynikami uzyskanymi ze wszystkich modutéw
[a]. W nawiasach zwyktych uwidoczniono skladniki bledu pojedynczej obserwacji, stopien kontrolowalnosci
ktérych okresla dana miara.

W zakonczeniu podano wskazania natury ogdlnej rozszerzajace dotychczasowa metodyke analiz niezawod-
nosci uktadéw obserwacyjnych.

Bumonows IpyubiHbcku

O poau NOBTOpeHHH HA0IIIeHHH
B CBeT/Ie TEOPHH HAJEKHOCTH HA0/II01aeMbIX CHCTEM

PeswomMme

B nyGnukauusx 3aHHMAIOLIMXCS BOMPOCAMH HANEXKHOCTH HAOMIONAEMBIX CHCTEM, KaK BEJIMYHHBI
MOAKPEIUISIOMHE YPAaBHUTENBLHYIO MOJENbL NPHHUMAETCSl KOHEYHBIE PE3yabTaThl H3MEDEHHUSI KaXI0H
¢ HabmogaeMBbIX BEJIMYMH, HE 3aHHMAsIChb NMPEALIAMNYLIMM 3TaloM ONEPEAESICHUS] 3THX BEJIMYUH, KaK
NpPaBHJIO MYTEM YCPENHEHHS pe3yJIbTaTOB INOBTOpeHui Habmomenuit. C TOYKH 3PEHHUS TEOpPHH
HAOEKHOCTH MOXHO OXMAATb, YTO Mepbl HAIEXHOCTH OMpEAENEHHbIE IUISL MOIOEM, KOTOpas, He
yduTHBaeT hakTa NOBTOpPEeHHH HabmoneHuit, He OyAyT B HOJHOM XapaKTEPHU30BAaTh IPH3HAKOB
HAOE&XHOCTH MOJHOH Monesnu. B paGoTe npuHsTa NONbLITKA ONpeneaeHuss Mep AN MOJIHOH MOMENH,
a TaKKe OLEHKH BEJMYMHBI U XapaKTepa BJIMSIHHS MOBTOpPEHNMi HabmoaeHni Ha ux GOpMHPOBaHHeE.

[TpuHHUMas, YTO KOPPEJSIUHUS NPOUCXOOUT HCKIIOUHTELHO MEXIy pe3ylbTaTaMH IMOBTOPEHHI
M3MEPEHHA KaXI0i U3 BEJIMUMH HabI0AaeMBIX B CETH, YKa3aHa 3KBUBAJIEHTHOCTD ABYX, OTJIHYAIOLIMXCS
cnocoboM noaxona MOBTOPEHMH HM3MEpEHHH, BUIOB IMOJIHOH YPAaBHHTEJLHOH MOIEH, Ha3HBAEMbBIX
OZHOITANMHOM M OBYX3TanHOH Meaesneid. B OOMONHEHMH K HM3BECTHOMY KDHUTEPHH HE3aMETHOCTH
BO3MYILHMH B HaOmoneHHsx Obul cHOPMYTHPOBAH KPUTEPHI HE3AMETHOCTH KOPPEIALUH KOMIIOHEHT
BEKTOpa HaOMIOAEHHH MOAXOMSIIMHA [UISl KaKAOH M3 MOOYIH YCPEJHEHHS! pe3yIbTaTOB MOBTOPEHMs
Y3MEDPEHHH B ABYX3TAOHOH MOJEIIH.

DTOT KPHUTEPHH CBOAMTCS B KOHEYHOM CHETE K opmyie
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r r T

D Cati= D {Cala=- .= D {Culs

=1 J=1 Jj=1

obo3nayaloulei TpeGoBaHHE HACHTHYHBIX CyM WIEHOB B CTOJ0OLAX (& B MPHUCYTCBHH CUMMETPHH, TOXE
H B CTPOKax) KOppessuHOHHOi MaTpulbl Ce,).
[TpuHHMas CTPYKTYpPY BeKTOpa OWHOOK r; — MOBTOPCHMH M3MEPEeHHs BEJIMYHH [; (-T2 MOZYJ)

e, =¢&+cC t+g

rae: & — BEKTOP CiydaHHbIX OWHOOK, E(e;) = 0; ¢; — BEKTOP MOCTOSHHON OWHOKH, ¢; = ¢.l; ¢; — owmndkKa
COBEPIIEHA B KAXXIOM H3 r; TOBTOPEHHI M3IMEDPEHHUS; g — BEKTOP NPOMAxXoB (COBEPIIEHLIX B OHUM HJIH
B HECKOJILKHX MOBTOPEHHUSIX H3MEPEHH);

YKa3aHo Ciydai yIOBJIETBOPEHHS KaXIOTO M3 BBLILIEYNOMSHYTLIX KpuTepuil. [Ipunnmas ynpouwaroume
NpEANoOCLUTKH Oblia BLIBEAEHA 3aBUCHMOCTD

1
f(g) = fia(g) + _rf[b] (¢),

KOTOPpast CBSI3bIBAET YKAa3aTEJIU BHYTPEHHEN HANEXHOCTH: fq)(g), fir)(C) — [JI ABYX3TANHON MOAEIH H f(g)
— ans oaHo3TanHoi mMoaenu. Hikuuil umuaekc [a] o0o3HawaeT MOAyNb YCPEAHEHUS pe3yIbTaTOB
NOBTOPEHHI H3MepeHHsa i-TOoH HabmomaeMol BenMuuMHbl a [b] — ypaBHHUTEIBHBIH MOIYJb,
NOAKPENIAEMBbIH PE3yIbTaTaMH MOJy4€HHBIMH €O BeeX MoayeH [a]. B oObrHbIX ckOOKax MpeacTaBIeHbl
COCTaBJISAIONIIHE OMUOKH OTAENLHOrO HaOI0AEHHS, CTENEHb BO3MOXKHOCTH KOHTPOJIHPOBAHHU S, KOTOPLIE
onpenenseT AaHHAsA Mepa.

B 3axTi04e HHH MpeACTaBIeHbl PEKOMEHIALHH OOIIEro BUAA, PACIPOCTPAHSIOLIHE TPUMEHSIEMYIO 10
CHX MOp METOAMKY aHa/lIH3a HaAEKHOCTH HAOI04aTeNIbCKUX CHCTEM.



