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Abstract Reliable knowledge of thermo-physical properties of materials
is essential for the interpretation of solidification behaviour, forming, heat
treatment and joining of metallic systems. It is also a precondition for precise
simulation calculations of technological processes. Numerical calculations
usually require the knowledge of temperature dependencies of three basic
thermo-physical properties: thermal conductivity, heat capacity and density.
The objective of this work is to find a correlation that fits the thermal
conductivity of selected steel grades as a function of temperature (within
the range of 0–800◦C) and carbon content (within the range of 0.1–0.6%).
The starting point for the analysis are the experimental data on thermal
conductivity taken from literature. Using the method of least squares it was
possible to fit an equation which allows calculating the thermal conductivity
of steel depending on the temperature and carbon content. Two kinds of
equations have been analyzed: a linear one (a linear model) and a second
degree polynomial (a non-linear model). The thermal conductivity obtained
by linear and nonlinear models varies on average from the measured values
by 3% and 2.6% respectively.
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Nomenclature
A – cross-sectional area, m2

k – thermal conductivity, W/(m·K)
kel – electron thermal conductivity, W/(m·K)
kph – phonon thermal conductivity, W/(m·K)
L0 – Lorenz number, Ω·W/K2

Q – heat flux rate, W
R2 – coefficient of deretmination
T – absolute temperature, K
t – temperature, ◦C
xC – carbon content
m, n – constants form Eq. (4)
km – measured thermal conductivity, W/(m·K)
kc – calculated thermal conductivity, W/(m·K)

Greek symbols

α′, α′′, β – constants form Eq. (4)
γ – parameter dependent on the atomic concentration of point defects
δ – constant form Eq. (6)
σ – electrical conductivity, 1/(Ω·m)

1 Introduction

Reliable knowledge of thermo-physical properties of materials is essential
for the interpretation of solidification behaviour, forming, heat treatment
and joining of metallic systems. It is also a precondition for precise simula-
tion calculations of technological processes. Numerical calculations usually
require the knowledge of temperature dependencies of three basic thermo-
physical properties: thermal conductivity, heat capacity, and density.

In many situations, in order to plan and control different production
processes, it is necessary to know the thermal conductivity of different
materials. This parameter is responsible for the magnitude of thermal loads
which occur in components during production. One of such processes is the
heat treatment of steel products [1, 2].

Thermal conductivity is the property that characterizes the ability of
a material to conduct heat, and it is defined as the rate of heat trans-
fer through a unit thickness of the material per unit area and per unit
temperature gradient imposed normal to the unit area [3]

Q = −kAdT
dx

, (1)
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where Q is the heat flux rate, k is the thermal conductivity, A is the cross-
sectional area perpendicular to the direction of heat flow, and dT/dx is the
temperature gradient.

Because this parameter pertains to the transfer of energy within the
system, it is a nonequilibrium (transport) property, usually determined in
experiments utilizing the Fourier law for unidirectional heat transfer [4].
Measuring thermal conductivity requires the development of experimental
approximations of boundary value problems. Analytical solutions to many
classical problems that can be useful in the measurements of thermal con-
ductivity are described in [5]. Descriptions of methods used for thermal
conductivity measurements can be found in [6, 7]. Direct measurements
of the k coefficient have usually used steady-state methods. For materials
like steel of moderate to high thermal conductivity (k > 10 W/(m·K)),
axial heat flow, radial heat flow and direct electrical heating methods are
used [8]. Detailed descriptions of measurements of steel and other alloys
can be found in [9–13].

The results of experimental investigations show that the thermal con-
ductivity is a function of the state, composition, purity, and physical struc-
ture of the material. But first of all this property depends strongly on the
temperature. In the case of anisotropic materials, the thermal conductivity
varies with the heat flow direction. Generally, it is also assumed that the
conductivity is independent of the size and shape of the material. However,
this assumption is not valid when the size of the conductor is comparable
to the mean free path of the thermal energy carriers [14].

Metals, in which thermal conduction is caused mainly by the movement
of free electrons and to a much lesser extent by atomic vibration of the
crystal structure with energy quanta called phonons, are characterized by
the biggest coefficients of thermal conductivity. Therefore, it is assumed
that the metal’s thermal conductivity is a sum of the electron thermal
conductivity, kel, and phonon thermal conductivity, kph, [15, 16]

k = kel + kph . (2)

In high-purity metals, the mechanism of heat transport by electrons is more
efficient than the phonon contribution because electrons are not as easily
scattered as phonons and have higher velocities [17]. Alloying metals with
impurities result in a reduction in electron thermal conductivity because
alloying additives reduce the mean free path of electrons.

Since the electron thermal conductivity is caused by the movement of
the same energy carriers as electric conduction, the electrical conductivity
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and electron thermal conductivity of metals can be related by equation [18]

L0T = kel
σ
, (3)

where: kel – electron thermal conductivity, σ – electrical conductivity, T –
absolute temperature, L0 – the Lorenz number – a constant for all metals
with a theoretical value of 2.44×10−8 Ω·W/K2. Dependence (3) is a math-
ematical notation of the Wiedemann-Franz law, which says that the kel/σ
quotient is the same for different metals at a constant temperature. Accord-
ing to the theory of thermal conductivity of metallic materials, the electron
thermal conductivity can be described by the following correlation [9]:

kel = 1
α′Tn + β

T

, (4)

where

α′ = αn
(

β

nα′′

) m−n
m+1

, (5)

and α, m, n are constants for a given metal – for most metals, the value of
n lies between 2.0 and 3.0. The β parameter is defined as the ratio between
the residual electrical resistivity and the Lorenz number.

For pure metals, the phonon coefficient of thermal conductivity is much
smaller than the electron coefficient. However, for alloys the above men-
tioned coefficients can be of the same order of magnitude. The number of
phonons in a unit of volume is directly proportional to the temperature,
so the length of the free path of phonons and the phonon thermal conduc-
tivity of pure metals is inversely proportional to the absolute temperature.
With a big number of additives the coefficient kph practically does not de-
pend on the temperature. For alloys with a lower quantity of additives, this
coefficient can be described with the following equation [19]:

kph = γ

T δ
, (6)

where γ is the parameter dependent on the atomic concentration of point
defects, and the exponent parameter δ has values between 0.5 (at high
temperatures) and 2.0 (at low temperatures).

For alloys, the dependence of the k coefficient on its composition is not
governed by general rules. The only thing that can be stated is that adding
even a little amount of a poorly conductive metal to a metal with a high
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thermal conductivity results in a dramatic decrease of the thermal con-
ductivity of the whole alloy, while adding a small quantity of metal with
a significant k value to a metal with a small k coefficient does not cause any
substantial improvement of thermal conductivity. The thermal conductivity
of steel depends on the temperature and its composition and generally is
within the range from 14 W/(m·K) for highly alloyed steels to 75 W/(m·K)
for Armco iron. The biggest differences in thermal conductivity among dif-
ferent steel grades exist at room temperature. For carbon steels, the k co-
efficient decreases with increasing temperature, but for high-alloy grades,
it slightly increases with increasing temperature. At higher temperatures
when austenite forms all the steel grades have a similar thermal conductiv-
ity in the range of 25–27 W/(m·K) [20]. The data on the thermal conduc-
tivity as a function of temperature for a number of different steel grades
can be found in [21–24].

Although the process of thermal conduction in metal alloys is a very
complex phenomenon, attempts have been made to develop methods of
determining the value of the k coefficient analytically depending on the
composition and temperature. There are different approaches that can be
adopted. For example [25] presents a model using the neural network tech-
nique based upon the Bayesian statistic framework. In another approach
to determining the thermal conductivity of metals as a function of temper-
ature, the multilinear regression model has been found [18].

Current practice in the analysis of heat transfer problems requires the use
of computer programs [3,26]. This applies also to the phenomena connected
with heat treatment of metal products [27–30]. The algorithms which occur
in such programs should take into account the changes of thermal conduc-
tivity of the analysed materials with temperature. The simplest way to
achieve it is by implementing suitable mathematical dependencies which
describe the changes of the k coefficient in the function of temperature
with the required accuracy.

The aim of the present paper is to determine (based on the literature
data) the mathematical dependence that will allow calculating the thermal
conductivity of carbon steel depending on the temperature and carbon
content. The method of least squares has been used for the analysis.

2 Method and results
As already mentioned, tabular data on the thermal conductivity of low-
carbon steels can be found in many books [21–24]. However, the most con-
sistent data in this respect, which were chosen for the present analysis,
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have been shown in [31]. These values have been obtained on the basis of
experimental research and have been collated in Table 1. They include five
grades of steel with the carbon content from 0.1% to 0.6% for the temper-
ature range 0–800◦C.

Table 1: Thermal conductivity of carbon steel depending on temperature and carbon
content [31].

Temperature, ◦C
Carbon content, %

0.1 0.2 0.4 0.5 0.6

0 59.5 51.3 48.0 45.2 49.2
100 57.6 50.8 47.2 44.7 46.4
200 53.4 48.3 46.5 42.6 43.8
300 49.3 44.6 43.8 40.2 40.6
400 43.7 42.6 41.0 37.2 37.6
500 40.2 39.2 38.4 34.3 34.9
600 36.0 35.4 36.0 31.9 32.2
700 31.8 31.8 31.4 28.2 29.1
800 28.5 27.4 26.7 23.7 24.2

For each grade of steel, a diagram showing changes in thermal conductivity
within the analysed temperature range has been drawn (Figs. 1–5). The
values of the k coefficient have been marked as black points. It has been

Figure 1: Thermal conductivity of steel with the carbon content of 0.1%
(measurement data and fitting functions).
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assumed that these values are burdened with a 5% uncertainty of measure-
ment, which has been marked in the diagrams with error bars. Such a value
is typical for thermal conductivity measurements [32–34].

Figure 2: Thermal conductivity of steel with the carbon content of 0.2%
(measurement data and fitting functions).

Figure 3: Thermal conductivity of steel with the carbon content of 0.4%
(measurement data and fitting functions).

The next step was seeking a function that approximates changes of the
k coefficient depending on the temperature, with the use of the method
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Figure 4: Thermal conductivity of steel with the carbon content of 0.5%
(measurement data and fitting functions).

Figure 5: Thermal conductivity of steel with the carbon content of 0.6%
(measurement data and fitting functions).

of least squares [35]. In the study, two fitting equations have been used,
a linear equation

k(t) = A0 +A1t (7)

and a second degree polynomial

k(t) = B0 +B1t+B2t
2. (8)
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Values of the Ai and Bi coefficients obtained for particular grades of steel
as a result of the fitting have been collated in Table 2 (coefficients A0 and
A1) and Table 3 (coefficients B0, B1 and B2). The tables also present values
of the coefficient of determination R2. For both of the analysed functions,
the obtained values were close to 1 (the smallest value of R2 was 0.95),
which shows that they fit the calculated values to the measured values
well. Nevertheless, a polynomial provides a better fit, which is confirmed
by Figs. 1–5.

Table 2: The values of A0, A1, and R2 coefficients obtained for particular steel grades.

Carbon content, % A0 A1 R2

0.2 60.81 –0.040 0.955
0.2 53.52 –0.031 0.980
0.4 50.49 –0.026 0.950
0.5 47.29 –0.027 0.975
0.6 49.61 –0.030 0.995

Table 3: The values of B0, B1, B2, and R2 coefficients obtained for particular steel grades.

Carbon content, % B0 B1 B2 R2

0.2 60.59 –0.039 –2.26×10−6 0.995
0.2 51.86 –0.016 –17.8×10−6 0.997
0.4 48.11 –0.006 –25.5×10−6 0.997
0.5 45.61 –0.013 –18.0×10−6 0.997
0.6 49.00 –0.025 –6.47×10−6 0.997

The next step of the analysis was to determine the equation which would
allow calculating thermal conductivity both in the function of temperature
and carbon content xC . In order to do that it was necessary to determine
the dependences which describe the changes of coefficients Ai (Eq. (7),
i = 0, 1) and Bi (Eq. (8), i = 0, 1, 2) in the function of the xC parameter.
The values of coefficients Ai and Bi from Tables 2 and 3 in the function
of carbon content have been presented in individual diagrams (Figs. 6–10).
On the basis of these diagrams, again using the least squares method, the
functions which best approximate the changes of these coefficients have
been determined. For all of the five coefficients, the best function turned
out to be a second degree polynomial. The forms of these polynomials for
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individual coefficients are described by Eqs. (9)–(13):

A0(xC) = 80.54x2
C − 77.88xC + 67.17 , (9)

A1(xC) = −0.14x2
C + 0.116xC − 0.049 , (10)

B0(xC) = 112.51x2
C − 100.85xC + 68.89 , (11)

B1(xC) = −0.42x2
C + 0.318xC − 0.065 , (12)

B2(xC) = 334.05x2
C − 247.27xC + 18.59 . (13)

Figure 6: The values of A0 coefficient from Eq. (7) depending on the carbon content xC

and the approximating function.

Figure 7: The values of A1 coefficient from Eq. (7) depending on the carbon content xC

and the approximating function.
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Figure 8: The values of B0 coefficient from Eq. (8) depending on the carbon content xC

and the approximating function.

Figure 9: The values of B1 coefficient from Eq. (8) depending on the carbon content xC

and the approximating function.

It must be emphasized that Eqs. (9)–(13) describe the changes of the given
coefficient within the whole range of temperature, i.e. in 0–800◦C and there-
fore they do not refer to a specific value of temperature.

The last stage of developing the sought equation was replacing the Ai
coefficients in Eq. (7) with expressions given in Eqs. (9) and (10) and the Bi
coefficients in Eq. (8) with expressions given in Eqs. (11)–(13), respectively.
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Figure 10: The values of B2 coefficient from equation (8) depending on the carbon content
xC and the approximating function.

Thanks to this it was possible to obtain a function that allows calculating
the thermal conductivity of carbon steel for any temperature (within the
range 0–800◦C) and any percentage value of carbon content (within the
range 0.1–0.6%). In case the changes of the k coefficient are approximated
by the linear function this equation has the following form:

k(xC , t) = 80.54x2
C − 77.88xC + 67.17

−
(
0.14x2

C − 0.116xC + 0.049
)
t , (14)

where t is the temperature of material in ◦C.
However, when the approximation is realized with the use of the sec-

ond degree polynomial (the nonlinear model) the following dependence is
obtained:

k(xC , t) = 112.51x2
C − 100.85xC + 68.89 −

(
0.42x2

C + 0.318xC + 0.065
)
t

+
(
334.05x2

C − 247.27xC + 18.59
)

· 10−6 t2. (15)

In order to determine the quality of results obtained with the use of Eqs. (14)
and (15) they have been compared with the measured values from Table 1
with the use of the relative percentage difference

∆k = km − kc
km

× 100% , (16)
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where: km – the measured value of the thermal conductivity, kc – the value
of the thermal conductivity calculated with the use of Eqs (14) or (15).

The values of ∆k obtained when the kc coefficient was calculated with
the use of Eq. (14) have been collated in Table 4. As can be seen, in the
vast majority of cases the obtained values were lower than 5%. A value
which exceeded 10% has been obtained for only one case, which concerns
the temperature of 800◦C and the carbon content of 0.5% for which the
value of ∆k was 16.27%. The last two rows present values of ∆k averaged
with regard to temperature. For three values of the xC parameter (0.1, 0.2,
and 0.6) the obtained results were below 2.8%, however for the other two
cases (0.4 and 0.5) about 4.5%. Upon averaging the ∆k parameter for the
whole range of xC the obtained value of ∆k was 3.07%.

Table 4: Values of the ∆k parameter depending on the temperature and carbon content
calculated with the use of the linear model (Eq. (14)).

∆k, %
Temperature, ◦C Carbon content, %

0.1 0.2 0.4 0.5 0.6

0 1.15 6.85 1.87 6.98 0.46
100 2.25 1.72 1.70 2.36 0.10
200 1.83 0.48 5.60 1.30 0.77
300 1.53 1.77 5.49 0.88 0.28
400 2.21 0.82 5.13 2.03 0.25
500 1.46 0.23 5.22 3.08 1.08
600 2.52 1.61 5.84 2.68 2.04
700 3.85 3.24 0.01 6.93 1.84
800 2.26 8.36 8.23 16.27 5.72

Mean 2.12 2.79 4.34 4.72 1.39
3.07

Table 5 presents values of ∆k obtained when the kc coefficient was calcu-
lated with the use of Eq. (15). Only one value exceeds 10%. For xC equal
to 0.1 and 0.2 the values of ∆k are equal to 1.5%, for 0.5–1.9%, and for the
two other cases (0.4 and 06) it is equal to 4.1%. The average value of ∆k for
this case in relation to xC is equal 2.63%. It is about 0.5% less than for the
linear model. Therefore, the nonlinear model is slightly more accurate than
the linear model. However, for xC = 0.6% the value of ∆k is bigger than
the value obtained for the linear model (∆k = 1.39%). Therefore, for steel
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with the biggest carbon content, the linear model provides more accurate
values of the k coefficient.

Table 5: Values of the ∆k parameter depending on the temperature and carbon content
calculated with the use of the nonlinear model (Eq. (15)).

∆k, %
Temperature, ◦C Carbon content, %

0.1 0.2 0.4 0.5 0.6

0 0.72 3.74 3.02 3.08 0.65
100 2.50 0.82 3.07 1.17 0.49
200 2.00 1.17 4.49 1.95 1.20
300 1.72 3.50 2.89 2.49 1.02
400 1.86 1.19 2.14 3.62 1.84
500 0.80 1.29 3.20 3.37 4.18
600 1.31 1.56 6.43 0.12 7.51
700 1.78 0.15 5.54 0.75 10.88
800 1.04 0.02 6.00 0.38 9.52

Mean 1.53 1.49 4.09 1.88 4.14
2.63

The values of ∆k obtained both for the linear model (Table 4) and nonlinear
model (Table 5) show that the results of thermal conductivity calculations
performed with the use of both models are burdened with a smaller er-
ror than the uncertainty of the measured values from Table 1. Therefore,
the developed equations can be successfully used in engineering calcula-
tions connected with transient thermal conductivity through steel elements
within the temperature range 0–800◦C. Moreover, the developed equation
can be used in modelling the effective thermal conductivity of a steel porous
charge. Such models have been described in [36,37].

3 Summary
The regression equations which have been determined on the basis of the
performed analyses provide an easy way to calculate the value of thermal
conductivity for steel with the carbon content from 0.1 to 0.6% within
the temperature range 0–800◦C. The accuracy of the calculated values is
absolutely sufficient from the point of view of engineering calculations. The
determined functions can be used for numerical analysis of the heating of
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a steel charge connected with heat treatment process optimization. The
presented equations allow taking into account temperature changes of the
thermal conductivity coefficient of the given steel grade in a numerical
model of non-stationary heat transfer based on the energy balance method.
The developed equations can be used in modelling the effective thermal
conductivity of a steel porous charge.

Received 17 February 2022
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