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Abstract
The paper presents the type A evaluation of standard uncertainty when the result of measurement is
determined by digital averaging of the input signal which is distorted by simultaneous influence of the random
uncorrelated noise and power line interference. It was shown that the classical evaluation of uncertainty
based on determining of the standard deviation of input observations is not sufficient, because it does not
take into account the effect of suppression of the interference by averaging. To correctly evaluate uncertainty,
both the amplitude of the interference component and the standard deviation of the random component
should be estimated separately. Simple methods of separate estimation of these components are proposed
and analysed in detail. The proposed solutions to the uncertainty evaluation were studied when uniform and
triangle averaging were used and verified both by Monte Carlo simulations and by experimental tests. The
simulation and test results obtained showed very good accordance with theoretical results.
Keywords: uncertainty, averaging, power line, interference, noise.

1. Introduction

The classical approach [1] to the evaluation the Type A uncertainty takes into account the
influence of random noise (usually uncorrelated). The standard uncertainty is determined by the
well-known expression [1]:

𝑢𝐴 (𝑋) =
𝑠𝑥√
𝑛
, (1)

where 𝑠𝑥 =

√√
(1/(𝑛 − 1))

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2 is estimator of the standard deviation calculated from

𝑛 observations of input signal, 𝑥 is a signal mean value.

Copyright © 2025. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, distribution, and reproduction
in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made.
Article history: received August 29, 2024; revised November 13, 2024; accepted November 16, 2024; available online April 22, 2025.

https://doi.org/10.24425/mms.2025.154340
http://www.metrology.wat.edu.pl/
mailto:michdor@prz.edu.pl


M. DOROZHOVETS: EVALUATION OF THE TYPE A UNCERTAINTY CAUSED BY SIMULTANEOUS INFLUENCE . . .

However, in measurement practice, especially in industry, in addition to random noise, periodic
interference from the industrial power line is very often present. The nominal frequency of such
interferences is 50 Hz (60 Hz in North America) [2, 3]. Power line interference penetrates the
measurement chain through different parasitic connections: inductances, capacitances, insulation
resistances, and also by common wires, the grounding, etc. [4–6]. The level of interference
depends on the power level, the configuration of the parasitic connection and distance between the
measuring circuit and power line, etc. That is, the level of power line interference may be tens of
times, or even sometimes more, higher than the level of random noise [2].

The power line interferences parameters are not stable. Namely, the relative frequency variations
are allowed within 𝛿 𝑓 = ±1% (that is from 49.5 Hz up to 50.5 Hz) for 99.5% of each one-year period,
and variations may be as high as from –6% to +4%, that is from 47 Hz up to 52 Hz for the whole
period (European standard EN 50160 [7]). Significantly higher frequency instabilities may occur
in power systems for mobile vehicles (ships, aircraft, etc.). In such power systems, the frequency
instability may be ±5% and for transient frequency components may be as high as ±10% [8].

Measurement problems related to these interferences and their suppression, mainly by filtering
and averaging, have been studied, analysed, and discussed in various sources [9–16]. Namely,
to reduce the impact of such interference, software filters can be used which are available, for
example, in the Advanced Analysis Toolkit for LabVIEW [13]. The problems of reducing the
effects of interference and suppressing noise by filtering during biomedical signal processing are
described in [14–16].

However, from a metrological point of view, it is not enough to ensure the required suppression
of power line interference and random noise, but it is necessary to estimate the uncertainty of such
measurements [1].

The aims of the following research are: (i) to clarify the problems of correct uncertainty
evaluation while measuring a signal distorted by periodic interference and random noise, (ii)
to propose the methods for separate estimation of parameters of these components to correctly
evaluate the uncertainty, and (iii) to test the effectiveness of the proposed methods using Monte
Carlo simulation and by measurement experiments.

2. Problems of standard uncertainty evaluation caused by power line interference and
random noise

Evaluation of the uncertainty in the case of simultaneous influence of both components on
the measured signal involves a significant problem. In the present study, the measured signal
model 𝑣in (𝑡) comprises, in addition to the so-called information component 𝑉𝑥 , the power line
interference component 𝑣int (𝑡) with amplitude𝑉𝑚, frequency 𝑓 and initial phase 𝜑, and the random
noise component 𝑣𝑛 (𝑡) of a standard deviation 𝜎𝑛, 𝑖.𝑒.:

𝑣in (𝑡) = 𝑉𝑥 + 𝑣𝑛 (𝑡) + 𝑣int (𝑡) = 𝑉𝑥 +𝑉𝑚 cos(2𝜋 𝑓 𝑡 + 𝜑) + 𝑣𝑛 (𝑡) . (2)

To reduce the influence of the both components, the averaging of the 𝑛 input observations
𝑣𝑖 = 𝑣in (𝑡𝑖) at sampling time moments 𝑡𝑖 = iT𝑠 (𝑇𝑠 is a sampling period (Fig. 1a)) is usually used.
The averaging interval is 𝑇av = 𝑚𝑇𝑛, where 𝑚 is a number of the interference nominal period:
𝑇𝑛 = 1/ 𝑓𝑛 [13]. Then the average value can be expressed as:

𝑉 = 𝑉𝑠 +
𝑉𝑚

𝑛

𝑛∑︁
𝑖=1

cos(2𝜋 𝑓𝑇𝑠𝑖 + 𝜑) +
1
𝑛

𝑛∑︁
𝑖=1

𝑣𝑛 (𝑡𝑖) = 𝑉𝑥 + Δav,int + Δ𝑎𝑣,𝑟𝑛𝑑 , (3)
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where Δav,int (𝑉𝑚) is the error caused by the averaging of the power line interference and Δ𝑎𝑣,𝑟𝑛𝑑
is the error caused by the averaging of the random noise. When the origin of the time coordinate
is located in the middle of the averaging time interval 𝑇av, 𝑖.𝑒. the averaging interval is between
−𝑇av/2 and +𝑇av/2, the power line component after simplification can be presented as:

Δav,int = Δav,int (𝑉𝑚) =
𝑉𝑚

𝑛

𝑛∑︁
𝑖=1

cos(2𝜋 𝑓𝑇𝑠𝑖 + 𝜑) = 𝑉𝑚 cos (𝜑) · sin (𝜋𝑣)/𝑛
sin (𝜋𝑣/𝑛) , (4)

where 𝑣 = 𝑓 𝑇av is normalized (to the averaging time 𝑇av interval) interference frequency 𝑓 .
The influence of such interference on the measured signal is quantified usually by the NMRR

(Normal Mode Rejection Ratio) [2]. This value is determined on a decibel scale as the ratio of the
interference amplitude𝑉𝑚 and the maximal value of the error module

��Δav,int (𝑉𝑚)
��

max : NMRR =

20 · log
[
Vm

/��Δav,int (Vm)
��
max

]
. The maximum effect of cosine interference (4) occurs at the initial

phase 𝜑 = 0, therefore the NMRR of the uniform averaging is:

NMRR = −20 log
(���� sin (𝜋v)/n

sin (𝜋v/n)

����) . (5)

From (5), it follows that all harmonics of the power line interference with numbers
𝑘 = 1, 2, . . . , 𝑛 − 1 are completely rejected. Contrarily, when the interference frequency dif-
fers from the nominal 𝑓𝑛 by a relative value 𝛿 𝑓 = ( 𝑓 − 𝑓𝑛)/ 𝑓𝑛 = (𝑣 − 𝑣𝑛)/𝑣𝑛, the error is��Δav,int (𝑉𝑚)

��
max ≈ 𝑉𝑚

��𝛿 𝑓 ��. Thus, the NMRR of uniform averaging is limited by 1/𝛿 𝑓 , and the
NMRR ≈ −20 log ( |𝛿f |) (Fig. 1b). When a maximum frequency deviation of the electrical power
system is up to 𝛿 𝑓 = ±1%, the usual averaging provides about 100-time interference reduction
or the NMRR is limited at a level of 40 dB (Fig. 1b). When 𝛿 𝑓 = ±5% (±2.5 Hz) the NMRR
decreases to ≈ 25.6 dB (Fig. 1b).

(a) (b)

Fig. 1. Uniform (𝑤𝑈𝑛, blue) and triangle (𝑤Tr, red) weight functions for 𝑛 = 16 (a); NMRR at frequency deviation 𝛿 𝑓 (%)
around 𝑓𝑛 = 50 Hz when using averaging with uniform (blue) and triangle (red) weight functions.

To increase an NMRR, special weighting functions (windows) [17] can be used. The result of
weight averaging (weighted mean value) of input observations is:

𝑉 =

𝑛∑︁
𝑖=1

𝑤𝑖𝑣in (𝑡𝑖) = 𝑉𝑥 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑣𝑛 (𝑡𝑖) +𝑉𝑚 cos (𝜑)
𝑛∑︁
𝑖=1

𝑤𝑖 cos(2𝜋 𝑓𝑇𝑠𝑖 + 𝜑), (6)

where 𝑤𝑖 (𝑖 = 1, 2, . . . , 𝑛) are the weighting coefficients. Here, the weight function used is

symmetrically around its centre and normalized, i.e.
𝑛∑︁
𝑖=1

𝑤𝑖 = 1. The sampling period is 𝑇𝑠 = 𝑇av/𝑛.
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In (6), it can be seen that the last sum represents the discrete Fourier transform of the weighting
function (DFTW) – spectral characteristic of the weighting averaging. Therefore, the NMRR is
determined by the logarithm of the modulus of the DFTW:

𝐺WF ( 𝑓 𝑇WF) = 𝐺WF (𝑣) =
𝑛∑︁
𝑖=1

𝑤𝑖 · cos (2𝜋 𝑓𝑇𝑠𝑖), NMRR = −20 log |𝐺WF (𝑣) | . (7)

From the point of view of high suppression of periodic interference, a triangle weight function
(Fig. 1a) is very useful. For the even 𝑛, the DFTW of such function is:

𝐺Tr (𝑣) = cos (𝜋𝑣/𝑛)
(
2 sin (𝜋𝑣/2) /𝑛

sin (𝜋𝑣/𝑛)

)2
. (8)

For the DFTW (8) of the triangle weight function the width of the main lobe is 𝑣0Tr = 2,
therefore, the width of triangle function must be twice that of the interference period:𝑇av = 𝑇Tr = 2𝑇 .
Using the triangle weight function for a maximum frequency deviation 𝛿 𝑓 = ±1%, the maximal
interference averaging error is:

��Δav,int (𝑉𝑚)
��
max ≈ 𝑉𝑚𝛿2

𝑓
= 10−4𝑉𝑚. That is, this function provides

a 104 – fold interference suppression (the NMRR is about 80 dB (Fig. 1b)), which is 100 times
more than in uniform averaging.

Based on the general approach to determine the variance of the averaging in (6), there are
two components of the variance: one is caused by the averaging of the power line interference
(𝜎2
𝑎𝑣.𝑖𝑛𝑡

), and the other is caused by the averaging of the random noise (𝜎2
av,𝑛): 𝜎2

av = 𝜎2
av,int +𝜎

2
av,𝑛.

Because from (4), (6) and (7)
��Δav,int (𝑉𝑚)

��
max ≈ 𝑉𝑚𝐺WF (𝑣), assuming uniform distribution of

the interference phase 𝜑, the variance of the interference averaging can be presented as: 𝜎2
av,int =(

𝑉2
𝑚/2

)
𝐺2

WF (𝑣). For uncorrelated noise observations the variance of the second component is:

𝜎2
av,𝑛 = 𝐶

2
WF𝜎

2
𝑛/𝑛, where 𝐶2

WF = 𝑛
𝑛∑
𝑖=1
𝑤2
𝑖
. Therefore, the variance of the signal averaging in (6) is:

𝜎2
av = 𝐶2

WF𝜎
2
𝑛/𝑛 +

(
𝑉2
𝑚/2

)
𝐺2

WF (𝑣) . (9)

The standard uncertainty of measurement is a root square of the variance (9):

𝑢𝐴 (𝑉)theor = 𝜎av =

√︃
𝐶2

WF𝜎
2
𝑛/𝑛 +𝑉2

𝑚/2𝐺2
WF (𝑣) = 𝑢𝐴(𝑉)𝑛,theor

√︃
𝐶2

WF + HNR2𝑛𝐺2
WF (𝑣), (10)

where 𝑢𝐴(𝑉)𝑛,theor = 𝜎𝑛/
√
𝑛 is a Type A theoretical standard uncertainty, when only uncorrelated

random noise distorts input signal. The quantity HNR = 𝑉𝑚/
(
𝜎𝑛

√
2
)

is the so-called harmonic-to-
noise ratio, which reflects the influence of the power line interference.

From (10), we can see that for the averaging used (known𝐺WF (𝑣) and𝐶WF) to determinate the
standard uncertainty 𝑢𝐴 (𝑉), the HNR ratio must also be known. In other words, the interference
amplitude 𝑉𝑚 and the standard deviation 𝜎𝑛 of random noise must be known separately. However,
using the estimated standard deviation 𝑠𝑣,in of input observations:

𝑠𝑣,in =

√√√
1

𝑛 − 1

𝑛−1∑︁
𝑖=0

(
𝑣in,𝑖 −𝑉

)2
≈

√︄
𝜎2
𝑛 +

𝑉2
𝑚

2
= 𝜎𝑛 ·

√︁
1 + HNR2, (11)

the standard uncertainty following the GUM procedure [1] is:

𝑢𝐴,GUM (𝑉) =
𝑠𝑣,in√
𝑛

≈ 𝜎𝑛√
𝑛

√︁
1 + HNR2 = 𝑢𝐴(𝑉)𝑛,theor

√︁
1 + HNR2. (12)
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Comparing (10) and (12) and taking into account that 𝐶WF ≈ 1 (for the uniform weight
function 𝐶WF = 1 and for the triangle one 𝐶WF ≈ 1.14), we can see that the impact of the standard
deviation of random noise 𝜎𝑛 in both expressions is practically the same. But the impact of the
interference amplitude

(
𝑉𝑚 = HNR𝜎𝑛

√
2
)

is quite different. In the correct expression (10) this
component is: HNR2𝑛𝐺2

WF (𝑣), 𝑖.𝑒. it is proportional to the square of HNR multiplied by the
square of the DFTW𝐺WF (𝑣) of the weight function used and the number 𝑛 of observations. On the
other hand, in (12), the impact of the interference amplitude is proportional to the square of HNR
only. Fig. 2 shows the dependence on the HNR of the coefficients 𝐶𝑢𝐴,GUM =

√︁
1 + HNR2 (12),

𝐶𝑢𝐴,Un =

√︃
1 + 𝑛HNR2𝐺2

𝑈𝑛
(𝑣) and 𝐶𝑢𝐴,Tr =

√︃
𝐶2

Tr + 𝑛HNR2𝐺2
Tr (𝑣) for the uniform and triangle

averaging (10), on which the corresponding standard uncertainty values depend.

(a) (b)

Fig. 2. Dependences of the coefficients 𝐶𝑢𝐴,GUM, 𝐶𝑢𝐴,Un, and 𝐶𝑢𝐴,Tr on the value of HNR for 𝑛 = 40 (a) and 𝑛 = 100
(b).

From the graphs in Fig. 2, it can be seen that even at a relatively low level of interference:
HNR ≈ 1, the 𝐶𝑢𝐴,GUM coefficient, which is used to calculate the uncertainty according to the
(12), differs significantly from the true value. That is, when HNR = 1, the value of 𝐶𝑢𝐴,GUM is
approximately 1.4 times greater than the actual value. When the HNR > 1 the value of 𝐶𝑢𝐴,GUM
is approximately proportional to HNR. This causes a corresponding increase in the standard
uncertainty 𝑢𝐴,GUM (𝑉). For example, when HNR = 10, then the calculated standard uncertainty
𝑢𝐴,GUM (𝑉) will be even more than 10 times larger than the real one.

From Fig. 2, it can also be seen that while using uniform averaging, due to the limitation of the
interference suppression (|𝐺𝑈𝑛 (𝑣) | ≤ 10−2 = 0.01), the significant influence of the interference
on the standard uncertainty value starts at HNR ≈> 10 for 𝑛 = 40 and at HNR ≈> 5 for 𝑛 = 100.
On the other hand, when triangular averaging is used, due to the high suppression of the interference
up to |𝐺Tr (𝑣) | ≤ 10−4 = 0.0001, the standard uncertainty value practically is independent of the
interference level even for HNR < 100.

In order to demonstrate this important problem, the following numerical example is presented.
The 𝑛 = 40 observations (in mV) of the measured signal were registered using a DAQ card and are
given in Table 1.

These observations are obtained by sampling (using the frequency 𝑓𝑠 = 1000 Hz) of the
signal 𝑉𝑥 = 175 mV distorted by the random noise of the standard deviation 𝜎𝑛 = 1.5 mV and
the power line interference of amplitude 𝑉𝑚 = 10 mV (HNR ≈ 4.7) and frequency 𝑓 = 49.5 Hz.
Using uniform and triangular averaging (6), the measurement results are as follows: 𝑉𝑥,meas,Un =

174.627 mV and𝑉𝑥,meas,Tr = 174.909 mV. The corresponding error values are:Δ𝑈𝑛 ≈ −0.373 mV
andΔTr ≈ 0.091 mV. Estimated by the first part of (11), standard deviation of the input observations
is 𝑠𝑣,in ≈ 7.338 mV. This value practically totally depends on the interference amplitude:
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Table 1. The 𝑛 = 40 observations (in mV) of the measured signal.

185.049 183.682 183.745 179.947 176.754 176.263 169.678 168.622 166.186 165.153

165.969 166.388 165.478 166.979 170.564 172.891 178.664 180.555 183.519 185.912

184.923 185.525 185.762 178.975 178.083 176.114 172.333 170.138 168.468 166.157

164.396 164.619 168.402 166.839 170.355 172.069 176.398 176.833 184.164 182.51

𝑠𝑉𝑚 = 𝑉𝑚/
√

2 ≈ 7.07 mV. Therefore, the standard uncertainty, calculated according to the
generally accepted GUM [1] method (12), is: 𝑢𝐴(𝑉𝑥)GUM = 𝑠𝑣,in/

√
𝑛 = 7.34 mV/

√
40 ≈ 1.2 mV.

For confidence level 𝑝 = 0.95, the expanded uncertainty determined due to [1] is at least 2 times
greater, that is about 2.32 mV.

Based on a comparison of the error values (Δ𝑈𝑛 ≈ −0.373 mV and ΔTr ≈ −0.091 mV)
determined above with the expanded uncertainty (≈ 2.32 mV), it can be seen that the differences
between them are very large (about ≈ 7 and ≈ 25 times). Therefore, the uncertainty determined
according to the classical GUM method [1] (12) is highly inaccurate. This is quite consistent with
the results of the theoretical analysis and Fig. 2 given above. The obvious reason for this is the
failure to take into account the suppression of the interference component by means of appropriate
averaging.

Theoretical values of the standard uncertainties are:

𝑢𝐴(𝑉)𝑛,theor = 1.5 mV/
√

40 ≈ 0.24 mV;

𝑢𝐴(𝑉)theor,GUM = 0.237 mV ·
√︁

1 + 4.7142 ≈ 1.14 mV;

𝑢𝐴(𝑉)theor,Un = 0.237 mV ·
√︁

1 + 4.7142 · 40 · 0.012 ≈ 0.25 mV;

𝑢𝐴(𝑉)theor,Tr = 0.237 mV ·
√︁

1.1412 + 4.7142 · 40 · 0.00012 ≈ 0.27 mV.

Therefore, the standard uncertainty 𝑢𝐴(𝑉)theor,GUM ≈ 1.14 mV (and also expanded), deter-
mined according to the rule [1], 𝑖.𝑒. by the estimated standard deviation of the input observations
(11), (12), may differ significantly, even several times or more, from the correct value. Comparing
the standard uncertainty values 0.25 mV (uniform averaging) and 0.27 mV (triangular averaging)
with the standard uncertainty 0.24 mV determined by considering only the random component
demonstrates their good agreement.

3. Separate estimation of power line interference and random components

It follows from the analysis of (10) and the example presented above that in order to correctly
determine the standard uncertainty of measurement, the amplitude 𝑉𝑚 of the harmonic component
and standard deviation 𝜎𝑛 of the random component should be known. In signal analysis,
a similar problem applies to determining the parameters of a harmonic signal distorted by random
noise [18–20]. Since the results of the estimation of the standard deviation and amplitude are
used for the evaluation of uncertainty, a high accuracy of the estimation of these parameters is
not required. Uncertainty in parameter estimation of a few percent or even higher is acceptable.
Therefore, simple methods can be used to estimate the parameters of these distortions.

It is clear that a priori information on the interference frequency (period) should be used to
estimate the parameters of the two components. In general, two simple approaches are possible.
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In the first method, the periodic interference parameters are first estimated. Then the standard
deviation of the noise component is estimated based on these parameters and the input samples. In
the second method, the reverse order is used: the standard deviation of the noise component is
estimated first, and then one calculates the interference amplitude.

Method 1. When knowing the nominal frequency 𝑓𝑛 of the interference and also the sampling
frequency 𝑓𝑠 , the simplest method to estimate the amplitude 𝑉𝑚,𝑘,est and phase 𝜑𝑘,est of the 𝑘−th
harmonics is calculating using the Fourier series [21] of the signal observations:

𝑉𝑘,cos =
1
𝑛

𝑛−1∑︁
𝑖=0

(
𝑣in,𝑖 −𝑉

)
· cos (2𝜋 𝑓𝑛𝑇𝑠𝑘𝑖); 𝑉𝑘,sin =

1
𝑛

𝑛−1∑︁
𝑖=0

(
𝑣in,𝑖 −𝑉

)
· sin (2𝜋 𝑓𝑛𝑇𝑠𝑘𝑖𝑛), (13)

𝑉𝑚,𝑘,est = 2
√︃
𝑉2
𝑘,cos +𝑉

2
𝑘,sin, 𝜑0,𝑘 = arctan

(
𝑉𝑘,sin

𝑉𝑘,cos

)
. (14)

After estimating the amplitudes and phases (14) of the harmonic component, using the
average value 𝑉 (6), the standard deviation 𝑠𝑛 is determined making use of the differences

Δ𝑣in,𝑖 = 𝑣in,𝑖 −𝑉 −
𝐾∑︁
𝑘=1

𝑉𝑚,𝑘,est cos(2𝜋𝑘 𝑓𝑛𝑡 + 𝜑𝑘,est):

𝑠𝑛,1 ≈

√√√
1

𝑛 − 1

𝑛−1∑︁
𝑖=0

(
Δ𝑣in,𝑖

)2
. (15)

Applying this method only to the main harmonic component (𝐾 = 1) for the data in
Table 1, we obtain the following values: 𝑉cos = 5.020 mV; 𝑉sin = 0.384 mV; 𝑉𝑚,1 = 10.070 mV;
𝜑0 = 0.076 rad; 𝑠𝑛,1 = 1.467 mV. Assuming the maximum frequency deviation±1%, the estimated
standard uncertainties for the method GUM [1] (12) and for uniform and triangle averaging (10)
using are as follows:

𝑢𝐴(𝑉𝑥)GUM,1 ≈
𝑠2
𝑛,1

𝑛

√√
1 +

𝑉2
𝑚,1

2𝑠2
𝑛,1

=
1.467
√

40

√︂
1 + 10.0702

2 · 1.4672 ≈ 1.15 mV,

𝑢𝐴(𝑉𝑥)Un,1 ≈
𝑠2
𝑛,1

𝑛

√√
1 +

𝑉2
𝑚,1

2𝑠2
𝑛,1
𝑛𝐺2

𝑈𝑛
(𝑑𝑓 ) = 1.467

√
40

√︂
1 + 10.0702

2 · 1.4672 40 · 0.012 ≈ 0.24 mV,

𝑢𝐴(𝑉𝑥)Tr,1 ≈
𝑠𝑛,1√
𝑛

√√
𝐶2

Tr +
𝑉2
𝑚,1

2 · 𝑠2
𝑛,1
𝑛𝐺2

Tr (𝑑𝑓 ) =
1.467
√

40

√︂
1.1412 + 10.0702

2 · 1.4672 40 · 0.00012 ≈ 0.26 mV.

As can be seen, these estimated values are very close to the theoretical values (1.14 mV,
0.25 mV and 0.27 mV respectively) determined above.

Method 2. Another, simpler, method can also be used. In this method the random component
is estimated directly by the differences Δ𝑣𝑛,𝑖 of the input observations 𝑣in,𝑖 , 𝑣in,𝑖+𝑛1 in adjacent
periods of interference (𝑛1 is a number of observations in the interference period):

Δ𝑣𝑛,𝑖 =
(
𝑣in,𝑖+𝑛1 − 𝑣in,𝑖

)
/2 ≈

(
𝑣𝑛,𝑖+𝑛1 − 𝑣𝑛,𝑖

)
/2. (16)

The variation 𝑣𝑎𝑟 (Δ𝑣) is: 𝜎2
𝑛/2, therefore, the estimated value of the standard deviation of the

random component is equal to:

𝑠𝑛,2 ≈
√

2

√√√
1

𝑛1 − 1

𝑛1−1∑︁
𝑘=0

Δ𝑣2
𝑛,𝑖
. (17)
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Using the estimated value 𝑠𝑣,in (11) of the input signal and standard deviation 𝑠𝑛,2 (17), the
estimated value of the amplitude of the interference component is:

𝑉𝑚,2 ≈
√

2
√︃
𝑠2
𝑣,in − 𝑠

2
𝑛,2. (18)

Applying this method to the data in Table 1 gives the following results: 𝑠𝑛,2 = 1.373 mV (17)
and 𝑉𝑚,2 = 10.195 mV (18). Therefore, the standard uncertainties estimated with Method 2 are as
follows:

𝑢𝐴(𝑉𝑥)GUM,2 ≈
𝑠2
𝑛,2

𝑛

√√
1 +

𝑉2
𝑚,2

2𝑠2
𝑛,2

=
1.373
√

40

√︂
1 + 10.1952

2 · 1.3732 ≈ 1.16 mV,

𝑢𝐴(𝑉𝑥)Un,2 ≈
𝑠2
𝑛,2

𝑛

√√
1 +

𝑉2
𝑚,2

2𝑠2
𝑛,2
𝑛𝐺2

Un (𝑑𝑓 ) =
1.373
√

40

√︂
1 + 10.1952

2 · 1.3732 40 · 0.012 ≈ 0.23 mV,

𝑢𝐴(𝑉𝑥)Tr,2 ≈
𝑠𝑛,2√
𝑛

√√
𝐶2

Tr +
𝑉2
𝑚,2

2 · 𝑠2
𝑛,2
𝑛𝐺2

Tr (𝑑𝑓 ) =
1.373
√

40

√︂
1.1412 + 10.1952

2 · 1.3732 40 · 0.00012 ≈ 0.25 mV.

The estimated values obtained are also very close to the theoretical values determined above.
It should be noted that the standard deviations 𝑠𝑣,in (11) and 𝑠𝑛,2 (17) were always estimated
inaccurately. As a result of these inaccuracies at the low level of interference amplitude, when
HNR < 1, a situation may occur in which 𝑠𝑣,in < 𝑠𝑛,2. Therefore, the value of the interference
amplitude according to (18) will not always be calculated correctly. That is why the use of this
method is not recommended for a low level of interference (HNR ≈< 1).

4. Results of simulation and experimental studies

In order to check the correctness of the above results, two alternative methods were used:
Monte Carlo simulations [22] and experimental tests.

4.1. Monte Carlo simulation results

Monte Carlo simulation involves two main steps. At the first step the start parameters of this
study were established. The value of the informative voltage is 𝑉𝑥 = 500 mV; the parameters of
interference component are: nominal frequency 𝑓𝑛 =50 Hz, the limits of instability 𝛿 𝑓 ,𝑙𝑖𝑚 = ±1.0%,
initial phase is changed in the range ±𝜋 and 7 values of interference amplitude were tested:
𝑉𝑚 = 10 mV, 20 mV, 50mV, 100 mV, 200 mV, 500 mV, 1000 mV. The standard deviation of
the random component is 𝜎𝑛 = 7.071 mV, for which the harmonic to noise ratios are as follows:
HNR = 1, 2, 5, 10, 20, 50, 100.

For each amplitude 𝑉𝑚, the 𝑀 = 105 random values of the interference frequency in the range
49.5 Hz ≤ f ≤ 50.5 Hz and uniformly distributed random phases in the range −𝜋 ≤ 𝜑 ≤ +𝜋 are
generated. For the random component, the 105 sets of the 𝑛 = 40 normally distributed random
values with zero expected value and standard deviation 𝜎𝑛 = 7.071 mV are generated. Therefore,
the 𝑀 = 105 ( 𝑗 = 1, . . . , 𝑛) tested signal realisations (2) of 𝑛 = 40 observations are prepared.

In the second step the following values are determined:
1. average values𝑉Un, 𝑗 , 𝑉Tr, 𝑗 and corresponding standard deviations 𝑠𝑣,in, 𝑗 (11) of input signal

realizations;
2. standard uncertainties 𝑢𝐴(𝑉) 𝑗 ,theor,GUM (12) following the GUM procedure [1] for known

values of 𝑉𝑚 and 𝜎𝑛;
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3. theoretical standard uncertainties 𝑢𝐴(𝑉)theor,Un, 𝑢𝐴(𝑉)theor,Tr (10) for known values of 𝑉𝑚
and 𝜎𝑛 and for uniform and triangle averaging;

4. estimators of the interference amplitude𝑉𝑚,1, 𝑗 (14),𝑉𝑚,2, 𝑗 (18) and noise standard deviations
𝑠𝑛,1, 𝑗 (15), 𝑠𝑛,2, 𝑗 (17) estimated by both methods;

5. estimators of the standard uncertainties 𝑢𝐴(𝑉) 𝑗 ,Un,1, 𝑢𝐴(𝑉) 𝑗 ,Tr, and 𝑢𝐴(𝑉) 𝑗 ,Un,2, 𝑢𝐴(𝑉) 𝑗 ,Tr,2
by (10) using estimators of interference amplitude (𝑉𝑚,1, 𝑗 , 𝑉𝑚,2, 𝑗 ) and noise standard
deviations (𝑠𝑛,1, 𝑗 , 𝑠𝑛,2, 𝑗 ) for uniform and triangle averaging.

The mean values of the uncertainties 𝑢𝐴(𝑉)𝑡ℎ𝑒𝑜𝑟, 𝐺𝑈𝑀 and also those determined for the
uniform and triangle averaging theoretical values 𝑢𝐴(𝑉)𝑡ℎ𝑒𝑜𝑟, 𝑈𝑛, 𝑢𝐴(𝑉)𝑡ℎ𝑒𝑜𝑟, 𝑇𝑟 (for a known
𝑉𝑚 and 𝜎𝑛) normalized to the ratio 𝜎𝑛/

√
𝑛 = 1.118 are shown in Fig. 3. From this figure it can be

seen that the standard uncertainty determined by Monte Carlo simulation according to the GUM
procedure [1] is consistent with the results of the theoretical analysis, which is shown in Fig. 2a.

Fig. 3. Dependence on HNR of the normalized-to-𝜎𝑛/
√
𝑛 values of average standard uncertainties 𝑢𝐴 (𝑉 )𝑡ℎ𝑒𝑜𝑟,𝐺𝑈𝑀

calculated according to GUM and theoretical uncertainties 𝑢𝐴 (𝑉 )theor,Un, 𝑢𝐴 (𝑉 )theor,Tr using uniform and triangular
averaging.

The normalized-to-𝑉𝑚mean values of the interference amplitude 𝑉𝑚,𝑀𝐶,1, 𝑉𝑚,𝑀𝐶,2 estimated
with the two methods are shown in Fig. 4a. As can be seen, both methods ensured estimation of the
interference amplitude with imprecision about a few percent, which is acceptable from the point of
view of uncertainty evaluation. Fig. 4 b shows the normalized-to-𝜎𝑛 mean values of noise standard
deviations 𝑠𝑛,𝑀𝐶,1/𝜎𝑛, 𝑠𝑛,𝑀𝐶,2/𝜎𝑛. From this figure it can be seen that, in general, Method 1,
based on previous interference amplitude estimation, provides better results in comparison with
results obtained with Method 2 based on direct estimation of noise standard deviation. That is,
when HNR >10, the normalized mean values increase to about: 1.05 (HNR = 20), 1.36 (HNR = 50)
and 2.07 (HNR = 100) using estimation Method 1 and 1.14 (HNR = 20), 1.60 (HNR = 50)
and 2.58 (HNR = 100) respectively using Method 2. Besides, at HNR > 20, the instability in
determining the noise standard deviation by both methods increases significantly.

(a) (b)

Fig. 4. Dependences on the HNR of the normalized-to-𝑉𝑚 mean values 𝑉𝑚,𝑀𝐶, 1, 𝑉𝑚,𝑀𝐶, 2 of the interference
amplitude (a) and normalized-to-𝜎𝑛 mean values 𝑠𝑛,𝑀𝐶, 1, 𝑠𝑛,𝑀𝐶, 2 of the noise standard deviation (b).
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In Fig. 5, the normalized-to-𝜎𝑛/
√
𝑛mean values of standard uncertainties values 𝑢𝐴(𝑉)MC,Un,1,

𝑢𝐴(𝑉)MC,Un,2, 𝑢𝐴(𝑉)MC,Tr, 1, 𝑢𝐴(𝑉)MC,Tr,2 determined using uniform and triangle averaging and
also theoretical uncertainties 𝑢𝐴(𝑉)theor,Un, 𝑢𝐴(𝑉)theor,Tr are shown. From Fig. 5, it can be seen that
at HNR ≈≤ 10 both uniform and triangle averaging practically ensures quite acceptable uncertainty
values. However, at HNR >10 when using uniform averaging, the standard uncertainty increases
more than 6 times at HNR = 100. This increase in uncertainty is consistent with the theoretical
relationship (6) and is caused by insufficient interference suppression in uniform averaging. Using
triangular averaging at HNR ≈≥ 20 also results in an increase in standard uncertainty, but this
increase is about 2.5 times smaller. The main reason for the increase in uncertainty is the lack
of adequate accuracy in estimating the standard deviation of noise at high values of interference
amplitude, 𝑖.𝑒., at HNR ≈≥ 20, especially when using Method 2.

(a) (b)

Fig. 5. Dependence on the HNR of the normalized-to-𝜎𝑛/
√
𝑛 mean values of standard uncertainties 𝑢𝐴 (𝑉 )MC,Un,1 and

𝑢𝐴 (𝑉 )MC,Un,2 determined using uniform averaging (a) and mean values of standard uncertainties 𝑢𝐴 (𝑉 )MC,Tr,1 and
𝑢𝐴 (𝑉 )MC,Tr,2 determined using triangle averaging (b) and also theoretical uncertainties 𝑢𝐴 (𝑉 )theor,Un, 𝑢𝐴 (𝑉 )theor,Tr.

One of the main reasons for the insufficient accuracy of the noise standard deviation estimation
is the lack of knowledge of the actual value of the interference frequency. In both methods of
estimating of the interference and random components it is assumed that the interference frequency
is nominal: 𝑓𝑛 = 50 Hz, period 𝑇𝑛 = 20 ms. While, as noted above, the actual value of the
interference frequency may differ from the nominal value by ±1%. Additional processing of noisy
signal samples, such as those described in [19,20], can be used to determine the actual interference
frequency. For this purpose, the frequency of the power line voltage could also be measured during
the signal acquisition. The resulting measurement of the actual frequency (period) could be used
in (13)–(18) to estimate 𝑉𝑚 and 𝜎𝑛. However, this requires additional research, which is beyond
the scope of this article.

4.2. Experimental results

Test stand. Experimental verification of the theoretical results and obtained by simulations
was carried out using a test stand, the block diagram of which is shown in Fig. 6.

The source of a regular part of the input test signal is a RIGOL DG1022 programmable
function generator. This generator, programmed according to relation (2), generates the sum of the
component 𝑉𝑥 , the harmonic interference of the amplitude 𝑉𝑚, and the frequency 𝑓 . The random
component was formed at the output of an NC 6102A noise generator (white noise in the band
10 Hz . . . 100 kHz). The test signal 𝑣in (𝑡) is the sum of the outputs of both generators. The voltage
is measured by a DMM KEYSIGHT 34465A of AC voltage range: 𝑉𝐴𝐶,𝑅 = 100 mV. A RIGOL
DS1052E oscilloscope is used for observation of the input signal. For the acquisition of the input
observations a NI 9222 voltage input module with a cDAQ-9171 measurement board [23] is used,
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Fig. 6. Block diagram of the test measuring circuit.

main parameters: 4 differential channels, input ranges: ±10 V, 16 bits, 500 kS/s/ch. To control
the measurement card and processing registered signal observations a program in LabVIEW
environment was used.

Experimental results. In the program controlling the measurement DAQ board, the sampling
frequency 𝑓𝑠 = 1 kHz and the option to record of 𝑁 = 𝑘𝑛 = 1000 (𝑛 = 40, 𝑘 = 25) of the input
observations (𝑣in,𝑖) were established. The standard deviation value in the noise generator output was
set to about 𝜎𝑛 = 7.07 mV by RMS indication of DMM. At the output of the function generator the
interference frequency was set in the range from 𝑓1 = 49.5 Hz to 𝑓11 = 50.5 Hz (𝑘 𝑓 = 11 values
with a step of 0.1 Hz (maximal deviation is ±1.0%). The 𝑘𝑢 = 7 values of interference amplitude
were as follows: 𝑉𝑚1 = 10 mV; 𝑉𝑚2 = 20 mV; 𝑉𝑚3 = 50 mV, 𝑉𝑚4 = 100 mV, 𝑉𝑚5 = 200 mV;
𝑉𝑚6 = 500 mV, 𝑉𝑚7 = 1000 mV. The values of HNR were follows: 1, 2, 5, 10, 20, 50 and 100.

This section provides only those experimental results that directly relate to the estimating
measurement uncertainty. First, the results are given for the estimation with both methods of the
interference amplitude and the noise standard deviation, and then the standard uncertainty values
when using uniform and triangular averaging are given. At the same time, a comparison of the
obtained experimental results with theoretical and simulation results is also given.

For each interference amplitude (𝑘𝑢 = 7) and for each harmonic frequency (𝑘 𝑓 = 11) the
𝑀𝑠 = 1000 signal observations (total 𝑀𝑟 = 𝑘𝑢𝑘 𝑓 = 77 realizations of 1000 observations) were
registered and processed. At the sampling period𝑇𝑠 = 1 ms and the averaging duration𝑇av = 40 ms
the number of the averaging observations is 𝑛 = 40, therefore theoretically it was possible to
process 𝑘 𝑓 𝑘𝑢𝑀𝑠/𝑛 = 1925 series of input observations. However, to ensure the randomness
condition of the initial phase of interference, each series with 𝑛 = 40 averaged observations should
start after the end of the previous at a random moment of time in the range of one interference
period. Since the sampling period 𝑇𝑠 = 1 ms, that is, there were 20 observations in the period,
the next averaged series started with a delay by a random number of signal observations in the
range of 1 to 20. Consequently, the number of observation series averaged for each frequency and
each interference amplitude was 𝑘 = 17, that is the total number of series tested was 𝑀𝑠 = 1309.
It is obvious that in this test the interference frequency did not change randomly, it took preset
values. For a given 𝑘 = 17 series and 𝑘 𝑓 = 11 different values of interference frequency there are
𝑁𝑢 = 17 · 11 = 187 estimates of the interference amplitude and also estimates of the standard
deviation of the random component and related to them standard uncertainties.
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The experimental uncertainty can be evaluated when the amplitude 𝑉𝑚,exp of harmonic
interference and the standard deviation 𝑠𝑛,exp of the random component are determined by the
two methods described above. Fig. 7 shows normalized-to-given-𝑉𝑚 values of the experimentally
determined interference amplitudes (𝑉𝑚,exp,1/𝑉𝑚, 𝑉𝑚,exp,2/𝑉𝑚) and normalized-to-𝜎𝑛 values of
the experimentally determined noise standard deviations (𝑠𝑛,exp,1/𝜎𝑛, 𝑠𝑛,exp,2/𝜎𝑛). Comparing the
graphs in Fig. 4a with the graphs in Fig. 7a, which present the results of the Monte Carlo simulation,
one can see their very good convergence. Similarly, one can notice a very good convergence
of the dependencies of the estimated values of the noise standard deviation determined from
experimental studies (Fig. 7b) and those determined from Monte Carlo simulations (Fig. 4b).

Experimentally determined and normalized-to-𝜎𝑛/
√
𝑛 standard uncertainties 𝑢𝐴(𝑉)exp,Un,1,

𝑢𝐴(𝑉)exp,Un,2, 𝑢𝐴(𝑉)exp,Tr,1, 𝑢𝐴(𝑉)exp,Tr,2 obtained when using uniform and triangle averaging
are shown in Fig. 8. Comparing the standard uncertainties of measurement determined by the
experimental results (Fig. 8) with the results of Monte Carlo simulation (Fig. 5) and with the
theoretical values, given in these figures, one can see a good convergence between them. It should
be noted that some differences between these results are caused by a large difference in the number
of averages: the number of averaged experimental realizations is only 187, and in the Monte Carlo
simulations the number of realizations was much higher, namely 105.

(a) (b)

Fig. 7. Experimentally-determined interference amplitude 𝑉𝑚,exp normalized to 𝑉𝑚 (a) and the noise standard deviation
𝑠𝑛,exp normalized to 𝜎𝑛 (b).

(a) (b)

Fig. 8. Experimentally-determined and normalized-to-𝜎𝑛/
√
𝑛 standard uncertainties when uniform (a) and triangle

(b) averaging are used.

The experimental results also confirmed the effect of reducing the accuracy of uncertainty
evaluation due to the low accuracy of the estimation of the standard deviation of noise, even though
the interference component is sufficiently suppressed by, for example, triangular averaging. The
main reason for this is the lack of knowledge of the actual deviation of the interference frequency
from the nominal value.
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5. Conclusions

This paper presents the problems of the type A evaluation of the measurement uncertainty
with the multiple observations, when the measured signal, in addition to random uncorrelated
noise, is distorted by power line interference. The standard uncertainty of such measurement
was investigated when uniform and triangular weighted averaging of the input signal were
used. The research was carried out theoretically, using the Monte Carlo simulation method, and
experimentally.

It was shown that the classical type A method given in GUM [1] does not provide a correct
evaluation of the uncertainty of such measurement. Namely, calculated according to the GUM, the
standard uncertainty is overestimated in comparison with the theoretical value by a few to several
tens of times or even more at high levels of interference (when HNR ≈ 100). This problem is
caused by the different suppression of random noise and power line interference during averaging
the input observations. The influence of the uncorrelated noise decreases in the first approach
proportionally to the root of the number of averaged observations. But the influence of the power
line interference practically does not depend on the number of observations and only depends on
the used averaging weight function and the instability of interference frequency.

It was stated that in order to correctly evaluate uncertainty in such measurement both the
amplitude of the power line component and the standard deviation of the random component should
be estimated separately. Two simple methods of the separate estimation of these components were
investigated.

Assuming that the maximum frequency deviation of the power line interference is |𝛿 𝑓 | = 1%,
it was found that uniform averaging can provide the correct evaluation of measurement uncertainty
if HNR ≈≤ 10. This limitation is mainly due to the relatively small interference suppression
(about only 1/|𝛿 𝑓 | = 100 times) and also the low accuracy of the estimation of the noise standard
deviation caused by the instability of interference frequency.

However, using triangular averaging, due to the large value of interference suppression (not
less than 104 at |𝛿 𝑓 | = 1%), the standard uncertainty can be calculated correctly for the level
of HNR ≈≤ 20. Although the accuracy of the uncertainty estimation using triangular averaging
is approximately 2.5 times higher than in the case of uniform averaging, the inaccuracy of the
uncertainty estimation is significant at HNR > 20. The main factor in this case also is the lack of
knowledge of the exact interference frequency.

To improve the evaluation of uncertainty, the actual value of the power line interference should
be determined. This requires additional research which will be performed in the next stage.

The results obtained and presented from the simulations and experimental tests have shown
good accordance with the results of the theoretical analysis. Therefore, they confirmed the
effectiveness of the proposed solutions of the Type A uncertainty evaluation in the measurements in
which the measured signal is distorted by both random noise and high-level power line interference.
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